
Article

Not peer-reviewed version

Power Efficiency Optimization and

Enhanced Connectivity for Wireless

Sensor Networks with the Fuzzy C-

Means 3D Model

Dinh Phu Cuong Le 

*

 , Dong Wang , Nguyen Hoang Tu

Posted Date: 8 February 2024

doi: 10.20944/preprints202402.0462.v1

Keywords: Wireless sensor networks; FCM-3WUSN clustering algorithm; Routing algorithm; Power load

balancing; Optimization learning.

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3400396
https://sciprofiles.com/profile/1659426


 

Article 

Power Efficiency Optimization and Enhanced 
Connectivity for Wireless Sensor Networks with the 
Fuzzy C‐Means 3D Model 
Dinh Phu Cuong Le 1, 2, *, Dong Wang 3 and Nguyen Hoang Tu 4 

1  College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China; 
ledinhphucuong.dalat@gmail.com 

2  Yersin University of Da Lat, Dalat, 66100, Lam Dong, Vietnam; ledinhphucuong.dalat@gmail.com 
3  College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China; 

wangd@hnu.edu.cn 
4  Center for Information Technology and Faculty of Information and Technology, Hanoi University of 

Industry, Hanoi, 11915, Vietnam; tunh@haui.edu.vn 
*  Correspondence: ledinhphucuong.dalat@gmail.com 

Abstract:  Wireless  Sensor  Networks  are  critical  for  modern  applications  ranging  from  environmental 
monitoring to smart city infrastructures. This research proposes a novel optimization learning and deployment 
strategy for Wireless Sensor Networks (WSNs) by 3D WUSN model is uniformly distributed M sensor nodes 
across diverse  terrains, with  clusters  representing  20% of  sensors,  showcasing  its  ability  to balance power 
consumption and extend network longevity, grounded in fuzzy clustering based protocol using the Fuzzy C‐
Means  (FCM) method,  called  FCM‐3DWUSN. Comparative  analysis  against  established models  including 
LEACH‐C, K‐Means  and LEACH  emphasized  FCM‐3DWUSN’s  outperformed  performance, with  average 
power consumption such as 134.990, 341.790, 143.895, and 192.984; respectively. The experimental result shows 
that FCM protocol in the 3D WUSN model can reduce energy consumption and improve the network lifetime 
to gather data and send the information. 

Keywords: wireless sensor networks; FCM‐3WUSN clustering algorithm; routing algorithm; power 
load balancing; optimization learning 

 

1. Introduction 

Wireless  Sensor Networks  (WSNs) have  emerged  as necessary  tools  across  the  spectrum of 
applications,  ranging  from  environmental  surveillance  to  the  foundational  blocks  of  smart  city 
infrastructures. Their ubiquity is not just a testament to their versatility but also heralds the advent 
of an interconnected future. As we increasingly integrate WSNs into the fabric of our daily lives, they 
simultaneously open doors to new possibilities and present multifaceted challenges. 

Foremost among these challenges is the complicated management of power resources. Within 
the  vast  and  interconnected  maze  that  constitutes  Wireless  Sensor  Networks,  optimal  power 
distribution and consumption become central. This not only ensures the prolonged viability of each 
node but is also paramount for the longevity and reliability of the entire network. 

In  the  realm  of  environmental  monitoring,  Wireless  Sensor  Networks  have  particularly 
showcased their prowess. Comprising small, energy‐efficient devices, these networks are adept at 
collecting  and wirelessly  transmitting data  from diverse  environments  to  a  central node or base 
station  (BS).  Their  capability  to  relay  real‐time,  comprehensive  data,  even  from  remote  and 
inaccessible terrains, marks a significant leap over traditional monitoring techniques. This evolution 
translates  to not only  enhanced accuracy but also  substantial  cost efficiencies, given  the  reduced 
human intervention and maintenance resources. 
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Wireless Sensor Networks,  specially  tailored  for environmental metrics,  seamlessly  integrate 
three core components: sensing nodes strategically dispersed in the monitoring environment, a base 
station entrusted with data collation and processing, and a robust communication protocol to ensure 
unhindered data flow between nodes and the base station. 

Their  transformative  impact  is  further  underscored  by  their  wide‐ranging  applications, 
spanning  from  tracking  forest  fires  to  real‐time wildlife movements. As we continue  to push  the 
boundaries  of  technological  innovation, WSNs  are  positioned  to  become  even more  integral  to 
environmental conservation and management. 

The LEACH algorithm  (Low Energy Adaptive Clustering Hierarchy)  [1]  is one of  the pillars 
underpinning  the  efficiency  of Wireless  Sensor Networks. Designed with  a  focus  on  clustering, 
LEACH’s primary objective is to extend the network’s functional life by judiciously managing power 
during data aggregation phases. By designating specific nodes as cluster heads for data relay, LEACH 
minimizes energy‐intensive  long‐range communications to the BS. Such  foundational strategies of 
LEACH have been the springboard for numerous iterations and enhancements, each striving for a 
delicate balance between power efficiency and cluster‐centric communication.   

Building on the LEACH foundation, LEACH‐C (Centralized LEACH) [1] integrates a centralized 
base  station  to  further  refine  the  efficiency  and  scalability  of  Wireless  Sensor  Networks.  By 
centralizing data acquisition and  leveraging  the holistic view of  the network  that  the base station 
provides,  LEACH‐C  enhances  decision‐making  and  network  performance  metrics.  While 
centralization  offers  a  myriad  of  advantages,  it  also  poses  challenges,  especially  in  ensuring 
synchronized  communication  between  the  central  base  and  peripheral  nodes.  However,  these 
challenges  have  been  meticulously  addressed,  ensuring  that  LEACH‐C  remains  a  robust  and 
streamlined architecture in Wireless Sensor Networks. 

The sphere of Wireless Sensor Networks has also witnessed a surge in the exploration of load‐
balancing  techniques.  These methods,  tailored  for WSN  longevity,  primarily  focus  on  adaptive 
strategies. By dynamically modulating cluster sizes based on factors like residual power and network 
traffic,  these  techniques have  consistently  showcased  superior performance metrics  against  their 
traditional  counterparts.  This  forward  momentum  in  load‐balancing  innovations  provides  a 
promising trajectory for the future landscape of Wireless Sensor Networks. 

Another key contributor to the evolving clustering algorithm narrative is the Fuzzy C‐Means 
(FCM)  [1]. An extension of the K‐means algorithm, FCM  introduces nuanced soft assignments. In 
FCM’s paradigm, data points  are not  rigidly  tethered  to  a  specific  cluster.  Instead,  they possess 
membership values, providing a gradient of association across multiple clusters. This complicated 
layering proves invaluable when the data landscape is riddled with ambiguities or has significant 
cluster overlaps. 

To achieve energy efficiency in WSN, several models have been done. 
D. C. Hoang et al. [1] presented and analyzed a cluster‐based protocol using the Fuzzy C‐Mean 

(FCM) method to reduce energy consumption within the Wireless Sensor Network to improve the 
network life. This protocol applied the FCM algorithm to create a cluster structure that minimizes the 
spatial  distance  between  sensor  nodes  and  thus  creates  a  better  cluster  obtain  formation. With 
support for data aggregation, cluster head rotation, and intra‐cluster TDMA scheduling techniques, 
energy consumption is balanced among all sensor nodes and the amount of data transmitted to the 
BS is significantly reduced.   

M.  Baghouri  et  al.  [2]  presented  a  difference  between  two  dimensions  (2D)  and  three‐
dimensional (3D) configuration of Wireless Sensor Network (WSN). Furthermore, WSN is known as 
a technology applied in everyday life, however, the analysis of 3D WSN is more complex than the 
analysis of 2D WSN. In this work, they showed that this approximation is not valid if the height of 
the  network  is  larger  than  the  length  and width  of  this  network,  and  power  consumption  and 
throughput in 3D environments are significantly reduced compared to 2D. Their experimental results 
showed that the 2D approximation was not reasonable because the lifetime of 3D WSN was reduced 
by about 21% compared to 2D WSN by the LEACH protocol. Their limitations exist for optimizing 
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the energy consumption of this network, but it will be done considering that the number of cluster 
heads in 3D WSN yields more results than in 2D WSN.   

Other authors [3] propose an optimization based on energy‐efficient routing protocol based on 
multi‐threshold  segmentation  (named  EERPMS)  in  Wireless  Sensor  Network  to  improve  the 
distribution uniformity of cluster heads, prolong, and save network energy through comparison of 
protocols.   

T. H. Dang et al.  [4] explored  the machine  learning  techniques  for classical  learning  such as 
Fuzzy C‐Means  (FCM) [1], K Means, …  in 3D WSN. They proposed an efficient topology  in a 3D 
Wireless Sensor Network (3D WSN) that balances node energy consumption, improves the capability 
of data transmission and prolongs network life. The proposed FCM‐PSOEB method aims to create 3 
steps  as:  firstly,  creates  energy‐efficient  clusters  consisting  of  cluster  heads  (CHs)  and  cluster 
members (non‐CHs) using the Fuzzy C‐Means algorithm. Secondly, particle cluster optimization is 
used to find the optimal CH to reduce the number of network disconnections from existing clusters. 
Finally, the process assigns non‐CHs to the most suitable clusters to ensure load‐balancing between 
clusters. D. T. Hai et al. [6] used a Lagrange multiplier method, the solutions of the model including 
cluster centers and membership matrices are calculated and used in the Fuzzy C‐Means algorithm 
called  FCM‐3WSN  by  a  mathematical  model  for  clustering  in  3D  WSN,  considering  energy 
consumption, communication constraints and 3D energy function.   

Other authors [7‐9] showed various machine  learning  techniques suitable for energy‐efficient 
routing using WSN. Furthermore, other  researchers  [9‐12] propose  current  SDN or  IoT  trending 
technology uses Wireless Sensor Network. 

The structure of this paper consists of 5 sections. Section 1 introduces the general management 
of Wireless Sensor Networks, an overview and some information about the clustering algorithm of 
the  problem.  Section  2  introduces  the model  and  optimizes  the model.  Section  3  proposes  an 
algorithm  for  the  optimal model.  In  the  remaining  2 parts, part  4 describes  the  experiment  and 
concludes in section 5. 

Motivations 
The  rapid  proliferation  and  integration  of Wireless  Sensor Networks  (WSNs)  in  everyday 

applications underscore an urgent need for enhanced performance and reliability. As these networks 
become the backbone of critical systems from environmental monitoring to the very fabric of smart 
cities, there is a pressing demand for optimization techniques that not only enhance data accuracy, 
but also ensure network functionality is maintained and efficient. Recognizing this, our motivation 
lies in bridging existing gaps, elevating WSNs’ capabilities and setting new benchmarks in energy 
efficiency and connectivity, thereby driving the evolution of WSNs to meet the rising challenges of 
the modern world. 

Contributions 
Amid  the  expanding  applications  of Wireless  Sensor Networks  (WSNs),  achieving  optimal 

performance is paramount. Our contributions address this by introducing advanced mechanisms and 
models,  setting  new  benchmarks  in  power  efficiency  and  connectivity within WSNs.  The main 
contributions can be summarized as follows: 

Optimization and Deployment for WSNs: We propose a comprehensive strategy for Wireless 
Sensor Networks  (WSNs)  targeting power  efficiency,  coverage,  connectivity,  and data  reliability. 
Using varied deployment strategies ensures seamless, high‐quality coverage with minimal sensor 
node installations across applications from environmental sensing to smart cities. 

FCM‐3DWUSN technique: We propose a new technique as the foundation for fuzzy clustering 
and particle swarm optimization, which outperforms established algorithms. Alongside this, we have 
presented a novel 3D WUSN model with uniformly distributed M sensor nodes, ensuring consistent 
and broad data collection, named FCM‐3DWUSN. 

Advanced Cluster Mechanism and Communication Protocol: Established a structure where 
ground nodes have dual roles and facilitate systematic hourly data transmission to BS. This is coupled 
with efficient one‐hop communication between cluster members and Cluster Heads, a centralized 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 February 2024                   doi:10.20944/preprints202402.0462.v1

https://doi.org/10.20944/preprints202402.0462.v1


  4 

 

permanent base  station  for  consistent data aggregation, and an  adaptive  rotation mechanism  for 
Cluster Heads based on residual power, ensuring sustained network efficiency. 

The research amalgamates advanced techniques and systematic methodologies, paving the way 
for optimizing Wireless Sensor Networks in varied applications. 

2. System Model 

2.1.3. D WUSN Model 

We propose a 3D WUSN system with M sensors [1‐2‐3‐4]. These sensors are spread out evenly 
on  the ground, each having a specific  job based on where  they are and what  they do. This setup 
ensures full coverage and good data collection. Here are the main ideas guiding this setup: 
‐ After setting them up, all sensors stay put. Even though they have different jobs, they all start 

with the same amount of power and keep it consistent. 
‐ There are an equal number of sensors on the ground and below it. In each group or “cluster” 

(let’s call C), there’s an even mix of M sensors. 
‐ Sensors on  the ground can either be  leaders  (Cluster Heads or CH) or  just regular members. 

Only the leader sensor collects data from both on‐the‐ground and underground sensors, sending 
it to the Base Station (BS) every hour. 

‐ Within each group, some sensors, marked as k, focus mainly on collecting data. They then send 
this data to their leader sensors above the ground. 

‐ For communication, sensors talk directly to their leader sensors. These leader sensors then send 
data to the main control point without any stops in between. 

‐ The main control point, crucial for putting all data together, is always fixed in one central spot. 
‐ At the end of each hour of communication, we check how much power each sensor has left. This 

helps us decide if we need to change the leader sensors. 
In short, this setup, based on the points above, helps us collect data in the best way while saving 

as much power as possible in our sensor network. 
 

 
 

Figure 1. The WUSN Model. 
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2.2. Mathematical Model 
We assume a 3D WUSN model where M sensor nodes are in the field. They are distributed on 

the  ground  to  collect  information.  They  are  fixed  in  locations  and  uniformly  distributed  in 
configuration and function. Sensors are placed in coverage with each other. Some assumptions are 
made as follows:   
‐ All sensor nodes are fixed after being deployed, and the energy of the nodes is the same at the 

beginning, although in the model the sensors are used for different purposes, and their energy is 
the same at initialization.   

‐ M sensor nodes will be assigned to a given cluster C. The number of nodes above the ground and 
underground was divided based on the ratio of the datasets.   

‐ The number of members in clusters is not the same quantity.   
‐ Nodes marked as CH will be on  the ground, and a cluster will  form between  the above‐the‐

ground and underground nodes. The nodes  that are above  the ground, can be designated as 
member nodes or can be cluster heads if it is a cluster head, then it will collect information from 
underground  and  above  the  ground  nodes which  transmits  the  information  to  the  BS.  The 
transmission schedule will be 1 hour each.   

‐ In  a  cluster,  there will be k underground nodes,  the underground nodes  are  responsible  for 
collecting and transmitting information to the CH node on the ground. 

‐ Single‐hop communication is assumed in the sense that member clusters to CH directly and CHs 
forward data to BS in the communication range.   

‐ The BS will be permanently assigned in a central location.   
‐ After  each  round,  all  nodes will  be  calculated with  the  remaining  energy  so  that BS would 

consider updating the array nodes for the next rounds based on the remaining energy. 

 

 

Figure 2. The overview of the proposed network model. 

This study is motivated based on the model, then we deliver the new model combining those 
above  assumptions.  Sensors  have  limited  power  (mainly  battery‐powered)  and  processing 
capabilities.  Sensing  and  processing  require  energy‐intensive  processes,  specifically  including 
environmental sensing components, data aggregation, and data transmission and reception [4‐9]. The 
energy consumed in the transmission of l‐bit data [9] at the distance (d) is represented [3] by ECM−CH 
and  it  is  calculated  in Equation  (1).  If  d  ≤  dth  in which  dth  is  the  constant of  the distance,  energy 
consumption  is calculated based on  the  free space model with d2. Conversely,  it  is  the multi‐path 
fading model with d4 energy dissipation. The energy consumption of a sensor in the cluster is given 
by the formula below. 
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𝐸஼ெି஼ு ൌ  𝑙𝐸ୣ୪ୣୡ ൅ 𝑙𝜖௙௦ 𝑑௧௢஼ுଶ ൌ 𝑙𝐸௘௟௘௖ ൅ 𝑙𝜖௙௦  ෍෍   ฮ𝑋௜ െ 𝑉௝  ฮଶ஼
௝ୀଵ

ெ
௜ୀଵ   (1)

where  𝑙  is the number of data bits and  𝐸௘௟௘௖௧  be energy consumption per bit to run the transmitter 
or the receiver data.  𝜖௙௦  be the energy required for amplifying mode, and  𝑑௧௢஼ு  be the distance from 
CM  to CH  [4].  𝑉௝  ሺ𝑗 ൌ 1, … ,𝐶ሻ be  the  location of CH of  𝑗௧௛   clusters, and  𝑋௜   be  the  location of  𝑖௧௛ 
sensor nodes. The formula for calculating the energy consumption of a CH for assembling data and 
transferring it to BS is as follows: 

𝐸஼ுି஻ௌ ൌ  𝑙𝐸ୈ୅ ൅ 𝑙𝜖௠௣ 𝑑௧௢஻ௌସ ൌ 𝑙𝐸௘௟௘௖ ൅ 𝑙𝜖௠௣  ෍෍   ฮ𝑉௝ െ 𝑋஻ௌ ฮସ஼
௝ୀଵ

ெ
௜ୀଵ   (2)

where  𝐸஽஺ be the energy consumption for data aggregation,  𝜖௠௣  be the energy loss by the amplifier 
mode [4], and  𝑑௧௢஻ௌ  be the distance from CH to BS [9] at a certain terrain [4‐9]. 𝑋஻ௌ  be the location 
of BS. Hence the entire network has energy consumption [4] is as Equation (3): 𝐸஼ெି஼ுି஻ௌ ൌ  𝐶ሺ𝑙𝐸ୈ୅ ൅ 𝑙𝜖௠௣෍෍ฮ𝑉௝ െ 𝑋஻ௌฮସሻ஼

௝ୀଵ
ெ
௜ୀଵ  

൅ሺ𝑀 െ 𝐶ሻሺ𝑙𝐸௘௟௘௖ ൅ 𝑙𝜖௙௦  ෍෍   ฮ𝑋௜ െ 𝑉௝ฮଶ஼
௝ୀଵ

ெ
௜ୀଵ ሻ  (3)

The  energy  path  loss  from  the  underground  nodes  to  above‐the‐ground  CH  is  calculated 
according to the formula. When transmitting data from underground sensors to CH, the Friis model 
[5]  is adopted  to calculate  the path  loss,  it  is derived  from  the Friis equation  in  free space and  is 
modified when electromagnetic waves are transmitted in sediments. The path loss quantifies the EM 
wave attenuation with the transmission distance. When the antenna gains are not included, then the 
path loss in free space can be simplified to Equation (4): 𝐸௣௔௧௛௟௢௦௦஼ெೠି஼ு ൌ  6൅ 20 log𝑑 ൅ 20 log𝛽 ൅ 8.69𝛼𝑑  (4)

where  𝑑  be  the distance between  the  sender  sensor as  the underground  sensor and  the  received 
sensor  as  CH  placed  on  the  terrain.  The  distance  could  be  calculated  via  the  3D  Euclidean. 
Accordingly,  z will be the depth of node  X୧౫  and  z୴  be the height of node CH above the ground. 
Variants  for  underground  are  α   and  β   are  the  constant  of  phase  shifting  and  attenuation, 
respectively. Equation (4) is used to compute the energy of the path loss. 𝐸஼ெೠି஼ு ൌ  6 ൅ 20 log𝛽 ൅ 20 logฮ𝑋௜௨ െ  𝑉௝ฮ ൅ 8.69αฮ𝑋௜௨ െ  𝑉௝ฮ  (5)

The Taylor series is used to expand the log function in Equation (5) into a polynomial function. 𝑙𝑜𝑔 𝑥 ൌ  
1𝑙𝑛10

ሺ𝑥 െ 1ሻ െ  
1

2𝑙𝑛10
ሺ𝑥 െ 1ሻଶ ൅  

1

3𝑙𝑛10
ሺ𝑥 െ 1ሻଷ ൅⋯  (6)

  𝐸஼ெೠି஼ு ൌ  6െ 20𝑙𝑛10
൅ 20 log𝛽 ൅ ሺ8.69α ൅ 20

ln 10
ሻฮ𝑋௜௨ െ  𝑉௝ฮ  (7)

 
As per the above assumption, the network consists of k underground nodes. The CM‐CH‐BS 

nodes’ energy transmissions and the energy lost by the k nodes buried underground will make up 
the network’s total energy as Equation (8): 𝐸௧௢௧௔௟ ൌ 𝐸஼ெି஼ுି஻ௌ ൅ 𝑘𝐸௣௔௧௛௟௢௦௦಴ಾೠష಴ಹ  (8)

Combining Equations (3), and (8), we have the total energy model [4] of the network as follows: 𝐸௧௢௧௔௟ ൌ  𝐶ሺ𝑙𝐸஽஺ ൅ 𝑙𝜖௠௣෍෍ฮ𝑉௝ െ 𝑋஻ௌฮସሻ஼
௝ୀଵ

ெ
௜ୀଵ   (9)
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൅ሺ𝑀 െ 𝐶ሻቌ𝑙𝐸௘௟௘௖ ൅ 𝑙𝜖௙௦  ෍෍   ฮ𝑋௜ െ 𝑉௝ฮଶ஼
௝ୀଵ

ெ
௜ୀଵ ቍ 

൅ 𝑘 ൬6െ 20𝑙𝑛10
൅ 20 𝑙𝑜𝑔 𝛽 ൅ ሺ8.69𝛼 ൅ 20𝑙𝑛 10

ሻฮ𝑋௜௨ െ  𝑉௝ฮ൰ 
From the energy model in Equation (9), we fuzzed them and proposed the mathematical model 

to minimize the total energy of the network as the Equation (10) below. 
  𝐽൫௨೔ೕ,௏൯ ൌ  𝐶ሺ𝑙𝐸௘௟௘௖ ൅ 𝑙𝐸஽஺ ൅ 𝑙𝜖௠௣෍෍𝑢௜௝௠ฮ𝑉௝ െ 𝑋஻ௌฮସሻ஼

௝ୀଵ
ெ
௜ୀଵ  

൅ሺ𝑀 െ 𝐶ሻቌ𝑙𝐸௘௟௘௖ ൅ 𝑙𝜖௙௦  ෍෍𝑢௜௝௠ฮ𝑋௜ െ 𝑉௝ฮଶ஼
௝ୀଵ

ெ
௜ୀଵ ቍ 

൅ 𝑘 ቌ6െ 20𝑙𝑛10
൅ 20 𝑙𝑜𝑔 𝛽 ൅ ሺ8.69𝛼 ൅ 20𝑙𝑛 10

ሻ෍෍𝑢௜௝௠஼
௝ୀଵ

ெ
௜ୀଵ ฮ𝑋௜௨ െ  𝑉௝ฮቍ →  Min 

(10)

The  clustering  problem’s  objective  function  is  represented  by  Equation  (10).  The  degree  of 
belonging  u୧୨  and the cluster center  V୨  are the two primary factors that need to be assigned to cluster 
in this kind of situation. The problem’s objective is to distribute sensors among clusters [9], and then 
choose the cluster header. The data is passed directly from CM to CH and CH to BS. The BS would 
take  into  account  re‐clustering  and  re‐selecting CH,  depending  on  the  remaining  energy  of  the 
network’s  sensors  after  each  loop.  Regarding  the  limitation  of  communication  constraints,  the 
following conditions are incorporated: 

෍෍𝑢௜௝௠஼
௝ୀଵ

ெ
௜ୀଵ ൌ 1,𝑢௜௝ 𝜖 ሾ0, 1ሿ  (11)

ฮ𝑋௜ െ 𝑉௝  ฮ ൑ 2𝑇𝑟   (12)ฮ𝑉௝ െ 𝑋஻ௌ ฮ ൑ 9𝑇𝑟  (13)

We have the new clustering model in equations (10‐13). Before we state the new algorithm, we 
solve the optimization problem by the Lagrange multiplier method. 

Where 𝑚  is the fuzzification coefficient (usually 𝑚 ൌ 2ሻ,  𝐶  is the number of clusters, 𝑀  is the 
number of sensors, and  𝑙  is the number of bits in each data packet.  𝑇௥  is the communication range, 
and is calculated by 3D Euclidean. The objective Equation (11) is a nonlinear optimization problem. 
Constraints  (12)  and  (13)  are  given  in  the Wireless  Sensor Networks  problem  to  simulate  the 
communication  range between  two normal  sensor nodes,  as well  as  from normal  sensors  to BS. 
Constraint (11) means that the membership of each sensor node in each cluster is represented to a 
degree as  the membership  function. The  result of equations  to  calculate  𝑢  and  𝑉  is provided  in 
Equations (14), and (15) below. 𝐿൫𝑢,𝑉௝൯ ൌ  𝐶 ቌ𝑙𝜖௠௣ 𝑢௜௝௠෍෍ฮ𝑉௝ െ 𝑋஻ௌฮସ஼

௝ୀଵ
ெ
௜ୀଵ ቍ൅ ሺ𝑀 െ 𝐶ሻቌ𝑙𝜖௙௦  ෍෍𝑢௜௝௠ฮ𝑋௜ െ 𝑉௝ฮଶ஼

௝ୀଵ
ெ
௜ୀଵ ቍ  (14)

  𝜕𝐽𝜕𝑉௜ ൌ  𝐶4𝑙𝜖௠௣෍෍𝑢௜௝௠ฮ𝑉௝ െ 𝑋஻ௌฮଷ஼
௝ୀଵ

ெ
௜ୀଵ ൅ ሺ𝑀 െ 𝐶ሻቌ2𝑙𝜖௙௦෍෍𝑢௜௝௠஼

௝ୀଵ
ெ
௜ୀଵ ฮ𝑋௜௝ െ 𝑉௝ฮቍ 

െ 𝑘 ൬8.69𝛼 ൅ 20𝑙𝑛 10
൰෍෍𝑢௜௝௠஼

௝ୀଵ
ெ
௜ୀଵ  

(15)

 
Since  ப୎ப୚౟ ൌ 0 there is: 
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෍෍൫𝑉௝ െ 𝑋஻ௌ൯ଷ஼
௝ୀଵ

ெ
௜ୀଵ ቌ𝐶4𝑙𝜖௠௣෍෍𝑢௜௝௠஼

௝ୀଵ
ெ
௜ୀଵ ቍ ൅ ሺ𝑀 െ 𝐶ሻ൮2𝑙𝜖௙௦෍෍𝑢௜௝௠஼

௝ୀଵ
ெ
௜ୀଵ ൫𝑋௜௝ െ 𝑉௝൯൲ 

െ 𝑘 ൬8.69𝛼 ൅ 20𝑙𝑛 10
൰෍෍𝑢௜௝௠஼

௝ୀଵ
ெ
௜ୀଵ ൌ 0 ሺi ൌ 1 …  M, j ൌ 1 … Cሻ  (16)

 
Denote from: 

𝐴 ൌ  𝐶4𝑙𝜀௠௣෍෍𝑢௜௝௠ 

஼
௝ୀଵ

ெ
௜ୀଵ   

𝐵 ൌ  2𝑙𝜀௙௦ሺ𝑀 െ 𝐶ሻ෍෍  𝑢௜௝௠ 

஼
௝ୀଵ

ெ
௜ୀଵ   (17)

𝐶 ൌ 𝑘 ൬8.69𝛼 ൅ 20𝑙𝑛10
 ൰෍෍𝑢௜௝௠஼

௝ୀଵ
ெ
௜ୀଵ  

 𝑢௜௝ ൌ  
1

∑ ቌ𝜖௠௣ฮ 𝑉௝ െ 𝑋஻ௌ ฮସ ൅ ሺ𝑀 െ 𝐶ሻ𝜖௙௦ฮ 𝑋௜ െ 𝑉௝  ฮଶ ൅ 𝑘 ቀ 20𝑙𝑛10
 ൅  8.69𝛼ቁ ฮ𝑋௜௨ െ 𝑉௝ฮ𝜖௠௣ฮ 𝑉௝ െ 𝑋஻ௌ ฮସ ൅ ሺ𝑀 െ 𝐶ሻ𝜖௙௦ฮ 𝑋௜ െ 𝑉௝  ฮଶ ൅ 𝑘 ቀ 20𝑙𝑛10
 ൅  8.69𝛼ቁ ฮ𝑋௜௨ െ 𝑉௝ฮቍ

ଵ௠ିଵ஼௜ୀଵ
 

(18) 

 𝑉௜ ൌ 𝐵𝐴ට𝐵ሺ𝑋஻ௌ െ  𝑋௜ሻ ൅ 𝐶
2𝐴  

య ൅ඨ1
4
൬𝐵ሺ𝑋஻ௌ െ  𝑋௜ሻ ൅ 𝐶𝐴 ൰ଶ ൅  

𝐵ଷ
27𝐴ଷ

െ ඩ𝐵ሺ𝑋஻ௌ െ  𝑋௜ሻ ൅ 𝐶
2𝐴 ൅ ඨ1

4
ቆ𝐵ሺ𝑋஻ௌ െ  𝑋௜ሻ ൅ 𝐶𝐴 ቇଶ ൅  

𝐵ଷ
27𝐴ଷ 

య
 ൅   𝑋஻ௌ 

 

(19) 
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Figure 3. The general process algorithm. 

3. The FCM‐WSN algorithm 
From the solutions of the problem (11, 12, 14), we propose a better clustering algorithm named 

Fuzzy C‐Means (FCM) [6] for 3D WUSN named FCM‐3WUSN described in Algorithm 1. The purpose 
of extending the lifetime of the WUSN [9] is to optimize the energy consumption of the sensors in the 
local cluster and communicate with the CHs‐BS. Therefore, sensors in a cluster transmit data to their 
CH node, and that CH node aggregates the data from the sensors, removes redundant information, 
and  transmits  them  to BS  [6]. Communication constraints are guaranteed during clustering. Thus 
power consumption for the transmission process is significantly reduced. The cluster‐based routing 
protocol presented in this study for efficient routing in WUSN performs routing of packets collected 
by sensor nodes to cluster head (CH) nodes through cluster member nodes or directly [7]. The CH 
nodes forward directly to BS and maintain the route for efficient routing of data packets [7‐9]. The 
routing algorithm describes how the database is derived from a cluster member to BS. The steps of 
the proposed routing algorithm are described below: 

  Algorithm 1 FCM‐3DWUSN Clustering formation 

  Input:  A  number  of  sensors  (M);  A  number  of  clusters  (C); 

Fuzzifier; The maximum iteration maxSteps; Sensor list. 

Output: Matrix u, and a matrix of center V 
1:  t ← 0 
2:  k ← 1 
3:  Initialize ukj satisfied the equation (11). 
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4:  while ||ut – ut–1|| > є do 
5:  t = t + 1 
6: 

7: 

Calculate V following the equation (19). 

Calculate u following the equation (18). 
8:  end while 
9:  while k < C do 
10:  if (𝒅ሺ𝑿𝒊,𝑽𝒌ሻ  = min(Ɐi  ∈  Ck) and  𝑿𝒊.𝒙 ൐ 𝟎  then 
11:  𝑿i(CH) ← true 
12:  end if 
13: 

if (𝒅ቀ𝑿𝒋,𝑿𝒊ሺ𝑪𝑯ሻቁ  < Tr (Ɐi  ∈  Ck) then 

14:  𝑿i(non – CH) ← true 
15:  end if 
16:  end while 

 
Algorithm 2 Routing algorithm 
Step 1: Reading the power levels and location (𝑥௜, yi, zi) of sensor nodes 

Si, i = 1, 2, 3, … 
Step 2: Sending “HELLO” packet to all the neighbor nodes from a base 

station and find distances of node from a base station and between the nodes. 
Step 3: At BS, the FCM‐3DWUSN algorithm is used to select CH, and 

cluster it, based on distance and power of the nodes. 
Step 4: Sending data from CMs to CH in each cluster. 
Step 5: Accumulating data at BS. 
Step 6: If power levels of at least 50% of nodes are drained. 
Step 7a: If Step 6 yes: STOP. 
Step 7b: If Step 6 no: check if CH rotation if it is needed. 
Step 8: If yes, then return Step 3. If no, then return Step 4. 
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4. Experiment 

4.1. Testbed 

In this experiment, we install the proposed FCM‐3DWUSN algorithm and compare it with other 
models: LEACH‐C, LEACH and K‐Means [4]. These parameters are N,  T୰,  Eୣ୪ୣୡ, … in Table 1 with 
the utilization of an Intel Core i5 computer with 3.1GHz configuration, 4GB Ram. 

Table 1. Parameters of the model. 

Parameter Value 

Initial node power 5J 

N 1000 𝑇௥  250 m 

E௘௟௘௖ 50 nJ/bit 

Eୈ୅ 5 pJ/bit 

εmp 0.0013 pJ/bit/m4 

εfs 10 pJ/bit/m2 

L 500 te 

4.2. Experimental Results 
First, we measure the power efficiency of the models on different terrains for the ratio of CHs 

connected to BS with a number of clusters is 20% of a number of sensors. Table 2 gives the network 
energy consumption for specific models: FCM‐3DWUSN, LEACH‐C, LEACH and K‐Means. Finally, 
FCM‐3DWUSN requires the smallest average energy consumption compared to other models. 

Table 2. The power efficiency of the models on different terrain. 

Terrain LEACH LEACH-C K-Means FCM-3DWUSN 

T1 182.160 293.957 138.247 174.789 

T2 195.159 155.514 129.667 162.054 

T3 208.515 514.775 154.227 169.368 

T4 164.012 384.664 116.199 119.982 

T5 209.05 240.831 187.040 179.56 

T6 173.954 517.287 144.514 102.553 

T7 212.243 189.875 167.110 116.225 

T8 240.986 451.496 175.418 112.452 

T9 191.596 234.403 134.354 98.457 

T10 152.167 435.096 92.175 114.452 

The graph in Figure 4 is shows the average value of the energy consumption of the algorithms 
with FCM‐3DWUSN, LEACH‐C, LEACH and K‐Means are: 134.990, 341.790, 192.984 and 143.895; 
respectively. We find that FCM‐3DWUSN obtained the best results. 
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Figure 4. The average power consumption. 

Second, we  compare  several  connections  from CH  to BS  and  from non‐CH  to CH. LEACH 
produces 100% of the CH‐to‐BS connection rate and 58.23% of the non‐CH connection rate. On the 
contrary, the connection rates from non‐CH to CH nodes of LEACH‐C and K‐means are very high: 
100%  and  98.84%,  respectively,  but CH  to  BS  connection  rates  are  quite  low:  21.9%  and  24.2%, 
respectively. Meantime,  the connection rates  from CHs  to BS and  from non‐CHs  to CH are high, 
obtaining 82.0% and 98.0%, respectively. In Figure 5, FCM‐3DWUSN is shown to achieve the best 
results among all. 

 
Figure 5. The average of connections 

In Figure 6, we estimate the round (re‐cluster) of every model. After each re‐clustering, the CH 
of the clusters will be circulated to the sensors in the cluster [4‐10]. Thereby, power consumption is 
balanced among  sensors  in  the  cluster and  the network  lifetime  is extended. A number of FCM‐
3DWUSN  rounds  have  the  highest  measurements,  indicating  that  the  power  consumption  is 
balanced among the clusters and prolongs the life of the Wireless Sensor Networks [10] in Figure 6 
in the experiment. 
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Figure 6. The rounds of algorithms 

5. Conclusions 

In the rapidly evolving domain of Wireless Sensor Networks, achieving optimal performance 
remains both a challenge and a necessity, especially given  the varied applications spanning  from 
environmental  sensing  to  smart  city  integration.  Our  study  delved  deep  into  this  challenge, 
presenting  a  comprehensive  strategy  that  significantly  improves  power  efficiency,  coverage, 
connectivity, and data reliability within WSNs. The  introduction of the FCM‐3DWUSN technique, 
rooted  in  fuzzy  clustering  and  particle  swarm  optimization,  has  showcased  its  potential  to 
outperform traditional algorithms like LEACH, LEACH‐C, and K‐Means. Our results, drawn from 
extensive experiments across diverse terrains, emphatically underscore FCM‐3DWUSN’s capability 
to balance power consumption and extend the network’s lifespan [10‐11‐12].   

Furthermore, our model’s adaptive nature, featuring an efficient one‐hop communication protocol, and a 
systematic rotation mechanism for Cluster Heads based on residual power, promises sustained efficiency and 
adaptability. The results of this research not only set new benchmarks for Wireless Sensor Networks, but also 
offer a roadmap for future studies [11‐12]. As technology continues to evolve, the strategies and methodologies 
presented in this paper will serve as a foundational guide, ensuring that Wireless Sensor Networks are not just 
efficient but also sustainable and adaptable to the ever‐changing requirements of real‐world applications. 

In addition, it is recommended that researchers and the Wireless Sensor Networks community 
continuously conduct a number of future projects. Firstly, applying multi‐hop among intra‐cluster in 
the network,  studying  to deploy FCM‐3DWUSN  into  smart  agriculture  applications  to meet  the 
requirements  for  solving  problems  in  the  real world,  and  studying  to  integrate meta‐heuristic 
algorithms to optimize the energy consumption in WUSN could be considered as the improvement 
and developments from this research 
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