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Abstract: With the popularity of solar energy in the electricity market, demand arises for data such

as precise locations of solar panels for efficient energy planning, management, and distribution.

However, this data is not easily accessible and in some cases, information such as precise locations

does not exist. Furthermore, existing data sets for training semantic segmentation models of PV

installations are limited, and their annotation is time-consuming and labor-intensive. Therefore, for

additional remote sensing (RS) data creation, the pix2pix generative adversarial network (GAN) is

utilized, enriching the original resampled training data of varying GSDs without compromising

its integrity. Experiments done with the DeepLabV3 model, ResNet-50 backbone, and pix2pix

GAN architecture were conducted to find the optimal configuration for an accurate RS imagery

segmentation model. The result is a fine-tuned solar panel semantic segmentation model, trained

using transfer learning and utilizing an optimal amount – 60% of generated RS imagery for

additional training data, increasing model accuracy. The findings demonstrate the benefits of

using GAN-generated images as additional training data, increasing the size of small data sets,

and improving the capabilities of the segmentation model for solar panel detection in RS images.

Keywords: deep learning; solar panels; semantic segmentation; data augmentation; generative

adversarial network; remote sensing; transfer learning

1. Introduction

In this day and age, the use of solar energy is becoming increasingly popular due to the worldwide

adoption of renewable resources. Solar panels are one of the primary means for converting solar

energy to electricity and are used by homeowners and electricity suppliers. Solar panels are not

only a key element to producing clean renewable energy, but they are also environment friendly and

cheaper to afford than before [1]. With the increasing popularity of solar energy in the electricity

market, demand arises for various data. Such data can include the locations of solar panels, their

types, quantities, specifications, and power capacities. This data, precisely the locations of solar panels

can be used for efficient policy-making, energy planning and distribution, and grid management.

Unfortunately, this data is not easily accessible, due to either privacy concerns or unwillingness of

solar panel installers to share this data. In some cases, this data does not include the precise locations

of solar panel installations and only statistics such as the power capacities, which complicates the

information-gathering process.

Fortunately, remote sensing data and machine learning are valuable tools in this scenario. The

procedure of remote sensing, in particular by satellites, allows for measuring the characteristics of

an observed area and collecting images. The collected images of the surface of the planet can then

be used for observation and detection of patterns and objects, or in this case, solar panels. For

analysis of visual data, convolutional neural networks (CNNs) are used and semantic segmentation

is performed. Networks such as FCN, which uses end-to-end training and "skip" architecture for

high-level and low-level feature combination [2], U-Net, which features a U-shaped encoder-decoder
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structure and is efficient for small datasets [3], and others are often utilized. SegNet and DeepLabV3

are also commonly used, respectively either for performance-computational efficiency [4] or better

multiscale object segmentation [5], with varying results. The current state-of-the-art in utilizing deep

learning for solar panel detection spans various methods and tools, such as specific CNNs and ViTs, as

well as their variations and iterations. RU-Net, which is a combination of ResNet34 U-Net, Atrous

Spatial Pyramid Pooling, and Dense Conditional Random Field deep learning components, has been

utilized for efficient solar panel detection performance and identifying rooftop solar panel locations,

distributions, and surface areas in 0.3m/pixel spatial resolution images [6]. The proposed model

demonstrates higher precision metrics when compared to classical models such as FCN and U-Net. A

hierarchical information extraction method for solar panels using multi-source satellite remote sensing

images was also proposed, tested in three selected provinces in China, and using the EfficientNet-B5

model for scene classification and the U2-Net model for the precise location of solar power panels,

with the goal and purpose to locate as many solar panels as possible, reducing the number of false

positives [7]. Mask R-CNN deep learning algorithm was used to identify solar photovoltaic panels in

remote sensing images, and this method focuses on isolating solar panels from background objects [8].

While the usefulness of machine learning algorithms in object isolation and image segmentation is

noted, the model was trained on a small dataset, featuring images taken with the same equipment

under the same environmental conditions.

For remote sensing image segmentation, general-purpose vision transformers have also been

used, with varying results. Models such as SegFormer and Lawin Transformer demonstrated results

comparable to other state-of-the-art models such as FCN and RemoteNet, however, the results were

achieved with careful image pre-processing, including cropping, contrast enhancement, and geometric

transformations [9]. For building segmentation in remote sensing images, various models such as

TransUNet, MiTNet, UNetFormer, and Segformer have been compared, presenting varying metrics

such as F1 score, overall accuracy and mean intersection over Union when tested on Global Cities

WHU Satellite dataset [10].

Semantic segmentation models and vision transformers also benefit from transfer learning, i.e.

the process of transferring the learning knowledge from one task to another. Such models like ResNet,

FCN, DeepLab, and more were either pre-trained on the ImageNet dataset or used weights from other

models that were pre-trained on ImageNet [11,12]. Furthermore, transfer learning has also been used

specifically for training remote sensing image semantic segmentation models. For high-resolution

remote sensing images, in particular, an improved U-Net model based on transfer learning was

proposed, showcasing better results for vehicle semantic segmentation when compared to the regular

U-Net model [13]. For multiobject segmentation of remote sensing images when the issue of insufficient

labeled data and imbalanced data classes is present, transfer learning has also proved to be beneficial

in improving the semantic segmentation model performance to some degree [14].

Even though the RS images of solar panel installations are obtained, large amounts of annotated

data are needed for model training, with even more benefits brought by larger and more diverse

datasets. Complications due to a lack of raw data, difficulty in data set annotation, and limitations of

sensor characteristics make this more challenging, as a large variation and amount of data are needed

for creating an effective model [15]. Therefore, data augmentations are essential to expanding the data

set for the machine learning model, especially when training a semantic segmentation model for object

detection. Basic augmentations include, although are not limited to, flipping images, rotating and

tilting them, and adjusting contrast or colors, to generate more images from already existing ones.

Performing rotations and horizontal flipping is one of the possible classic data augmentations that

can be performed on both the original image and its semantic segmentation mask, and the result

is improved prediction performance of the segmentation network [16]. These augmentations are

especially significant for small-scale data sets and their extension. Cropping, i.e. taking only a subset

of an image is also a method for producing more samples, and the corresponding mask has to be

cropped in the same way. Training data for semantic segmentation can also be increased by scaling,
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brightness, and contrast adjustment of the input image for higher classification performance [17]. Some

augmentations attempt to fix specific problems, for example, brightness adjustment addresses the

issues of lighting changes, while cropping and zooming of images manage scaling and background

issues [18]. Augmentations are needed for extending data sets when training deep learning models,

and this methodology is not only beneficial when the data set is small, but also in some cases reduces

model overfitting, i.e. when the model performs too well with training data, and poorly with new,

unseen data. However, basic data augmentations may produce unnatural results when not used

properly, as the model may have issues labeling objects in images that are too distorted or have their

colors drastically changed. Therefore, to satisfy the demand for more realistic data from already limited

data sets, generative adversarial networks are beneficial in this case.

Generative adversarial networks can used for transforming images from one domain to another.

This is done by utilizing generative networks, which aim to create believable images from a source

domain, and discriminator networks, which are trained to identify whether the created images are

genuine or created by the generator [19]. The rivalry of the generator and discriminator plays a key

part in generative adversarial network training, ensuring that the generated synthetic images are

believable compared to the original images. Generative adversarial networks have also been used

for remote sensing image reconstruction. Conditional discriminator PatchGAN was used for remote

sensing imagery super-resolution, i.e., for creating images that have not only high fidelity but high

perceptual quality as well [20]. The upscaled data is more realistic and features higher fidelity, and

when compared to a simulated dataset, the evaluation metrics of state-of-the-art algorithms such as

SRGAN, SRCNN, and SRResNet are higher, particularly peak signal-to-noise and structural similarity.

In the context of paired image-to-image translation, pix2pix is a type of generative adversarial network

suitable for synthesizing remote sensing images from labels, e.g., semantic segmentation masks objects

of solar panels. First introduced in 2018, it is an approach effective at synthesizing photos from

label maps [21]. Several experiments have been conducted using this solution, such as generating

maps from aerial photos [22] and architectural facades from labels [23]. Considering the potential of

generating new material from an already existing limited data set, the accuracy of the trained semantic

segmentation model can be considerably improved with fake but realistic additional remote sensing

images when compared to simply utilizing basic data augmentations. Therefore, using GAN-generated

data alongside the original training data can be an effective method to improve solar panel installation

detection in RS images.

The main aim of the work is to enhance the model for solar panel installation semantic

segmentation, utilizing pix2pix GAN for data augmentation to get the best results with a limited

amount of data. To achieve this goal, a series of experiments are performed, utilizing a selected data set

and algorithms, transfer learning, fine-tuning, and data augmentations using both basic augmentations

and generative adversarial network-generated data. The experiments reveal the results of solar panel

semantic augmentation without and with data augmentations and the optimal amount of synthetic

data needed for better results. Inspecting the training process, parameter optimizations, various

criteria, and combinations can determine the best results (based on metrics such as accuracy, precision,

recall, etc.). This, combined with the findings and results of several experiments, can make solar panel

identification much more efficient and less labor-intensive. The final result is a solar panel semantic

segmentation model, fine-tuned for the task of solar panel segmentation in remote sensing images,

and trained with data augmented using the pix2pix GAN for enhanced solar panel detection accuracy.

2. Materials and Methods

The data used for semantic segmentation and GAN model training is a collection of five solar

panel aerial image data sets. The Provincial Geomatics Center of Jiangsu provides three data sets [24],

and two are sourced from Google Earth and the French National Institute of Geographical and Forestry

Information (IGN) [25]. The data sets are presented and compared in Table 1. The main differences

are the types of files, the ground sampling distance (or GSD, i.e., the distance between centers of two
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neighboring pixels measured on the ground), and image resolutions. For DeepLabV3 and pix2pix

GAN training, 640 image-mask pairs of each GSD were used, a total being 2560 images and 2560

semantic segmentation masks. Out of 640 image-mask pairs of each GSD, 80% are used for training of

DeepLabV3 model and pix2pix GAN, while for validation and testing of the DeepLabV3 model, 10%

are used for each.

Table 1. A comparison of used solar panel semantic segmentation data sets.

Data Source Image Format Ground Sampling Distance Image Resolution

Provincial Geomatics
Center of Jiangsu

BMP 0.8m/pixel 1024x1024

Provincial Geomatics
Center of Jiangsu

BMP 0.3m/pixel 1024x1024

French National
Institute of

Geographical and
Forestry Information

PNG 0.2m/pixel 400x400

Provincial Geomatics
Center of Jiangsu

BMP 0.1m/pixel 256x256

Google Earth PNG 0.1m/pixel 400x400

To solve the issue of GSD and image resolution differences, resampling is applied for all images

and their masks. In the experiments, a target GSD of 0.1m/pixel and a target image resolution of

512x512 are used for resampling. The reason for this is to keep as much detail in the resampled images

as possible while retaining computational efficiency, as well as data uniformity so that the scale of solar

panels is accurately represented. Bringing all images to the same "centimeters per pixel" ratio ensures a

more accurate actual scale of solar panels in remote sensing images. The process for resampling image

width and height to target GSD is presented in Equation 1 and Equation 2.

resampled_width = original_width ×

(

spatial_resolution

target_spatial_resolution

)

(1)

resampled_height = original_height ×

(

spatial_resolution

target_spatial_resolution

)

(2)

The result is that the images of the original 0.1m/pixel GSD are not resampled to a new image

resolution, as they are already of the target GSD, and the image-mask pairs of 0.8m, 0.3m, and 0.2m

are resampled. Lanczos resampling is used for remote sensing image quality preservation during

upsampling, although at a higher computational cost. In contrast, nearest neighbor resampling is

used for the binary semantic segmentation masks to avoid artifacts and retain the sharp edges of the

mask objects. After GSD resampling, the image-mask pairs are then resampled to the target image

resolution of 512x512. This is done by either cropping or padding the image-mask pairs. The process

for padding image width and height is presented in Equation 3 and Equation 4, and is applied with

black pixels to both the image and segmentation mask (horizontal left-right padding and vertical

top-bottom padding). The padding is performed for image-mask pairs that are of the same target

GSD, but lower image resolution to bring the images and masks to the target image resolution without

compromising the performed GSD resampling or the quality of the original remote sensing images.

padding_width = ⌊
target_width − resampled_width

2
⌋ (3)

padding_height = ⌊
target_height − resampled_height

2
⌋ (4)
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Alternatively, cropping is applied when the image-mask pair image resolution is higher than the

target resolution after GSD resampling. However, this introduces the issue of information loss when

cropping a large image. Therefore, instead of applying center cropping, the procedure of identifying

the largest segmentation object in the mask is performed, and the cropping is done to focus on the

object. This ensures that the cropped image and mask will always include a solar panel. Also, this

is done not just because the segmentation mask may locate multiple objects, but because they may

be of different sizes. Firstly, the number of solar panel objects in a semantic segmentation mask is

calculated. Then, for each object, the bounding box slices are located and the slice with the largest area

is selected for coordinate extraction. The center of the largest object’s bounding box is then calculated,

and the coordinates for image-mask pair cropping are calculated. Also, consideration is taken that

the cropping dimensions do not exceed the actual image’s dimensions and that the cropping does not

occur beyond the boundaries of the image (for example, if the largest segmentation object is in the

corner of the image). The resampling process is illustrated in Figure 1.

Yes

No

Is GSD smaller
 than target GSD?

Lower

Higher

Is image
resolution higher

 or lower than
target image
resolution?

Resample images to
target spatial

resolution

Apply padding to
bring images up to

target image
resolution

Crop images at
center of largest

mask object

Figure 1. The process of image-mask pair resampling to target spatial and image resolution.

For solar panel semantic segmentation model training, DeepLabV3 architecture with ResNet-50

backbone was utilized. The DeepLabV3 pre-built model from PyTorch was chosen as it is one of

the more recent semantic segmentation convolutional neural networks, and its complexity, as well

as capabilities, are suitable for the task of PV installation segmentation in remote sensing images of

various GSDs. ResNet-50 was selected as the backbone over other options such as MobileNet and

ResNet-101 due to the desired balance of accuracy and computational efficiency. The hyperparameters

used for model training are detailed in Table 2 and were not changed across runs. The parameters

were kept the same throughout all experiments, ensuring that the benefits of data augmentations
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were observed instead of different parameter optimizations. Early stopping is implemented to stop

model training after 10 epochs if the target metric stops improving when compared to the average

target metric. In this case, because the highest model accuracy is desired, the target metric is validation

intersection over union (IoU). Therefore, during training, if the validation IoU metric stops improving

and is lower than the average validation IoU for consecutive 10 epochs (in this case, the number of

epochs is "patience"), early stopping is initiated, halting the training.

Table 2. Hyperparameters used for DeepLabV3 semantic segmentation model training.

Epochs Early Stop Patience Adam Optimizer Scheduler StepLR

Learning Rate Weight Decay Step Size Gamma

100 10 epochs 0.001 0.0001 20 0.1

After training, the DeepLabV3 model for solar panel segmentation is tested using the testing

subset, and the average evaluation metrics are calculated (Table 3). To evaluate the trained model,

average accuracy, precision, recall, F1 score, and intersect over union are calculated. In this case,

accuracy refers to pixel accuracy, i.e. the correctly classified pixels when comparing the ground truth

mask and predicted mask. This includes correctly predicting not only the pixels where the solar panel

is segmented (white pixels) but also the background (black pixels). While this provides a good insight

into pixel-wise correctness, the IoU metric is arguably more relevant in testing the model accuracy,

as the IoU metric indicates how well the predicted mask overlaps with the ground truth. F1 score is

a useful metric when there is a class imbalance (foreground and background), as it is the harmonic

mean of precision and recall. Because of the issue of class imbalance (smaller percentage of white

pixels, i.e. the PV objects, when compared to black background pixels), inspecting the IoU and F1

metrics provides the most insight into the model accuracy. Furthermore, the semantic segmentation

capabilities of the model are tested by counting the correctly segmented images, poorly segmented

images, and unsegmented images. Correctly segmented images are considered those with an IoU

metric higher than or equal to 0.5, while poorly segmented images are those that have an IoU metric

lower than 0.5, but not equal to 0. Unsegmented images are those having the IoU metric of 0.

Table 3. Metrics used for evaluation of trained semantic segmentation DeepLabV3 models using testing

dataset.

Metric Formula

Accuracy 1
N ∑

N
i=1 I(predictedi = truei)

Precision TP / (TP + FP)
Recall TP / (TP + FN)

F1 Score 2 × ( Precision × Recall) / (Precision + Recall)

Intersection over Union ∑
N
i=1 I(ytrue,i ∩ ypred,i)/ ∑

N
i=1 I(ytrue,i ∪ ypred,i)

For data augmentation with the generative adversarial network, pix2pix implementation was

used. Experimenting with different setups and parameters, an optimal setup of parameters for training

the pix2pix GAN for image-to-image translation from domain A (binary semantic segmentation mask)

to domain B (remote sensing image) was determined. U-Net256 generator architecture was used,

therefore the images and masks were resized to 256x256 resolution. For the discriminator, PatchGAN

architecture with 3 convolutional layers was used. The lambda_L1 parameter was set to 75 instead

of the default value of 100, This is done to reduce the importance of L1 loss, which encourages the

generator to produce images closer to the original input data, as the lambda_L1 value is used in the

training objective. The reduction of lambda_L1 value in this case encourages generating more realistic

outputs. The pix2pix GAN was trained for 600 epochs – 300 epochs of training with a consistent

learning date of 0.0001, and 300 epochs later, gradually decaying the learning rate to closer to zero.
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The number of channels for input and output images (input_nc and output_nc parameters) were set

to 1 and 3 respectively (1 for input grayscale semantic segmentation masks and 3 for output RGB

remote sensing synthetic generated images). To maintain the balance of power between the generator

and discriminator, and so that the former does not outpower the latter and vice versa, the number of

discriminator filters in the first convolutional layer (ndf parameter) was set at 64 (default value), while

the number of generator filters in the last convolutional layer (ngf parameter) set at 128 (default value

is 64). This allows the generator to capture more detail and generate more convincing images. A batch

size of 1 was maintained for higher stability and context preservation when only one image-mask pair

is used for mapping learning at a time.

To compare the benefits of using classic data augmentations for the training dataset versus

using GAN-generated data, the DeepLabv3 semantic segmentation model was also trained with basic

augmentations performed on the training dataset. In the case of training a semantic segmentation

model with RS images of PV installations, it is crucial to ensure that the performed augmentations

are not too drastic and produce realistic data. For example, because of the nature of how solar panels

are usually installed and positioned, drastic image perspective alterations may result in unrealistic

data and influence the model training process negatively. The regular data augmentations performed

were random horizontal flip with 50% chance of it being applied, random rotation of 5 degrees,

random perspective change with 0.05 distortion scale and 50% chance of it being applied, and random

application of Gaussian blur (5x5 kernel size and standard deviation of 0.1 min and 2.0 max) with

50% change of it being applied. The Gaussian blur application is intended to simulate the fogging of a

satellite lens.

The RS images are also normalized to mean (0.485, 0.456, 0.406) and standard deviation (0.229,

0.224, 0.225), based on ImageNet common values. However, in the image-mask pairs, only the image

is normalized, as the segmentation mask does not require it. Furthermore, Gaussian blur is applied

only to the RS image and not its mask, to avoid artifacts. Other augmentations, such as horizontal flip,

rotation, and perspective change are applied both to the image and its mask, and the usage of manual

seed ensures that although the augmentations are chosen at random, they are applied identically.

The experiments with the DeepLabV3 semantic segmentation model were performed in six ways,

and they are as follows:

• Training the model without performing basic data augmentations
• Training the model with performed basic data augmentations
• Training the model with additional 25% GAN generated training data and without performing

basic data augmentations
• Training the model with additional 25% GAN generated training data and with performed basic

data augmentations
• Training the model with the additional optimal amount of GAN-generated training data (60% in

this case) and without performing basic data augmentations
• Training the model with the additional optimal amount of GAN-generated training data (60% in

this case) and with performed basic data augmentations

It is important to note that for the third and fourth scenarios, 25% of the remote sensing imagery

generated using the generative adversarial network is used as a proof-of-concept that the trained

semantic segmentation model benefits from additional synthetic remote sensing image-mask pairs. In

contrast, the fifth and sixth experiment variants display further improved performance of the semantic

segmentation model trained with an optimal amount of GAN-generated data.

For each experiment, the model is trained in four scenarios. In the first scenario, the model is

simply trained from scratch without pre-trained weights. This serves as a baseline for comparison

with other scenarios, as well as shows how a model trained from the ground up for the specific dataset

performs in comparison to fine-tuned models and the ones that utilize transfer learning. In the second

scenario, transfer learning is applied. The model is trained using weights that were trained on the

Common Objects in Context (COCO) subset using 20 categories in the Pascal VOC dataset, such as
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bicycle, aeroplane, bottle, dining table, and more. While solar panels are not one of these 20 categories,

the learned general features like shapes and edges are still beneficial, providing a good foundation for

quicker convergence and better generalization to new data. The third scenario involves fine-tuning the

model from the second scenario by freezing all layers except the final one. This way only the weights of

the last layer are updated, and the other layers are frozen, better adapting it for the task of solar panel

installation semantic segmentation in remote sensing images. At the same time, features learned by the

earlier layers are retained as they are frozen. Using previously learned knowledge, this approach can

be beneficial in reducing overfitting and training times. In the fourth scenario, the model from the third

scenario is fine-tuned by unfreezing all layers and training the entire network. This is done to build

upon the previous scenario, allowing the entire model to be fine-tuned more extensively for the best

performance. The approach of incrementally fine-tuning the model that utilized transfer learning is a

way to develop the deep learning model for the specific task of solar panel semantic segmentation and

make it even more adapted to this task. The result is a total of 24 experiments. When experiments are

performed with additional remote sensing images generated using the pix2pix generative adversarial

network, the additional samples are only used for the training dataset, while the validation and testing

data sets are kept intact. This is done to keep the validation and testing subsets consistent across all

experiments and for more objective evaluations. Furthermore, the validation and testing data consists

of real-life data that is of high quality, and the synthetic remote sensing images, although realistic to a

degree, are less suitable for testing and validating the model.

3. Results

The experiments were performed in a Google Colab environment, and the model training

was done on an NVIDIA A100 GPU. To balance computational efficiency and time resources, 640

image-mask pairs were randomly selected from the data set for each GSD (total of 2560 pairs), and an

80/10/10 split was used for training, validation, and testing data. The result is 512 image-mask pairs

of each GSD used for training, 64 image-mask pairs for validation of the model, and 64 image-mask

pairs for the testing of the model (a total of 2048, 256, and 256 pairs respectively). Because there are

two datasets of 0.1m/pixel GSD, 256 image-mask pairs are used from each to make up a total of 512

image-mask samples for the 0.1m GSD training dataset, 32 pairs from each for validation, and 32

pairs from each for testing. To ensure reproducibility and consistent sampling across runs, as well

as consistent shuffling and randomizing when running the code multiple times, the random seed is

set to 35 and applied to PyTorch, random, and NumPy modules. Where needed, GAN-generated

image-mask pairs were appended to the training data set. For the data loaders, a size batch of 48

was used and 12 workers. During data loader creation, the image-mask pairs were resampled to a

target GSD and target image resolution of 0.1m/pixel and 512x512 respectively, attempting to retain

as much information and image quality as possible, and ensuring scale and "centimeter per pixel"

ratio consistency.

3.1. Pix2pix GAN Training

Before performing the main experiments and training the semantic segmentation model variants,

the pix2pix GAN was trained for remote sensing data augmentation. To best fit the task of

generating new remote sensing images from binary semantic segmentation masks, different parameter

combinations were tested, such as the generator and discriminator parameters for balance (so that the

discriminator does not overpower the generator, and vice versa), number of epochs for training, etc.

For training, 512 image-mask pairs of each GSD were used, and four separate pix2pix GAN models

were trained (one for each GSD), to generate remote sensing images of different GSDs and different

solar panel scales. Most importantly, the image-mask pairs are the same ones that are used in the

original dataset for DeepLabV3 semantic segmentation model training, so that new data from already

existing image-mask pairs is generated.
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The training progress was closely examined and visualized in graphs using the Weights &

Biases API, detailing the changes in generator (G_GAN and G_L1) and discriminator (D_real and

D_fake) losses, which are displayed in Figure 2. The desired outcome is for G_L1 loss to be as low as

possible, indicating the generated image’s closer resemblance to the original data, and G_GAN loss to

decrease over time, indicating the generator’s ability to learn the mappings between domains A and B

more effectively and generate more convincing images that are challenging for the discriminator to

evaluate. Looking at the graphs, observations can be made that training with remote sensing images

of 0.8m/pixel and 0.3m/pixel GSDs display lower G_L1 loss, signaling the generated image’s close

resemblance to the source material, however, still creating new and convincing results. Furthermore,

the discriminator losses reach values closer to 0.5, indicating a fair challenge for the discriminator. This

is also visible when inspecting the generated images from masks that originally belonged to remote

sensing images of 0.8m/pixel and 0.3m/pixel GSDs. These images also originally contain fewer details

when compared to images of higher GSDs, and this may be an explanation of why the generative

adversarial network performed better with these images, i.e. the lower difficulty of recreation and

reconstruction. The training process visualization with images of 0.2m/pixel and 0.1m/pixel GSD

shows that in the case of training with 0.2m GSD images, the G_GAN loss increased over time, and

the G_L1 final loss was the highest among all four. This may be due to the nature of these images, i.e.

them having more fine details that the generator had difficulty recreating, consequently not fooling

the discriminator. There are fluctuations in discriminator losses, particularly in the 0.2m/pixel GSD

dataset which lowers to values less than 0.2. As established, this is likely due to the nature of these

images, i.e. having more details such as roads, buildings, vehicles, etc. that are harder to replicate

convincingly. The final result confirms this, with the newly generated images appearing less realistic

on closer inspection, but fairly convincing when looked at from afar. Nevertheless, when compared to

images generated from 0.8m and 0.3m GSD segmentation mask data, they can be considered lower

quality, in some cases featuring unrealistic road formations or building shapes, although retaining

mostly correct solar panel installation generating. In worst cases, the solar panel installations are not

generated convincingly as well, resulting in inferior quality samples. Examples are noisy formations,

distorted shapes, and inconsistent colors.

After the pix2pix GAN training is complete, the same semantic segmentation masks that were

used for GAN training are used for model testing, i.e., generating new image-mask pairs. For each

GSD, 512 binary semantic segmentation masks are used to generate respective remote-sensing images,

resulting in new synthetic data. The final output quality varies based on the binary segmentation mask

and the GSD of images used originally for testing. Upon visual inspection, it can be determined that

the synthetic remote sensing images closely resemble the original data, however with subtleties that

can differentiate them. As illustrated in Figure 3, the generated images feature realistic solar panel

installations and sufficiently believable environments around them. Upon closer inspection, details

such as roads leading to nowhere or inconsistent building layout can be observed, however, the most

important aspect, i.e. the solar panels are generated in satisfactory quality. There are some samples,

however, that are of worse quality, particularly when the original semantic segmentation masks feature

small objects. In this case, the solar panels are generated with artifacts such as noise and different

colors. Nevertheless, the number of inferior-quality samples compared to satisfactory-quality samples

is insignificant. In total, 2048 new remote sensing images were generated, i.e. 512 images for each GSD.
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Figure 2. Line graphs displaying changes in pix2pix losses during training with data sets of various

spatial resolutions. The highest GSD images (0.1m/pixel) have the most detail, and the lowest GSD

images (0.8m/pixel) have the least detail.

Figure 3. An example of binary semantic segmentation mask (top row), original remote sensing image

(middle row), and GAN-generated image (bottom row) using pix2pix trained model for each GSD

respectively, from left to right: 0.8m, 0.3m, 0.2m, 0.1m.
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3.2. Sensitivity Analysis

To find the optimal amount of GAN-generated data for usage as additional training data,

sensitivity analysis was performed. This was done to examine how much additional data is needed to

get the best results before the model stops benefiting from extra samples, and in the worst case, starts

to overfit. To determine the best threshold of GAN data usage, the DeepLabV3 semantic segmentation

model was trained 10 times using transfer learning and with an additional 10% of generated remote

sensing images incrementally added to the training data set (10% added, 20% added, and so on). This

was compared with the baseline of 0% additional data (the results of when the model was trained

with transfer learning, and with original data without basic augmentations). For sensitivity analysis,

validation, and testing subset IoU and loss metrics were compared, and the changes with additional

GAN data usage are detailed in Figure 4.

Figure 4. Sensitivity analysis of DeepLabV3 model training using transfer learning and various

percentages of additional GAN generated training data, comparing validation and testing IoU (left)

and loss (right) metrics.

Observing the data in the figure reveals that the best validation and testing IoU values are when

60% and 90% additional GAN data is used respectively. Furthermore, the lowest loss values of

validation and testing subsets are in the 80%-90% range. This indicates that when the percentage of

additional images generated by the GAN is between 60% and 90%, the best results are achieved. In this

case, because the desired outcome is the best model semantic segmentation accuracy, the IoU values

are more relevant in the sensitivity analysis. Upon visual inspection, it can be observed that the peak

of validation IoU is at 60%, while the peak of testing IoU is at 90% (IoU being 83.38%), although it is

barely higher than it was at 60% (IoU being 83.10%). After the 60% threshold, the IoU values generally

start to decrease (except the peak testing IoU at 90%), indicating potential overfitting as the model

starts losing the ability to generalize to new data.

Based on the findings of sensitivity analysis, it was decided that 60% of additional GAN-generated

remote sensing images for the training dataset is the optimal amount for more beneficial model training.

This means that an additional 307 remote sensing images and their respective masks will be used for

each GSD, a total being 1228 additional image-mask pairs added to the original training data set of

2048 image-mask pairs.

3.3. Solar Panel Semantic Segmentation Results

To compare the final results of all six scenarios, the fourth iteration of the trained models (using

transfer learning and fine-tuned remaining layers after previously fine-tuning only the final one)

are evaluated, as they are arguably the most optimized for the solar panel installation semantic
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segmentation task. The training and testing results of models are inspected in all six scenarios, i.e.

training without augmentations (abbr. no_aug), training with basic augmentations (abbr. basic_aug),

training with additional 25% of GAN generated remote sensing images (abbr. gan25), training with

additional 25% of GAN generated remote sensing images plus basic data augmentations for training

data set (abbr. gan25_aug), training with optimal amount (60%) of GAN generated remote sensing

images (abbr. gan60), and training with optimal amount (60%) of GAN generated remote sensing

images plus using basic data augmentations (abbr. gan60_aug).

Looking at the testing results across all six scenarios displayed in Table 4, the gan60 scenario

(training the model with 60% additional GAN remote sensing image data) shows the best metrics.

When comparing with results of training without any augmentations, the benefits of using the

generative adversarial network for additional training data synthesis is evident, especially when

comparing the improvements of metrics such as average precision, average recall, average F1 score,

average IoU, and average loss. Furthermore, more images are successfully segmented. Compared with

the scenario basic_aug, which features only the usage of basic data augmentations, the improvements,

and benefits are still visible, especially in better IoU and loss metrics.

Table 4. Comparison of testing results for all six scenarios, with transfer learning and fine-tuning

applied. The best values are written in bold.

Experiment Avg Avg Avg Avg Avg Avg Segmented Panels (IoU)

Acc Prec Rec F1 IoU Loss Correct Poor None
(%) (%) (%) (%) (%) ≥ 0.5 < 0.5 = 0

no_aug 97.89 86.72 85.62 85.25 80.13 0.0650 229 12 15
basic_aug 97.88 89.63 86.51 86.50 81.32 0.0547 235 13 8
gan25 98.09 89.11 85.94 85.71 80.42 0.0586 229 16 11
gan25_aug 97.91 88.84 87.25 87.08 81.41 0.0550 238 8 10
gan60 98.67 90.13 88.11 87.96 83.32 0.0368 237 11 8
gan60_aug 98.04 89.82 87.69 87.77 82.90 0.0611 238 9 9

Based on the model testing results, it can be determined that by training the semantic segmentation

model while increasing the original training data set by 60% using synthetic remote sensing images

generated by the generative adversarial network pix2pix, the best result is achieved. Applying

additional basic image augmentations did not provide benefits based on the testing results, and in

fact, displayed slightly worse results. This is likely due to the already challenging nature of generated

synthetic remote sensing images, which although look realistic and believable, still contain some noise

and artifacts in some of the samples.

The final trained semantic segmentation model is capable of segmenting solar panel installations

at different scales, shapes, and shades. The model was tested with RGB images taken from Google

Maps. The images consist of random locations throughout Lithuania, containing small solar panel

installations, as well as solar power stations. The original images and their segmentation masks are

displayed in Figure 5. Monocrystalline and polycrystalline solar panel installations are generally well

detected, as they are also distinct at various scales due to their grid lines and rectangular shape. When

tested with images of solar power stations, the model either predicted the array of solar panels as a

single object or the entire semantic segmentation mask was white, depending on the scale.
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Figure 5. An example of several RS images of locations throughout Lithuania (row 1), and solar panel

segmentation masks, respectively using a model trained without augmentations (row 2), with basic

augmentations (row 3), using 25% of additional GAN training data (row 4), using 25% GAN data +

basic augmentations (row 5), using 60% of additional GAN training data (row 6), and using 25% of

additional GAN training data + basic augmentations (row 7).

4. Discussion

Using the pix2pix generative adversarial network for data augmentation, not only the accuracy of

the semantic segmentation model is improved, but also the issue of data labeling is addressed. Because

new images are generated from already existing data, this can be an alternative to manual annotation,

a time-consuming and labor-intensive process when more diverse data is needed. For instance, data

sets such as thermal images and their respective segmentation masks could be expanded with new

synthetic data, especially when expertise in the field of photovoltaic farm fault detection is needed [26].

Furthermore, this can also be applied to the improvement of solar farm capacity estimation, either

as an alternative or an additional solution to exploring other data sources [27]. Although classic

data augmentations such as contrast adjustments, random rotations, and flips are utilized, brand-new

remote sensing images may benefit the process of solar farm detection and energy generation capacities

with even more potential in terms of accuracy.
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Because the focus of this work is the improvement of solar panel segmentation from RS imagery

using GAN-based data augmentations instead of segmentation model architecture optimizations and

improvements, this method may be potentially combined with other segmentation solutions, designed

specifically for PV installation detection. Other works propose new models as improvements in solar

panel segmentation, such as better detection of small-scale installations in the form of a size-aware

network [28], and note the potential of even better applications with broader data sources. However,

the performance of various semantic segmentation models may also depend on the nature of the

training data, demonstrated by the comparison of U-Net, DeepLabv3+, PSPNet, and FPN architectures

and the fact that U-Net outperformed the newer DeepLabv3+ architecture [29]. Likewise, the problem

of the limited amount of samples is also mentioned, although mitigated to an extent with two classic

augmentations, i.e. random horizontal and vertical flips with 50% probability. Nevertheless, although

these augmentations introduce variety to the data set, the study would likely benefit from an even

more diverse training data set, featuring newly generated images using the generative adversarial

network. This would, however, depend on the nature of the original data set, and potential points of

caution such as data quality and class imbalances.

Although the result of this work is the successful improvement of the semantic segmentation

model using additional data generated using the GAN, it has the potential to be improved even further

with additional computational and time resources. For future work, if the issue of resource limitations

was absent, a more detailed sensitivity analysis could be performed. With more time and computational

resources, a more thorough sensitivity analysis with stochastic simulations and application of the

Central Limit Theorem can be performed for more valid and consistent results. Running the sensitivity

analysis experiments multiple times (e.g. 30 runs) would be beneficial for determining an even more

accurate optimal amount of generated synthetic remote sensing image to use for model training more

accurately. Furthermore, the issue of generated synthetic remote sensing images’ inferior quality

when the input semantic segmentation masks have class imbalances (a lot of black background and

small white objects) can potentially be addressed with pix2pix optimizations for this specific task. The

optimizations would include the learning rate and training epoch amount adjustments, tuning the

generator, and discriminator parameters such as the number of filters. Although this would likely

result in even longer and more computationally intensive training sessions, the result would more than

likely allow for generating even more realistic remote sensing images from existing limited data sets.

The issue of class imbalance is relevant when training not only the GAN for data augmentations,

but also the solar panel semantic segmentation model, and is mentioned in several works. The pixel

accuracy metric may be unreliable when the class imbalance issue is present, due to the dominant

background pixels being correctly evaluated. Therefore, the IoU metric should be examined more

closely in contrast to pixel accuracy. This is relevant not only when segmenting the solar panels

themselves, but also when performing other critical analysis such as fault detections [30]. Also, due

to the nature of resampling data sets to a common spatial resolution and resizing the images to a

target image resolution (either by cropping or padding), some remote sensing images may appear

annotated in a simplified manner, e.g. a zoomed-in array of several solar panel installations may

appear annotated as a single large segmentation object. In that case, when training the model, it would

be recommended to pay more attention to the validation loss metric in addition to the validation IoU

metric. The reason for that is that the latter may be misleading when evaluating the model on the

testing dataset due to correct segmentation falsely being marked as poor segmentation. This may

cause problems during model training, validation, and testing, when the model segments the objects

more accurately than they are labeled in the original data, resulting in a falsely lower IoU metric. To

combat this issue, higher-quality data sets are required, along with more careful labeling.

5. Conclusions

To sum up, the usage of the generative adversarial network is beneficial for training dataset

augmentation with brand new remote sensing images from already existing data. Expanding a limited
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data set with newly generated images proved to be beneficial for the training of solar panel installation

semantic segmentation model in terms of accuracy and segmentation quality. Conducted experiments

and tests display the benefits of using artificial data over performing basic data augmentations

and the potential of improving the model for more accurate solar panel detection. With even more

improvements to not only the segmentation model hyperparameters but also the generative adversarial

network parameters, the fine-tuned semantic segmentation model may be used for even more precise

solar panel detection in RS images and potentially the development of a comprehensive solar panel

map, allowing for easier solar panel market and usage analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network

FCN Fully Convolutional Network

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GSD Ground Sampling Distance

IoU Intersection Over Union

PV Photovoltaic

RS Remote Sensing

SRCNN Super-Resolution Convolutional Neural Network

SRGAN Super-Resolution Generative Adversarial Network

ViT Vision Transformer
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