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Abstract: With the popularity of solar energy in the electricity market, demand arises for data such
as precise locations of solar panels for efficient energy planning, management, and distribution.
However, this data is not easily accessible and in some cases, information such as precise locations
does not exist. Furthermore, existing data sets for training semantic segmentation models of PV
installations are limited, and their annotation is time-consuming and labor-intensive. Therefore, for
additional remote sensing (RS) data creation, the pix2pix generative adversarial network (GAN) is
utilized, enriching the original resampled training data of varying GSDs without compromising
its integrity. Experiments done with the DeepLabV3 model, ResNet-50 backbone, and pix2pix
GAN architecture were conducted to find the optimal configuration for an accurate RS imagery
segmentation model. The result is a fine-tuned solar panel semantic segmentation model, trained
using transfer learning and utilizing an optimal amount — 60% of generated RS imagery for
additional training data, increasing model accuracy. The findings demonstrate the benefits of
using GAN-generated images as additional training data, increasing the size of small data sets,
and improving the capabilities of the segmentation model for solar panel detection in RS images.

Keywords: deep learning; solar panels; semantic segmentation; data augmentation; generative
adversarial network; remote sensing; transfer learning

1. Introduction

In this day and age, the use of solar energy is becoming increasingly popular due to the worldwide
adoption of renewable resources. Solar panels are one of the primary means for converting solar
energy to electricity and are used by homeowners and electricity suppliers. Solar panels are not
only a key element to producing clean renewable energy, but they are also environment friendly and
cheaper to afford than before [1]. With the increasing popularity of solar energy in the electricity
market, demand arises for various data. Such data can include the locations of solar panels, their
types, quantities, specifications, and power capacities. This data, precisely the locations of solar panels
can be used for efficient policy-making, energy planning and distribution, and grid management.
Unfortunately, this data is not easily accessible, due to either privacy concerns or unwillingness of
solar panel installers to share this data. In some cases, this data does not include the precise locations
of solar panel installations and only statistics such as the power capacities, which complicates the
information-gathering process.

Fortunately, remote sensing data and machine learning are valuable tools in this scenario. The
procedure of remote sensing, in particular by satellites, allows for measuring the characteristics of
an observed area and collecting images. The collected images of the surface of the planet can then
be used for observation and detection of patterns and objects, or in this case, solar panels. For
analysis of visual data, convolutional neural networks (CNNs) are used and semantic segmentation
is performed. Networks such as FCN, which uses end-to-end training and "skip" architecture for
high-level and low-level feature combination [2], U-Net, which features a U-shaped encoder-decoder
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structure and is efficient for small datasets [3], and others are often utilized. SegNet and DeepLabV3
are also commonly used, respectively either for performance-computational efficiency [4] or better
multiscale object segmentation [5], with varying results. The current state-of-the-art in utilizing deep
learning for solar panel detection spans various methods and tools, such as specific CNNs and ViTs, as
well as their variations and iterations. RU-Net, which is a combination of ResNet34 U-Net, Atrous
Spatial Pyramid Pooling, and Dense Conditional Random Field deep learning components, has been
utilized for efficient solar panel detection performance and identifying rooftop solar panel locations,
distributions, and surface areas in 0.3m/pixel spatial resolution images [6]. The proposed model
demonstrates higher precision metrics when compared to classical models such as FCN and U-Net. A
hierarchical information extraction method for solar panels using multi-source satellite remote sensing
images was also proposed, tested in three selected provinces in China, and using the EfficientNet-B5
model for scene classification and the U2-Net model for the precise location of solar power panels,
with the goal and purpose to locate as many solar panels as possible, reducing the number of false
positives [7]. Mask R-CNN deep learning algorithm was used to identify solar photovoltaic panels in
remote sensing images, and this method focuses on isolating solar panels from background objects [8].
While the usefulness of machine learning algorithms in object isolation and image segmentation is
noted, the model was trained on a small dataset, featuring images taken with the same equipment
under the same environmental conditions.

For remote sensing image segmentation, general-purpose vision transformers have also been
used, with varying results. Models such as SegFormer and Lawin Transformer demonstrated results
comparable to other state-of-the-art models such as FCN and RemoteNet, however, the results were
achieved with careful image pre-processing, including cropping, contrast enhancement, and geometric
transformations [9]. For building segmentation in remote sensing images, various models such as
TransUNet, MiTNet, UNetFormer, and Segformer have been compared, presenting varying metrics
such as F1 score, overall accuracy and mean intersection over Union when tested on Global Cities
WHU Satellite dataset [10].

Semantic segmentation models and vision transformers also benefit from transfer learning, i.e.
the process of transferring the learning knowledge from one task to another. Such models like ResNet,
FCN, DeepLab, and more were either pre-trained on the ImageNet dataset or used weights from other
models that were pre-trained on ImageNet [11,12]. Furthermore, transfer learning has also been used
specifically for training remote sensing image semantic segmentation models. For high-resolution
remote sensing images, in particular, an improved U-Net model based on transfer learning was
proposed, showcasing better results for vehicle semantic segmentation when compared to the regular
U-Net model [13]. For multiobject segmentation of remote sensing images when the issue of insufficient
labeled data and imbalanced data classes is present, transfer learning has also proved to be beneficial
in improving the semantic segmentation model performance to some degree [14].

Even though the RS images of solar panel installations are obtained, large amounts of annotated
data are needed for model training, with even more benefits brought by larger and more diverse
datasets. Complications due to a lack of raw data, difficulty in data set annotation, and limitations of
sensor characteristics make this more challenging, as a large variation and amount of data are needed
for creating an effective model [15]. Therefore, data augmentations are essential to expanding the data
set for the machine learning model, especially when training a semantic segmentation model for object
detection. Basic augmentations include, although are not limited to, flipping images, rotating and
tilting them, and adjusting contrast or colors, to generate more images from already existing ones.
Performing rotations and horizontal flipping is one of the possible classic data augmentations that
can be performed on both the original image and its semantic segmentation mask, and the result
is improved prediction performance of the segmentation network [16]. These augmentations are
especially significant for small-scale data sets and their extension. Cropping, i.e. taking only a subset
of an image is also a method for producing more samples, and the corresponding mask has to be
cropped in the same way. Training data for semantic segmentation can also be increased by scaling,
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brightness, and contrast adjustment of the input image for higher classification performance [17]. Some
augmentations attempt to fix specific problems, for example, brightness adjustment addresses the
issues of lighting changes, while cropping and zooming of images manage scaling and background
issues [18]. Augmentations are needed for extending data sets when training deep learning models,
and this methodology is not only beneficial when the data set is small, but also in some cases reduces
model overfitting, i.e. when the model performs too well with training data, and poorly with new,
unseen data. However, basic data augmentations may produce unnatural results when not used
properly, as the model may have issues labeling objects in images that are too distorted or have their
colors drastically changed. Therefore, to satisfy the demand for more realistic data from already limited
data sets, generative adversarial networks are beneficial in this case.

Generative adversarial networks can used for transforming images from one domain to another.
This is done by utilizing generative networks, which aim to create believable images from a source
domain, and discriminator networks, which are trained to identify whether the created images are
genuine or created by the generator [19]. The rivalry of the generator and discriminator plays a key
part in generative adversarial network training, ensuring that the generated synthetic images are
believable compared to the original images. Generative adversarial networks have also been used
for remote sensing image reconstruction. Conditional discriminator PatchGAN was used for remote
sensing imagery super-resolution, i.e., for creating images that have not only high fidelity but high
perceptual quality as well [20]. The upscaled data is more realistic and features higher fidelity, and
when compared to a simulated dataset, the evaluation metrics of state-of-the-art algorithms such as
SRGAN, SRCNN, and SRResNet are higher, particularly peak signal-to-noise and structural similarity.
In the context of paired image-to-image translation, pix2pix is a type of generative adversarial network
suitable for synthesizing remote sensing images from labels, e.g., semantic segmentation masks objects
of solar panels. First introduced in 2018, it is an approach effective at synthesizing photos from
label maps [21]. Several experiments have been conducted using this solution, such as generating
maps from aerial photos [22] and architectural facades from labels [23]. Considering the potential of
generating new material from an already existing limited data set, the accuracy of the trained semantic
segmentation model can be considerably improved with fake but realistic additional remote sensing
images when compared to simply utilizing basic data augmentations. Therefore, using GAN-generated
data alongside the original training data can be an effective method to improve solar panel installation
detection in RS images.

The main aim of the work is to enhance the model for solar panel installation semantic
segmentation, utilizing pix2pix GAN for data augmentation to get the best results with a limited
amount of data. To achieve this goal, a series of experiments are performed, utilizing a selected data set
and algorithms, transfer learning, fine-tuning, and data augmentations using both basic augmentations
and generative adversarial network-generated data. The experiments reveal the results of solar panel
semantic augmentation without and with data augmentations and the optimal amount of synthetic
data needed for better results. Inspecting the training process, parameter optimizations, various
criteria, and combinations can determine the best results (based on metrics such as accuracy, precision,
recall, etc.). This, combined with the findings and results of several experiments, can make solar panel
identification much more efficient and less labor-intensive. The final result is a solar panel semantic
segmentation model, fine-tuned for the task of solar panel segmentation in remote sensing images,
and trained with data augmented using the pix2pix GAN for enhanced solar panel detection accuracy.

2. Materials and Methods

The data used for semantic segmentation and GAN model training is a collection of five solar
panel aerial image data sets. The Provincial Geomatics Center of Jiangsu provides three data sets [24],
and two are sourced from Google Earth and the French National Institute of Geographical and Forestry
Information (IGN) [25]. The data sets are presented and compared in Table 1. The main differences
are the types of files, the ground sampling distance (or GSD, i.e., the distance between centers of two
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neighboring pixels measured on the ground), and image resolutions. For DeepLabV3 and pix2pix
GAN training, 640 image-mask pairs of each GSD were used, a total being 2560 images and 2560
semantic segmentation masks. Out of 640 image-mask pairs of each GSD, 80% are used for training of
DeepLabV3 model and pix2pix GAN, while for validation and testing of the DeepLabV3 model, 10%
are used for each.

Table 1. A comparison of used solar panel semantic segmentation data sets.

Data Source Image Format Ground Sampling Distance Image Resolution
Provincial Geomatics BMP 0.8m/pixel 1024x1024
Center of Jiangsu
Provincial Geomatics BMP 0.3m/pixel 1024x1024
Center of Jiangsu
French National
Institute of .
Geographical and PNG 0.2m/pixel 400x400
Forestry Information
Provincial Geomatics .
Center of Jiangsu BMP 0.1m/pixel 256x256
Google Earth PNG 0.1m/pixel 400x400

To solve the issue of GSD and image resolution differences, resampling is applied for all images
and their masks. In the experiments, a target GSD of 0.1m/pixel and a target image resolution of
512x512 are used for resampling. The reason for this is to keep as much detail in the resampled images
as possible while retaining computational efficiency, as well as data uniformity so that the scale of solar
panels is accurately represented. Bringing all images to the same "centimeters per pixel" ratio ensures a
more accurate actual scale of solar panels in remote sensing images. The process for resampling image
width and height to target GSD is presented in Equation 1 and Equation 2.

resampled_width = original_width x < spatzal_f’esolutlon - > (1)
target_spatial_resolution

resampled_height = original_height x spatzal_?fesolutwn - (2)
target_spatial_resolution

The result is that the images of the original 0.1m/pixel GSD are not resampled to a new image
resolution, as they are already of the target GSD, and the image-mask pairs of 0.8m, 0.3m, and 0.2m
are resampled. Lanczos resampling is used for remote sensing image quality preservation during
upsampling, although at a higher computational cost. In contrast, nearest neighbor resampling is
used for the binary semantic segmentation masks to avoid artifacts and retain the sharp edges of the
mask objects. After GSD resampling, the image-mask pairs are then resampled to the target image
resolution of 512x512. This is done by either cropping or padding the image-mask pairs. The process
for padding image width and height is presented in Equation 3 and Equation 4, and is applied with
black pixels to both the image and segmentation mask (horizontal left-right padding and vertical
top-bottom padding). The padding is performed for image-mask pairs that are of the same target
GSD, but lower image resolution to bring the images and masks to the target image resolution without
compromising the performed GSD resampling or the quality of the original remote sensing images.

target_width — resampled_widthJ
2

target_height — resampled_height
2

padding_width = | 3)

padding_height = |

] (4)
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Alternatively, cropping is applied when the image-mask pair image resolution is higher than the
target resolution after GSD resampling. However, this introduces the issue of information loss when
cropping a large image. Therefore, instead of applying center cropping, the procedure of identifying
the largest segmentation object in the mask is performed, and the cropping is done to focus on the
object. This ensures that the cropped image and mask will always include a solar panel. Also, this
is done not just because the segmentation mask may locate multiple objects, but because they may
be of different sizes. Firstly, the number of solar panel objects in a semantic segmentation mask is
calculated. Then, for each object, the bounding box slices are located and the slice with the largest area
is selected for coordinate extraction. The center of the largest object’s bounding box is then calculated,
and the coordinates for image-mask pair cropping are calculated. Also, consideration is taken that
the cropping dimensions do not exceed the actual image’s dimensions and that the cropping does not
occur beyond the boundaries of the image (for example, if the largest segmentation object is in the
corner of the image). The resampling process is illustrated in Figure 1.

Is GSD smaller
than target GSD?

Resample images to
No s target spatial
resolution

Is image
esolution highe|
or lower than
target image
esolution?

Apply padding to
bring images up to
target image
resolution

Crop images at
center of largest
mask object

---Higher--

Figure 1. The process of image-mask pair resampling to target spatial and image resolution.

For solar panel semantic segmentation model training, DeepLabV3 architecture with ResNet-50
backbone was utilized. The DeepLabV3 pre-built model from PyTorch was chosen as it is one of
the more recent semantic segmentation convolutional neural networks, and its complexity, as well
as capabilities, are suitable for the task of PV installation segmentation in remote sensing images of
various GSDs. ResNet-50 was selected as the backbone over other options such as MobileNet and
ResNet-101 due to the desired balance of accuracy and computational efficiency. The hyperparameters
used for model training are detailed in Table 2 and were not changed across runs. The parameters
were kept the same throughout all experiments, ensuring that the benefits of data augmentations
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were observed instead of different parameter optimizations. Early stopping is implemented to stop
model training after 10 epochs if the target metric stops improving when compared to the average
target metric. In this case, because the highest model accuracy is desired, the target metric is validation
intersection over union (IoU). Therefore, during training, if the validation IoU metric stops improving
and is lower than the average validation IoU for consecutive 10 epochs (in this case, the number of
epochs is "patience"), early stopping is initiated, halting the training.

Table 2. Hyperparameters used for DeepLabV3 semantic segmentation model training.

Epochs Early Stop Patience Adam Optimizer Scheduler StepLR

Learning Rate Weight Decay Step Size Gamma
100 10 epochs 0.001 0.0001 20 0.1

After training, the DeepLabV3 model for solar panel segmentation is tested using the testing
subset, and the average evaluation metrics are calculated (Table 3). To evaluate the trained model,
average accuracy, precision, recall, F1 score, and intersect over union are calculated. In this case,
accuracy refers to pixel accuracy, i.e. the correctly classified pixels when comparing the ground truth
mask and predicted mask. This includes correctly predicting not only the pixels where the solar panel
is segmented (white pixels) but also the background (black pixels). While this provides a good insight
into pixel-wise correctness, the IoU metric is arguably more relevant in testing the model accuracy,
as the IoU metric indicates how well the predicted mask overlaps with the ground truth. F1 score is
a useful metric when there is a class imbalance (foreground and background), as it is the harmonic
mean of precision and recall. Because of the issue of class imbalance (smaller percentage of white
pixels, i.e. the PV objects, when compared to black background pixels), inspecting the IoU and F1
metrics provides the most insight into the model accuracy. Furthermore, the semantic segmentation
capabilities of the model are tested by counting the correctly segmented images, poorly segmented
images, and unsegmented images. Correctly segmented images are considered those with an IoU
metric higher than or equal to 0.5, while poorly segmented images are those that have an IoU metric
lower than 0.5, but not equal to 0. Unsegmented images are those having the IoU metric of 0.

Table 3. Metrics used for evaluation of trained semantic segmentation DeepLabV3 models using testing

dataset.
Metric Formula
Accuracy % YN | I(predicted; = true;)
Precision TP / (TP + FP)
Recall TP / (TP + FN)
F1 Score 2 X (Precision x Recall) / (Precision + Recall)

Intersection over Union Z;I\il I(]/true,i N ypred,i)/ le\il I(]/true,i U ypred,i)

For data augmentation with the generative adversarial network, pix2pix implementation was
used. Experimenting with different setups and parameters, an optimal setup of parameters for training
the pix2pix GAN for image-to-image translation from domain A (binary semantic segmentation mask)
to domain B (remote sensing image) was determined. U-Net256 generator architecture was used,
therefore the images and masks were resized to 256x256 resolution. For the discriminator, PatchGAN
architecture with 3 convolutional layers was used. The lambda_L1 parameter was set to 75 instead
of the default value of 100, This is done to reduce the importance of L1 loss, which encourages the
generator to produce images closer to the original input data, as the lambda_L1 value is used in the
training objective. The reduction of lambda_L1 value in this case encourages generating more realistic
outputs. The pix2pix GAN was trained for 600 epochs — 300 epochs of training with a consistent
learning date of 0.0001, and 300 epochs later, gradually decaying the learning rate to closer to zero.
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The number of channels for input and output images (input_nc and output_nc parameters) were set
to 1 and 3 respectively (1 for input grayscale semantic segmentation masks and 3 for output RGB
remote sensing synthetic generated images). To maintain the balance of power between the generator
and discriminator, and so that the former does not outpower the latter and vice versa, the number of
discriminator filters in the first convolutional layer (ndf parameter) was set at 64 (default value), while
the number of generator filters in the last convolutional layer (ngf parameter) set at 128 (default value
is 64). This allows the generator to capture more detail and generate more convincing images. A batch
size of 1 was maintained for higher stability and context preservation when only one image-mask pair
is used for mapping learning at a time.

To compare the benefits of using classic data augmentations for the training dataset versus
using GAN-generated data, the DeepLabv3 semantic segmentation model was also trained with basic
augmentations performed on the training dataset. In the case of training a semantic segmentation
model with RS images of PV installations, it is crucial to ensure that the performed augmentations
are not too drastic and produce realistic data. For example, because of the nature of how solar panels
are usually installed and positioned, drastic image perspective alterations may result in unrealistic
data and influence the model training process negatively. The regular data augmentations performed
were random horizontal flip with 50% chance of it being applied, random rotation of 5 degrees,
random perspective change with 0.05 distortion scale and 50% chance of it being applied, and random
application of Gaussian blur (5x5 kernel size and standard deviation of 0.1 min and 2.0 max) with
50% change of it being applied. The Gaussian blur application is intended to simulate the fogging of a
satellite lens.

The RS images are also normalized to mean (0.485, 0.456, 0.406) and standard deviation (0.229,
0.224, 0.225), based on ImageNet common values. However, in the image-mask pairs, only the image
is normalized, as the segmentation mask does not require it. Furthermore, Gaussian blur is applied
only to the RS image and not its mask, to avoid artifacts. Other augmentations, such as horizontal flip,
rotation, and perspective change are applied both to the image and its mask, and the usage of manual
seed ensures that although the augmentations are chosen at random, they are applied identically.

The experiments with the DeepLabV3 semantic segmentation model were performed in six ways,
and they are as follows:

¢  Training the model without performing basic data augmentations

¢ Training the model with performed basic data augmentations

*  Training the model with additional 25% GAN generated training data and without performing
basic data augmentations

e  Training the model with additional 25% GAN generated training data and with performed basic
data augmentations

e  Training the model with the additional optimal amount of GAN-generated training data (60% in
this case) and without performing basic data augmentations

e  Training the model with the additional optimal amount of GAN-generated training data (60% in
this case) and with performed basic data augmentations

It is important to note that for the third and fourth scenarios, 25% of the remote sensing imagery
generated using the generative adversarial network is used as a proof-of-concept that the trained
semantic segmentation model benefits from additional synthetic remote sensing image-mask pairs. In
contrast, the fifth and sixth experiment variants display further improved performance of the semantic
segmentation model trained with an optimal amount of GAN-generated data.

For each experiment, the model is trained in four scenarios. In the first scenario, the model is
simply trained from scratch without pre-trained weights. This serves as a baseline for comparison
with other scenarios, as well as shows how a model trained from the ground up for the specific dataset
performs in comparison to fine-tuned models and the ones that utilize transfer learning. In the second
scenario, transfer learning is applied. The model is trained using weights that were trained on the
Common Objects in Context (COCO) subset using 20 categories in the Pascal VOC dataset, such as
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bicycle, aeroplane, bottle, dining table, and more. While solar panels are not one of these 20 categories,
the learned general features like shapes and edges are still beneficial, providing a good foundation for
quicker convergence and better generalization to new data. The third scenario involves fine-tuning the
model from the second scenario by freezing all layers except the final one. This way only the weights of
the last layer are updated, and the other layers are frozen, better adapting it for the task of solar panel
installation semantic segmentation in remote sensing images. At the same time, features learned by the
earlier layers are retained as they are frozen. Using previously learned knowledge, this approach can
be beneficial in reducing overfitting and training times. In the fourth scenario, the model from the third
scenario is fine-tuned by unfreezing all layers and training the entire network. This is done to build
upon the previous scenario, allowing the entire model to be fine-tuned more extensively for the best
performance. The approach of incrementally fine-tuning the model that utilized transfer learning is a
way to develop the deep learning model for the specific task of solar panel semantic segmentation and
make it even more adapted to this task. The result is a total of 24 experiments. When experiments are
performed with additional remote sensing images generated using the pix2pix generative adversarial
network, the additional samples are only used for the training dataset, while the validation and testing
data sets are kept intact. This is done to keep the validation and testing subsets consistent across all
experiments and for more objective evaluations. Furthermore, the validation and testing data consists
of real-life data that is of high quality, and the synthetic remote sensing images, although realistic to a
degree, are less suitable for testing and validating the model.

3. Results

The experiments were performed in a Google Colab environment, and the model training
was done on an NVIDIA A100 GPU. To balance computational efficiency and time resources, 640
image-mask pairs were randomly selected from the data set for each GSD (total of 2560 pairs), and an
80/10/10 split was used for training, validation, and testing data. The result is 512 image-mask pairs
of each GSD used for training, 64 image-mask pairs for validation of the model, and 64 image-mask
pairs for the testing of the model (a total of 2048, 256, and 256 pairs respectively). Because there are
two datasets of 0.1m/pixel GSD, 256 image-mask pairs are used from each to make up a total of 512
image-mask samples for the 0.1m GSD training dataset, 32 pairs from each for validation, and 32
pairs from each for testing. To ensure reproducibility and consistent sampling across runs, as well
as consistent shuffling and randomizing when running the code multiple times, the random seed is
set to 35 and applied to PyTorch, random, and NumPy modules. Where needed, GAN-generated
image-mask pairs were appended to the training data set. For the data loaders, a size batch of 48
was used and 12 workers. During data loader creation, the image-mask pairs were resampled to a
target GSD and target image resolution of 0.1m/pixel and 512x512 respectively, attempting to retain
as much information and image quality as possible, and ensuring scale and "centimeter per pixel"
ratio consistency.

3.1. Pix2pix GAN Training

Before performing the main experiments and training the semantic segmentation model variants,
the pix2pix GAN was trained for remote sensing data augmentation. To best fit the task of
generating new remote sensing images from binary semantic segmentation masks, different parameter
combinations were tested, such as the generator and discriminator parameters for balance (so that the
discriminator does not overpower the generator, and vice versa), number of epochs for training, etc.
For training, 512 image-mask pairs of each GSD were used, and four separate pix2pix GAN models
were trained (one for each GSD), to generate remote sensing images of different GSDs and different
solar panel scales. Most importantly, the image-mask pairs are the same ones that are used in the
original dataset for DeepLabV3 semantic segmentation model training, so that new data from already
existing image-mask pairs is generated.
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The training progress was closely examined and visualized in graphs using the Weights &
Biases API, detailing the changes in generator (G_GAN and G_L1) and discriminator (D_real and
D_fake) losses, which are displayed in Figure 2. The desired outcome is for G_L1 loss to be as low as
possible, indicating the generated image’s closer resemblance to the original data, and G_GAN loss to
decrease over time, indicating the generator’s ability to learn the mappings between domains A and B
more effectively and generate more convincing images that are challenging for the discriminator to
evaluate. Looking at the graphs, observations can be made that training with remote sensing images
of 0.8m/pixel and 0.3m/pixel GSDs display lower G_L1 loss, signaling the generated image’s close
resemblance to the source material, however, still creating new and convincing results. Furthermore,
the discriminator losses reach values closer to 0.5, indicating a fair challenge for the discriminator. This
is also visible when inspecting the generated images from masks that originally belonged to remote
sensing images of 0.8m/pixel and 0.3m/pixel GSDs. These images also originally contain fewer details
when compared to images of higher GSDs, and this may be an explanation of why the generative
adversarial network performed better with these images, i.e. the lower difficulty of recreation and
reconstruction. The training process visualization with images of 0.2m/pixel and 0.1m/pixel GSD
shows that in the case of training with 0.2m GSD images, the G_GAN loss increased over time, and
the G_L1 final loss was the highest among all four. This may be due to the nature of these images, i.e.
them having more fine details that the generator had difficulty recreating, consequently not fooling
the discriminator. There are fluctuations in discriminator losses, particularly in the 0.2m/pixel GSD
dataset which lowers to values less than 0.2. As established, this is likely due to the nature of these
images, i.e. having more details such as roads, buildings, vehicles, etc. that are harder to replicate
convincingly. The final result confirms this, with the newly generated images appearing less realistic
on closer inspection, but fairly convincing when looked at from afar. Nevertheless, when compared to
images generated from 0.8m and 0.3m GSD segmentation mask data, they can be considered lower
quality, in some cases featuring unrealistic road formations or building shapes, although retaining
mostly correct solar panel installation generating. In worst cases, the solar panel installations are not
generated convincingly as well, resulting in inferior quality samples. Examples are noisy formations,
distorted shapes, and inconsistent colors.

After the pix2pix GAN training is complete, the same semantic segmentation masks that were
used for GAN training are used for model testing, i.e., generating new image-mask pairs. For each
GSD, 512 binary semantic segmentation masks are used to generate respective remote-sensing images,
resulting in new synthetic data. The final output quality varies based on the binary segmentation mask
and the GSD of images used originally for testing. Upon visual inspection, it can be determined that
the synthetic remote sensing images closely resemble the original data, however with subtleties that
can differentiate them. As illustrated in Figure 3, the generated images feature realistic solar panel
installations and sufficiently believable environments around them. Upon closer inspection, details
such as roads leading to nowhere or inconsistent building layout can be observed, however, the most
important aspect, i.e. the solar panels are generated in satisfactory quality. There are some samples,
however, that are of worse quality, particularly when the original semantic segmentation masks feature
small objects. In this case, the solar panels are generated with artifacts such as noise and different
colors. Nevertheless, the number of inferior-quality samples compared to satisfactory-quality samples
is insignificant. In total, 2048 new remote sensing images were generated, i.e. 512 images for each GSD.
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Figure 2. Line graphs displaying changes in pix2pix losses during training with data sets of various
spatial resolutions. The highest GSD images (0.1m/pixel) have the most detail, and the lowest GSD
images (0.8m/pixel) have the least detail.

Figure 3. An example of binary semantic segmentation mask (top row), original remote sensing image
(middle row), and GAN-generated image (bottom row) using pix2pix trained model for each GSD
respectively, from left to right: 0.8m, 0.3m, 0.2m, 0.1m.


https://doi.org/10.20944/preprints202402.0821.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 February 2024 doi:10.20944/preprints202402.0821.v1

11 0f 17

3.2. Sensitivity Analysis

To find the optimal amount of GAN-generated data for usage as additional training data,
sensitivity analysis was performed. This was done to examine how much additional data is needed to
get the best results before the model stops benefiting from extra samples, and in the worst case, starts
to overfit. To determine the best threshold of GAN data usage, the DeepLabV3 semantic segmentation
model was trained 10 times using transfer learning and with an additional 10% of generated remote
sensing images incrementally added to the training data set (10% added, 20% added, and so on). This
was compared with the baseline of 0% additional data (the results of when the model was trained
with transfer learning, and with original data without basic augmentations). For sensitivity analysis,
validation, and testing subset IoU and loss metrics were compared, and the changes with additional
GAN data usage are detailed in Figure 4.

0.07
0.92 1 —e— Validation loU —e— Validation Loss
—— Testing loU - Testing Loss
0.90 - 0.8958
0.06 -
0.88 -
0.86 -
0.8338 » 0057 r\
3 0.841 8 9
0.82 0.0448
0.04 4
0.80
0.78
0.03 1
0.76 4 0.0283
0 20 40 60 80 100 0 20 40 60 80 100
GAN Data Percentage GAN Data Percentage

Figure 4. Sensitivity analysis of DeepLabV3 model training using transfer learning and various
percentages of additional GAN generated training data, comparing validation and testing IoU (left)
and loss (right) metrics.

Observing the data in the figure reveals that the best validation and testing IoU values are when
60% and 90% additional GAN data is used respectively. Furthermore, the lowest loss values of
validation and testing subsets are in the 80%-90% range. This indicates that when the percentage of
additional images generated by the GAN is between 60% and 90%, the best results are achieved. In this
case, because the desired outcome is the best model semantic segmentation accuracy, the IoU values
are more relevant in the sensitivity analysis. Upon visual inspection, it can be observed that the peak
of validation IoU is at 60%, while the peak of testing IoU is at 90% (IoU being 83.38%), although it is
barely higher than it was at 60% (IoU being 83.10%). After the 60% threshold, the IoU values generally
start to decrease (except the peak testing IoU at 90%), indicating potential overfitting as the model
starts losing the ability to generalize to new data.

Based on the findings of sensitivity analysis, it was decided that 60% of additional GAN-generated
remote sensing images for the training dataset is the optimal amount for more beneficial model training.
This means that an additional 307 remote sensing images and their respective masks will be used for
each GSD, a total being 1228 additional image-mask pairs added to the original training data set of
2048 image-mask pairs.

3.3. Solar Panel Semantic Segmentation Results

To compare the final results of all six scenarios, the fourth iteration of the trained models (using
transfer learning and fine-tuned remaining layers after previously fine-tuning only the final one)
are evaluated, as they are arguably the most optimized for the solar panel installation semantic
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segmentation task. The training and testing results of models are inspected in all six scenarios, i.e.
training without augmentations (abbr. no_aug), training with basic augmentations (abbr. basic_aug),
training with additional 25% of GAN generated remote sensing images (abbr. gan25), training with
additional 25% of GAN generated remote sensing images plus basic data augmentations for training
data set (abbr. gan25_aug), training with optimal amount (60%) of GAN generated remote sensing
images (abbr. gan60), and training with optimal amount (60%) of GAN generated remote sensing
images plus using basic data augmentations (abbr. gan60_aug).

Looking at the testing results across all six scenarios displayed in Table 4, the gan60 scenario
(training the model with 60% additional GAN remote sensing image data) shows the best metrics.
When comparing with results of training without any augmentations, the benefits of using the
generative adversarial network for additional training data synthesis is evident, especially when
comparing the improvements of metrics such as average precision, average recall, average F1 score,
average IoU, and average loss. Furthermore, more images are successfully segmented. Compared with
the scenario basic_aug, which features only the usage of basic data augmentations, the improvements,
and benefits are still visible, especially in better IoU and loss metrics.

Table 4. Comparison of testing results for all six scenarios, with transfer learning and fine-tuning
applied. The best values are written in bold.

Experiment Avg Avg Avg Avg Avg Avg  Segmented Panels (IoU)
Acc Prec Rec F1 IoU Loss Correct Poor None

%) (%) (%) (%) (%) >05 <05 =0
no_aug 97.89 8672 8562 8525 80.13 0.0650 229 12 15
basic_aug ~ 97.88 89.63 8651 8650 8132 00547 235 13 8
gan25 98.09 89.11 8594 8571 8042 00586 229 16 11
gan25_aug 9791 8884 8725 87.08 8141 00550 238 8 10
gan60 98.67 90.13 8811 87.96 8332 0.0368 237 11 8
gan60_aug  98.04 89.82 87.69 8777 8290 00611 238 9 9

Based on the model testing results, it can be determined that by training the semantic segmentation
model while increasing the original training data set by 60% using synthetic remote sensing images
generated by the generative adversarial network pix2pix, the best result is achieved. Applying
additional basic image augmentations did not provide benefits based on the testing results, and in
fact, displayed slightly worse results. This is likely due to the already challenging nature of generated
synthetic remote sensing images, which although look realistic and believable, still contain some noise
and artifacts in some of the samples.

The final trained semantic segmentation model is capable of segmenting solar panel installations
at different scales, shapes, and shades. The model was tested with RGB images taken from Google
Maps. The images consist of random locations throughout Lithuania, containing small solar panel
installations, as well as solar power stations. The original images and their segmentation masks are
displayed in Figure 5. Monocrystalline and polycrystalline solar panel installations are generally well
detected, as they are also distinct at various scales due to their grid lines and rectangular shape. When
tested with images of solar power stations, the model either predicted the array of solar panels as a
single object or the entire semantic segmentation mask was white, depending on the scale.
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Figure 5. An example of several RS images of locations throughout Lithuania (row 1), and solar panel

segmentation masks, respectively using a model trained without augmentations (row 2), with basic

augmentations (row 3), using 25% of additional GAN training data (row 4), using 25% GAN data +

basic augmentations (row 5), using 60% of additional GAN training data (row 6), and using 25% of

additional GAN training data + basic augmentations (row 7).

4. Discussion

Using the pix2pix generative adversarial network for data augmentation, not only the accuracy of

the semantic segmentation model is improved, but also the issue of data labeling is addressed. Because

new images are generated from already existing data, this can be an alternative to manual annotation,

a time-consuming and labor-intensive process when more diverse data is needed. For instance, data

sets such as thermal images and their respective segmentation masks could be expanded with new
synthetic data, especially when expertise in the field of photovoltaic farm fault detection is needed [26].

Furthermore, this can also be applied to the improvement of solar farm capacity estimation, either

as an alternative or an additional solution to exploring other data sources [27]. Although classic

data augmentations such as contrast adjustments, random rotations, and flips are utilized, brand-new
remote sensing images may benefit the process of solar farm detection and energy generation capacities

with even more potential in terms of accuracy.
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Because the focus of this work is the improvement of solar panel segmentation from RS imagery
using GAN-based data augmentations instead of segmentation model architecture optimizations and
improvements, this method may be potentially combined with other segmentation solutions, designed
specifically for PV installation detection. Other works propose new models as improvements in solar
panel segmentation, such as better detection of small-scale installations in the form of a size-aware
network [28], and note the potential of even better applications with broader data sources. However,
the performance of various semantic segmentation models may also depend on the nature of the
training data, demonstrated by the comparison of U-Net, DeepLabv3+, PSPNet, and FPN architectures
and the fact that U-Net outperformed the newer DeepLabv3+ architecture [29]. Likewise, the problem
of the limited amount of samples is also mentioned, although mitigated to an extent with two classic
augmentations, i.e. random horizontal and vertical flips with 50% probability. Nevertheless, although
these augmentations introduce variety to the data set, the study would likely benefit from an even
more diverse training data set, featuring newly generated images using the generative adversarial
network. This would, however, depend on the nature of the original data set, and potential points of
caution such as data quality and class imbalances.

Although the result of this work is the successful improvement of the semantic segmentation
model using additional data generated using the GAN, it has the potential to be improved even further
with additional computational and time resources. For future work, if the issue of resource limitations
was absent, a more detailed sensitivity analysis could be performed. With more time and computational
resources, a more thorough sensitivity analysis with stochastic simulations and application of the
Central Limit Theorem can be performed for more valid and consistent results. Running the sensitivity
analysis experiments multiple times (e.g. 30 runs) would be beneficial for determining an even more
accurate optimal amount of generated synthetic remote sensing image to use for model training more
accurately. Furthermore, the issue of generated synthetic remote sensing images’ inferior quality
when the input semantic segmentation masks have class imbalances (a lot of black background and
small white objects) can potentially be addressed with pix2pix optimizations for this specific task. The
optimizations would include the learning rate and training epoch amount adjustments, tuning the
generator, and discriminator parameters such as the number of filters. Although this would likely
result in even longer and more computationally intensive training sessions, the result would more than
likely allow for generating even more realistic remote sensing images from existing limited data sets.

The issue of class imbalance is relevant when training not only the GAN for data augmentations,
but also the solar panel semantic segmentation model, and is mentioned in several works. The pixel
accuracy metric may be unreliable when the class imbalance issue is present, due to the dominant
background pixels being correctly evaluated. Therefore, the IoU metric should be examined more
closely in contrast to pixel accuracy. This is relevant not only when segmenting the solar panels
themselves, but also when performing other critical analysis such as fault detections [30]. Also, due
to the nature of resampling data sets to a common spatial resolution and resizing the images to a
target image resolution (either by cropping or padding), some remote sensing images may appear
annotated in a simplified manner, e.g. a zoomed-in array of several solar panel installations may
appear annotated as a single large segmentation object. In that case, when training the model, it would
be recommended to pay more attention to the validation loss metric in addition to the validation IoU
metric. The reason for that is that the latter may be misleading when evaluating the model on the
testing dataset due to correct segmentation falsely being marked as poor segmentation. This may
cause problems during model training, validation, and testing, when the model segments the objects
more accurately than they are labeled in the original data, resulting in a falsely lower IoU metric. To
combat this issue, higher-quality data sets are required, along with more careful labeling.

5. Conclusions

To sum up, the usage of the generative adversarial network is beneficial for training dataset
augmentation with brand new remote sensing images from already existing data. Expanding a limited
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data set with newly generated images proved to be beneficial for the training of solar panel installation
semantic segmentation model in terms of accuracy and segmentation quality. Conducted experiments
and tests display the benefits of using artificial data over performing basic data augmentations
and the potential of improving the model for more accurate solar panel detection. With even more
improvements to not only the segmentation model hyperparameters but also the generative adversarial
network parameters, the fine-tuned semantic segmentation model may be used for even more precise
solar panel detection in RS images and potentially the development of a comprehensive solar panel
map, allowing for easier solar panel market and usage analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
FCN Fully Convolutional Network
GAN Generative Adversarial Network
GPU Graphics Processing Unit

GSD Ground Sampling Distance

IoU Intersection Over Union
PV Photovoltaic
RS Remote Sensing

SRCNN  Super-Resolution Convolutional Neural Network
SRGAN  Super-Resolution Generative Adversarial Network
ViT Vision Transformer
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