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Abstract: We propose a neural-network-based watermarking method that introduces the quantized activation

function that approximates the quantization of JPEG compression. Many neural-network-based watermarking

methods have been proposed. Conventional methods have acquired robustness against various attacks by

introducing an attack simulation layer between the embedding network and the extraction network. The

quantization process of JPEG compression was replaced by the noise addition process in the attack layer of the

conventional methods. In this paper, we propose a quantized activation function that can simulate the JPEG

quantization standard as it is in order to improve the robustness against the JPEG compression. Our quantized

activation function consists of several hyperbolic tangent functions and is applied as an activation function for

neural networks. Our network was introduced in the attack layer of ReDMark proposed by Ahmadi et al. to

compare it with their method. That is, the embedding and extraction networks had the same structure. We

compared the usual JPEG compressed images and the images applying the quantized activation function. The

results showed that a network with quantized activation functions can approximate JPEG compression with high

accuracy. We also compared the bit error rate (BER) of estimated watermarks generated by our network with

those generated by ReDMark. We found that our network was able to produce estimated watermarks with lower

BERs than those of ReDMark. Therefore, our network outperformed the conventional method with respect to

image quality and BER.

Keywords: watermarking method; neural network; activation function; JPEG compression

1. Introduction

People are now easily able to upload photos and illustrations to the Internet, owing to smartphones
and personal computers. To protect content creators, we need to prevent unauthorized copying and
other abuses because digital content is not degraded by copying or transmissions. Digital watermarking
is effective against such unauthorized use.

In digital watermarking, secret information is embedded in digital content by making slight
changes to the content. In the case of an image, the image in which the information is embedded is
called a stego-image, and the embedded information is called a digital watermark. There are two
types of digital watermarking: blind and non-blind. The blind method does not require the original
image to extract the watermark from the stego-image. However, the non-blind method requires the
original image when extracting a watermark from a stego-image. Therefore, the blind method is more
practical. In addition, because stego-images may be attacked by various kinds of image processing,
watermarking methods must have the ability to extract watermarks from degraded stego-images. Two
types of attacks on stego-images can occur: geometric attacks such as rotation, scaling, and cropping
and non-geometric attacks such as noise addition and JPEG compression [1].

Neural-network-based methods have been proposed. In single-stage-training, where the em-
bedding and extraction are performed in a single network, the network has been trained to output
a watermark from an input image [2,3]. The overall performance of the network is low because the
relationship between the image and the watermark is trained individually. To improve performance,
watermarking methods using autoencoders (AE) have been proposed [4–6]. The input layer to the mid-
dle layer is called the embedding network, and the middle to the output layer is called the extraction
network. Both the original image and the watermark are input into the input layer of the AE, and the

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2024                   doi:10.20944/preprints202402.0657.v3

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-8189-4672
https://doi.org/10.20944/preprints202402.0657.v3
http://creativecommons.org/licenses/by/4.0/


2 of 16

identity mapping is learned to retrieve them in the output layer. The stego-image is extracted from the
middle layer [6]. Since the original image is unnecessary during extraction, it is often omitted to output
only the watermark. Furthermore, AE with convolutional neural networks has been proposed [7]. An
adversarial network has also been added to improve image quality [8]. DARI-Mark [9] is a DNN-based
watermarking method using attention to determine the embedding regions. It can find non-significant
regions that are insensitive to the human eye and increases robustness by embedding the watermark
with larger intensities. Thus, end-to-end models were proposed [6–11]. However, a huge training
dataset was needed to train the connections as the network became more complex. Although data
augmentation was sometimes introduced, a model with internal networks mimicking attacks was
proposed in order to train on a relatively small training dataset [8,10,11].

The HiDDeN [8] proposed by Zhu et al. has an attack layer that simulates attacks such as
Gaussian blur, per-pixel dropout, cropping, and JPEG compression attacks on images during training.
Here, the implementation of JPEG compression is approximated by JPEG-Mask, which sets the high-
frequency components of the discrete cosine transform (DCT) coefficients to zero, and JPEG-Drop,
which uses progressive dropout to eliminate the high-frequency components of the DCT coefficients.
Therefore, this implementation does not meet the standard for quantization in the JPEG compression
process. It has also been noted that the JPEG-Mask and JPEG-Drop layers of HiDDeN do not provide
sufficient performance for the robustness of the JPEG compression [12,13]. JPEGdiff is a method of
approximating around the quantized values in JPEG compression by a cubic function. Hamamoto
and Kawamura’s method [10] also introduces a layer of additive white Gaussian noise as an attack
layer to improve robustness against JPEG compression. Moreover, ReDMark proposed by Ahmadi
et al. [11] has attack layers implementing salt-and-pepper noise, Gaussian noise, JPEG compression,
and mean smoothing filters. The quantization of the JPEG compression is approximated by adding
uniform noise. As described, the quantization process has been replaced by the process of adding
noise, and the quantization process as per the JPEG standard has not been introduced.

Adversarial samples are a problem in the field of pattern recognition. They are generated by
adding distortions to images to misclassify it. To avoid misclassification, a pattern recognition method
using JPEG compressed images has been proposed [15]. JPEG compression is expected to effectively
reduce noise while preserving the information needed for pattern recognition. However, JPEGdiff has
been proposed as a way to break this technique [12]. By approximating the JPEG quantization with a
differentiable function, a JPEG-resistant adversarial image can be generated. Therefore, approximating
the JPEG quantization with a smooth function may affect the performance of the model.

In our previous work [14], we proposed a quantization activation function (QAF) that can simulate
the quantization of JPEG compression according to a standard. That model consists of a network that
introduces the QAF into the AE-based model proposed by Hamamoto and Kawamura [6]. Better
performance was obtained in terms of JPEG compression robustness than the AE-based model [6].
The effectiveness of the QAF has been demonstrated in our previous work. However, in that model,
QAF with a constant quantization width were used instead of the quantization table. In this paper,
we apply the QAF to the attack layer of the ReDMark [11], which is a CNN-based model, rather than
an AE-based model. Furthermore, the proposed method uses the quantization table-based QAF. The
robustness against the JPEG compression is expected to be improved using the QAF. The effectiveness
of our method is evaluated by comparing JPEG-compressed images with QAF-applied images. The
image quality of the stego-image was also evaluated.

The rest of the paper is organized as follows. In Section 2, the process of JPEG quantisation is
explained. In Section 3, we describe the ReDMark and, in addition, we address our previous work.
In Section 4, we define the quantized activation function and describe the structure of the proposed
network. In Section 5, we show the effectiveness of the function and demonstrate the performance of
our network in computer simulations. The last section concludes the paper.
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Figure 1. JPEG compression quantization for luminance components. 1) Creation of the quantization
table TQ, 2) The quantization process, 3) The dequantization process.

2. Preliminary: JPEG Quantization

JPEG compression is a lossy compression that reduces the amount of information in an image to
reduce the file size. In this kind of compression, an image is divided into 8 × 8-pixel blocks. Then, in
each block, the processes of the DCT, quantization, and entropy coding are sequentially performed. In
JPEG compression, the process of reducing the amount of information is the quantization process of
the DCT coefficients. We focus on the quantization of the DCT coefficients of the luminance component
in an image because the watermark is embedded in these coefficients of the image. Figure 1 shows the
quantization process in JPEG compression for DCT coefficients [16]. The process consists of three steps:
1) creation of the quantization table TQ, 2) the quantization process, and 3) the dequantization process.

During the quantization process, the DCT coefficients are quantized based on a default basic table
or a self-defined basic table. The default basic table B is defined as

B =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


. (1)

The quantization table is then determined using the quality factor (Q) and the basic table B. The
quantization table TQ(u, v) for the quantization level Q at coordinates (u, v), u = 0, 1 · · · , 7, v =

0, 1 · · · , 7 is defined as

TQ(u, v) =
⌊

B(u, v)s(Q) + 50
100

⌋
, (2)

where ⌊·⌋ is the floor function and where B(u, v) is the (u, v) component of the basic table B. Also, the
scaling factor s(Q) is given by

s(Q) =

{
5000

Q (Q < 50)

200 − 2Q (Q ≥ 50)
. (3)
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The quantization process is performed using the quantization table TQ. Let y(u, v) be the quan-
tized data, and let x(u, v) be the DCT coefficients in an 8 × 8-pixel block. The quantization process is
performed as

y(u, v) = round
(

x(u, v)
TQ(u, v)

)
, (4)

where

round(a) =

{
⌊a + 0.5⌋ (a ≥ 0)

−⌊−a + 0.5⌋ (a < 0)
. (5)

Let z(u, v) be the quantized DCT coefficients; then, the dequantization process is performed as

z(u, v) = y(u, v)TQ(u, v). (6)

3. Related Works

3.1. ReDMark

Figure 2 shows the overall structure of ReDMark [11], which consists of an embedding network,
an extraction network, and an attack layer. The h and w are the height and width of the 2D watermark,
and H and W are the height and width of the original and stego-images. The images are divided into
M × N-pixel blocks, where M = N = 8 as it is in ReDMark.

The process flow during training is illustrated by the red arrows in Figure 2. The host image and
watermark are fed to the embedding network, and the attack layer degrades the generated stego-image.
By feeding the degraded image to the extraction network, the extraction network learns to extract
the watermark from the degraded image. After training, the embedding and extraction networks
are used individually. The process flow during testing is illustrated by the blue arrows in Figure 2.
A stego-image is generated by the embedding network. This image is published and attacked. Let
us assume that the attack is to compress the image by some JPEG tool. When the attacked image is
obtained, the watermark is extracted from the image in the extraction network.

Figure 2. Overall structure of ReDMark [11]

In ReDMark [11], normalization and reshaping are performed on the input image in preprocessing.
For the input image Iin(i, j), i = 0, 1, · · · , H − 1, j = 0, 1, · · · , W − 1, the normalized image is given by

I(i, j) =
Iin(i, j)− 128

255
. (7)
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Figure 3. Embedding network of ReDMark [11]

Reshape is an operation that divides an image into M × N-pixel blocks and transforms them into a 3D
tensor representation. The image size H × W is assumed to satisfy H = hM, W = wN. The reshaped
image is represented by a 3-dimensional tensor of h × w × MN. This image is called the image tensor
of size (h, w, MN). If necessary, the tensor is inverse transformed back to its original dimension.

3.1.1. Embedding Network

The embedding network, as shown in Figure 3, consists of three layers: convolution, circular
convolution, and transform. The transform layer can perform lossless linear transforms using 1 × 1
convolutional layers, e.g., the DCT, wavelet transform, and Hadamard transform. In our method, the
DCT is selected as the transform layer as it is in ReDMark. The circular convolution layer extends the
input to make it cyclic before the convolution is performed. Figure 4 shows an example of applying a
circular convolution layer with a 2× 2 filter when the input is 3× 3 pixels. When a circular convolution
layer is used, the dimension of the output after convolution is the same as the dimension of the input.

In the embedding network, the convolution and circular convolution layers use 1 × 1 and 2 × 2
filters, respectively, and both have 64 filters. In each layer, an exponential linear unit (ELU) [17]
activation function is used. The output of the embedding network is obtained by summing the output
of the transform layer performing the inverse DCT (IDCT) (for the IDCT layer) with the input image
tensor of size (h, w, MN) and then by performing the inverse process of reshaping. Here, the output of
the IDCT layer can be adjusted by the embedding intensity α. The intensity is fixed as α = 1 during
training and can be changed during an evaluation.

Figure 4. Extended input in a circular convolution layer. 1⃝ Extended in the column direction. 2⃝
Extended in the row direction.

3.1.2. Extraction network

The extraction network consists of a convolution layer, a circular convolution layer, and a trans-
form layer, as shown in Figure 5. The transform layer of the extraction network also performs the DCT.
The filter sizes of the convolutional and circular convolutional layers are 1 × 1 and 2 × 2, respectively.
The number of filters is 64 for the fourth layer and 1 for the fifth layer. The activation function up to
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Figure 5. Extraction network of ReDMark [11]

the fourth layer is ELU [17], and a sigmoid function is used in the fifth layer. Let po(i, j) be the output
of the extraction network, and the estimated watermark pe(i, j) is given by

pe(i, j) =

{
1, po(i, j) > 0.5
0, po(i, j) ≤ 0.5

. (8)

3.1.3. Attack Layer

The attack layer lies between the embedding and the extraction networks and operates when
ReDMark is trained. The attack layer itself is not trained. By simulating possible attacks on the
stego-image and feeding the attacked image to the extraction network, the network can be trained
to extract the watermark from the degraded image. Various attacks can be simulated in the attack
layer. In the attack layer of ReDMark [11], three networks were implemented according to the type
of attacks: a GT-Net (Gaussian-trained network), a JT-Net (JPEG-trained network), and a MT-Net
(multi-attack-trained network).

In ReDMark, the quantization process is approximated using the quantization table TQ(u, v) and
uniform noise ϵ. Let x(u, v) represent the DCT coefficients of an 8 × 8-pixel block of a stego-image,
and the quantized DCT coefficients z(u, v) are given as

z(u, v) =

(
x(u, v)

TQ(u, v)
+ ϵ

)
TQ(u, v) (9)

= x(u, v) + TQ(u, v)ϵ, (10)

where ϵ represents noise subject to a uniform distribution in the interval [−0.5, 0.5]. In other words,
the quantization process is equivalent to adding a uniform noise ϵ proportional to the quantization
table TQ(u, v).

3.2. JPEGdiff

In the quantization of JPEG compression, the DCT coefficient values are converted to integers.
This causes a problem that the activation function cannot be differentiated when training a neural
network. For example, the JPEG-Mask and JPEG-Drop layers of HiDDeN do not provide sufficient
performance against robustness for JPEG compression. Therefore, the JPEGdiff, which approximates
the activation function to a cubic function around the quantized value, has been proposed [12,13]. This
approximation could reduce the number of non-differentiable points and reduce the number of regions
with zero gradient. As a result, performance was improved by training. The JPEGdiff is given by

JPEGdiff(x) = round(x) + (x − round(x))3. (11)

Note that this function still has non-differentiable points on the boundaries of the intervals.
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3.3. Previous work

In our previous work [14], we proposed a quantized activation function (QAF). This function
was a functional representation of the quantization process of JPEG compression. Specifically, the
function QAF(x) consists of several hyperbolic tangent functions and returns the quantized value of
the argument x. The proposed QAF was applied to the attack layer of the AE-based model proposed
by Hamamoto and Kawamura [6]. Moreover, all DCT coefficients x(u, v) were quantized with the
same intensity. In other words, the value of the quantization table TQ(u, v) was constant, as given by

TQ(u, v) = δ, (12)

where δ is a constant. Even with a constant quantization table, the previous method had a certain level
of tolerance to JPEG compression. However, if the original values of the quantization table could be
applied, the tolerance could be enhanced.

4. Proposed Method

We propose a quantization table-based QAF, and apply it to the attack layer of the ReDMark [11],
which is a CNN-based model rather than an AE-based model. To demonstrate the effectiveness of the
QAF, we compare the proposed layer using the QAF with the JT-Net of ReDMark [11] . The embedding
and extraction networks of the proposed method is the same as those of ReDMark.

4.1. Quantized Activation Function

We propose a quantization table-based QAF for neural networks to implement the quantization
process of the JPEG compression according to the standard. The QAF consists of n hyperbolic tangent
(tanh) functions and is defined as

QAF
(

x|tQ
)
=

n

∑
i=0

tQ

2
tanh

{
β

(
x ± tQ

(
1
2
+ i

))}
, (13)

where tQ is the value of the quantization table TQ(u, v) when the quantization level is Q. The param-
eters n and β denote the number and slope of the tanh functions, respectively. The red dashed line
in Figure 6 represents QAF(x|16) when the slope β = 1000 and the value of the quantization table
TQ(u, v) = 16. In addition, the values of the DCT coefficients after JPEG quantization are plotted with
a black line. We can see that they are almost the same.

Quantization is essentially a rounding operation to integer values. It should therefore be rep-
resented by a discontinuous, step-like function. In other words, a sign function should be used for
the representation of JPEG quantization (13). However, the tanh function was used in the proposed
method. When training a neural network, the differentiable function works better for training. There-
fore, we chose the tanh function, which is a continuous function. Figure 7 (a) shows the tanh functions
for different slopes β = 1, 10, 100, 1000. We can see that the slope becomes steeper and asymptotically
closer to the sign function as β increases. When the slope of tanh is set to β → ∞, it asymptotically
approaches the sign function. For practical use, a large value of β can approximate the quantization
with sufficient accuracy.

Let us see how the quantization with QAF differs from the quantization with JPEGdiff. Figure 7
(b) shows comparison of JPEGdiff (11) with QAF functions. The green curve represents the JPEGdiff,
and the blue and orange curves represent the QAF at slopes β = 10, 1000. We can see that the JPEGdiff
has discontinuities, while the QAF is smooth. Since the QAF has no discontinuities, the network may
be better trained.

Finally, we consider the number n of tanh functions. The number n depends on the value of
TQ(u, v). If the minimum value of TQ(u, v) = 1, because the maximum value of the DCT coefficients is
2040, then at most 2039 tanh functions are required. A sufficiently large constant n was chosen, because
it did not matter if the possible values of the QAF exceed the maximum value of the DCT coefficients.
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Figure 6. Overview of the quantized activation function: QAF(x|16) with slope β = 1000 and number
of hyperbolic tangent functions, n = 500.

(a) (b)

Figure 7. Activation functions: (a) the hyperbolic tangent functions for slopes β = 1, 10, 100, 1000. (b)
JPEGdiff vs QAF.

4.2. Proposed Attack Layer

The proposed attack layer consists of three sub-layers: a DCT layer, a layer introducing QAF
(QAF layer), and an IDCT layer. Note that in our network, the DCT coefficients are quantized as in
the JPEG compression. Figure 8 shows the structure of the network. The embedding and extraction
networks have the same structure as that of ReDMark [11]. The output O(i, j, k), i = 0, 1, · · · , h − 1, j =
0, 1, · · · , w − 1, k = 0, 1, · · · , MN − 1 of the DCT layer is processed by the QAF (13) at the QAF layer.
The output z(i, j, k) of this layer is calculated by

z(i, j, k) = QAF
(

O(i, j, k)
∣∣∣∣TQ(u, v)

255

)
. (14)

Note that the quantization table TQ(u, v) is divided by 255 because it is normalized by (7). The
quantization table values in (14) are determined according to TQ(u, v) because the quantization table
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Figure 8. Proposed attack layer

values are different for each of the coordinates (u, v) of the DCT coefficients. The coordinates (u, v) are
defined by

u =

⌊
k
8

⌋
, v = k − 8

⌊
k
8

⌋
(15)

The attack layer [11] in ReDMark performs noise addition to the coefficients, while the one in our
network performs the quantization with the QAF.

4.3. Training Method

The embedding and extraction networks are trained in the same way as they were in ReDMark [11],
respectively. The loss function L1 of the embedding network is defined as

L1 = 1 − SSIM(I, Io), (16)

where SSIM represents the structural similarity function (SSIM) [18], which measures the structural
similarity between two images. The closer to 1.0, the larger the similarity between the two images [18].
It is defined in

SSIM(I, Io) =
(2µµo + c1)(2Cov(I, Io) + c2)

(µ2µ2
o + c1)(σ2σ2

o + c2)
, (17)

where I is the original image given as a teacher and where Io is the output of the embedding network.
µ and µo are the means of I and Io, respectively. σ and σo are the variances of each image, and
Cov(I, Io) represents the covariance between the two images. Let c1 and c2 be constants, and let
c1 = 10−4, c2 = 9 × 10−4. Because the output of the embedding network takes a real number, the
stego-image Ist is obtained by converting it back to 256 levels of the pixel value. That is, it is given by

Ist(i, j) =


255, Io(i, j) > 0.5

⌊255 Io(i, j) + 128⌋. −0.5 ≤ Io(i, j) ≤ 0.5

0, Io(i, j) < −0.5

. (18)

The loss function L2 of the extraction network is defined as

L2 = −
h−1

∑
i=0

w−1

∑
j=0

{p(i, j) log(po(i, j)) + (1 − p(i, j)) log(1 − po(i, j))}, (19)

where p is the watermark used as a teacher for the extraction network. po is the output of the sigmoid
function of the extraction network. That is, the value of the element takes a value between 0 and 1.
The total loss function L of our network is defined as

L = γL1 + (1 − γ)L2, (20)
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where the parameter γ determines the balance between the two loss functions. The embedding and
extraction network are trained by the back propagation [19] using stochastic gradient descent (SGD) as
the optimization method.

5. Computer Simulations

5.1. Evaluation of the QAF

First, the ability that the QAF function can approximate the quantization process of JPEG com-
pression was assessed, using computer simulations. Because the DCT and quantization were applied
to 8 × 8-pixel blocks in the JPEG compression, the QAF was also applied to 8 × 8-pixel blocks. The
evaluation images were taken from a dataset provided by the University of Granada [20]. They consist
of 49 images of 512 × 512 pixels. Each image was normalized by (7). The 512 × 512-pixel image is
divided into blocks of 8× 8 pixels, resulting in 64× 64 blocks. These blocks were indexed in raster scan
order as µ = 1, 2, 3, · · · , 4096. The DCT was performed on each block. Let Iµ

b (u, v), µ = 1, 2, 3, · · · , 4096
be the DCT coefficients of the µ-th block. The QAF was applied to the µ-th block as

Iµ
QAF(i, j) = QAF

(
Iµ
b (i, j)

∣∣∣∣T70(i, j)
255

)
, (21)

where the quantization level of the JPEG compression was set to Q = 70. The parameters of the QAF
in (13) were set as gradient β = 1000 and the number of the hyperbolic tangent functions n = 500.
For all the QAF-applied blocks, an IDCT was performed, and the luminance values were inversely
normalized using (18). Next, all blocks were combined. The combined image was converted back to
the original image size. Then, the QAF-applied image was given by

IQAF =
(

I1
QAF, I2

QAF, · · · , I4096
QAF

)
. (22)

In general, the peak signal to noise ratio (PSNR) of an evaluated image I′ against a reference
image I is defined by

PSNR
(

I′|I
)
= 10 log10

(
2552

MSE(I′, I)

)
[dB], (23)

where

MSE
(

I′, I
)
=

1
HW

H−1

∑
i=0

W−1

∑
j=0

{
I′(i, j)− I(i, j)

}2. (24)

To see the difference between the QAF and JPEG-compressed images shown in Figure 6, the difference
could be evaluated by PSNR rather than MSE. The accuracy of the QAF could be measured by the PSNR
of a QAF-applied image against a JPEG-compressed image, that is, PSNR

(
IQAF|I jpeg

)
, where I jpeg was

the JPEG-compressed image. Note that the PSNR was measured against the JPEG-compressed image,
not the original image. Similarly, we evaluated the approximation ability of JT-Net using PSNR and
compared it with QAF. Figure 9 showed a histogram of PSNRs for JT-Net-applied images by using
(9) and QAF-applied images given by (21) and (22), where the quantization level was Q = 70. The
PSNRs for QAF-applied images were clearly greater than those for JT-Net-applied images. Figure 10
showed three examples of QAF-applied images and their PSNRs. Thus, we found that the QAF more
adequately represents the quantization of the JPEG compression.
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(a) PSNR = 51.52 dB. (b) PSNR = 53.12 dB. (c) PSNR = 49.55 dB.

Figure 10. QAF-applied images and their PSNRs

Figure 9. Histogram of PSNRs for JT-Net-applied images and QAF-applied images

5.2. Evaluation of the Proposed Attack Layer

We compared the JT-Net in the ReDMark, our previous model and the proposed quantization
table-based QAF network (QT-QAF-Net) based on the image quality of stego-images and the BER
of watermarks extracted from stego-images after the JPEG compression. Note that our previous
model [14] was the AE-based model with the quantization table quantized by constant intensity. For
comparison, we use an improved model of the CNN-based QAF network with a constant intensity
quantisation table (constant QAF-Net). The only difference between the QT-QAF-Net and the constant
QAF-Net are the values of the quantisation table.

5.2.1. Experimental Conditions

The training and test images were selected as they were in ReDMark [11]. The training images
were 50,000 images of 32 × 32 pixels from CIFAR10 [21] (H = 32, W = 32). An h × w-bit watermark
was embedded, where h = 4, w = 4. The watermark was randomly generated. Therefore, the amount
of watermark embedded per pixel was approximately 0.0156 bits per pixel. In the parameters used for
training, the block height and width sizes were set to M = 8 and N = 8, respectively. The parameter
of the loss function (20) was set to γ = 0.75, the number of learning epochs was set to 100, and the
mini-batch size was set to 32. For the parameters of SGD, the training rate was set to 10−4, and the
moment was set to 0.98. For training the proposed attack layer, the gradient of the QAF (13) was set to
β = 1000 and the number of the hyperbolic tangent functions was set to n = 500. In the attack layer of
JT-Net and the proposed method, the quantization level was set to Q = 70, and the quantization table
T70 was used. The embedding, attack, and extraction networks were all connected, and the network
was trained using the training images and watermarks. Here, the embedding intensity was fixed at
α = 1.
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(a) SSIM (b) PSNR

Figure 11. Image quality of stego-images (tained by Q = 70)

For testing, 49 images of 512 × 512 pixels from the University of Granada were used. These
images were divided into 32 × 32 pixel subimages, and the embedding process was performed on
each of them. The 256 subimages were given to the network as test images. Meanwhile, a 32 × 32-bit
watermark was randomly generated. One watermark was embedded four times in one image. That
is, the watermark was divided into 4 × 4-bit subwatermarks, and finally each subwatermark was
embedded in one subimage. An estimated watermark was determined by bit-by-bit majority voting
because the same watermark was embedded four times in one image.

As stated in 3.1, the attack layer was not used during testing. The test images and the watermarks
were used to output stego-images in the embedding network. Here, the embedding intensity was
set to values from α = 0.5 to 1.0. The stego-image is published. Subsequently, we assume that it was
JPEG compressed by some JPEG tool with quantization levels Q = 10, 20, · · · , 90. The compressed
stego-images were input to the extraction network, and the estimated watermarks were output. These
networks were trained 10 times with different initial weights for the comparison of our network with
the JT-Net on image quality and BER. The mean and standard deviation of structural similarity index
measures (SSIMs), PSNRs, and BERs were calculated.

5.2.2. Evaluation of the Image Quality

The image quality of the stego-images obtained from the JT-Net, the constant QAF-Net and
QT-QAF-Net was evaluated using the SSIMs and PSNRs. The image quality of the stego-image Ist

against the original image I can be expressed as SSIM(Ist, I) by (17) and PSNR(Ist|I) by (23). Figure 11
shows the SSIM and PSNR. The horizontal and vertical axes represent the embedding intensity α and
SSIM or PSNR, respectively. The error bars represent the standard deviation of the SSIMs and PSNRs.
Embedding the watermark strongly causes degradation in the image quality. Therefore, the SSIM and
PSNR decreased as the intensity α increased. The image quality of the proposed QT-QAF-Net was
higher than that of the other two networks. In other words, our network can reduce the degradation of
image quality even with the same embedding intensity.

As the images were processed block by block, they were visually checked for block artefacts.
Three images selected from the dataset were cropped to 128 × 128-pixel size as shown in the Figure 12.
These images were generated from the proposed network trained with embedding intensity α = 1.0.
The images were not reduced in size when displayed. Few noticeable artifacts were observed.
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Figure 12. Images cropped to 128 × 128 pixels.

Figure 13. BER for embedding intensity α

5.2.3. Evaluation of the BER

The robustness of our network against the JPEG compression was evaluated. The estimated
watermark obtained by (8) was evaluated by using the BER. The BER of the estimated watermark pe
can be defined by

BER =
1

hw

h−1

∑
i=0

w−1

∑
j=0

p(i, j)⊕ pe(i, j), (25)

where p is the original watermark, and ⊕ represents the exclusive OR.
First, we compared the robustness of our network with that of the JT-Net and constant QAF-Net

using the same embedding intensity α. Figure 13 shows the BER of the estimated watermark for the
embedding intensity α. The horizontal and vertical axes represent the intensity α and BER, respectively.
For different compression levels Q, the dashed lines with circles represent the BER for the QT-QAF-
Net, the solid lines with squares represent the BER for the JT-Net and the dotted lines with triangles
represent the BER for the constant QAF-Net. When the watermark was strongly embedded, it was
extracted correctly. Therefore, the BER decreased as the intensity α increased. The lowest BER was
obtained when α = 1.0. At compression level Q ≤ 70, the BER of the proposed network was lower
than that of the JT-Net. Also, at Q = 80, they had almost the same BER. Furthermore, at Q = 90, the
BER of our network was larger than that of the JT-Net. The BER of the constant QAF-Net was always
larger than that of the other two networks.
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Even with the same embedding intensity, the image quality of our network differs from that of
the JT-Net and the constant QAF-Net. Therefore, we next adjusted the embedding intensity so that
the PSNRs of these three networks were approximately the same, and we compared the BERs of the
networks under this condition. Figure 14 shows the histograms of PSNRs for the QT-QAF-Net with
embedding intensity α = 1.0. (a) shows the histograms for the embedding intensity α = 1.0 for the
JT-Net and α = 0.55 for the constant QAF-Net, respectively. (b) shows histograms for these embedding
intensities α = 0.95 and α = 0.50, respectively. The intensities of the three networks were chosen so
that the histograms shown in (b) look similar. To measure the robustness against JPEG compression,
we set the intensity α to ensure that the PSNR obtained from these networks is approximately the same.
Specifically, we set the intensity for the JT-Net and QT-QAF-Net to α = 0.95 (average PSNR= 37.58 dB)
and α = 1.0 (average PSNR= 37.81 dB), respectively. Figure 15 is the BER for the compression level
Q. The error bars are the standard deviation of the BERs. The BER of the estimated watermark for
QT-QAF-Net was lower than that for the JT-Net and constant QAF-Net. Thus, we can say that our
network can generate watermarks with fewer errors under the given PSNR.

(a) (b)

Figure 14. Histogram of PSNR for embedding intensity α = 1.0 for QT-QAF-Net: (a) intensity α = 1.0
for JT-Net and α = 0.55 for constant QAF-Net and (b) intensity α = 0.95 for JT-Net and intensity for
constant QAF-Net α = 0.50.

Figure 15. BER for the JPEG compression level Q
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6. Conclusion

The JT-Net in ReDMark [11] is a network that simulates JPEG compression. This network
substituted the quantization process with a process that adds noise proportional to the value of
the quantization table. In previous work [14], a quantised activation function (QAF) quantised by
constant intensity (constant QAF-Net) was proposed. In this paper, we proposed the quantization
table-based QAF network (QT-QAF-Net), which can approximate the quantization process of the JPEG
compression according to the standard. By approximating the quantization of the JPEG compression
using the QAF, we expected to improve the robustness against the JPEG compression. The results of
computer simulations showed that the QAF represented quantization with sufficient accuracy. Also,
we found that the network trained with the QAF was more robust against the JPEG compression than
those trained with the JT-Net. Because the embedding and extraction networks were more robust
against the JPEG compression when trained with the QAF, we conclude that our method is more
suitable for simulating JPEG compression than conventional methods applying additive noise.

Further studies with QAF are expected. For example, since QAF is differentiable over the whole
interval, it may produce better adversarial images compared to JPEGdiff [12]. Furthermore, there is a
study on the estimation of the sign bit of DCT coefficients [22]. The non-linearity of the quantized DCT
coefficients made the estimation difficult. The solution could be simplified by using QAF.
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