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Abstract: Robotic odor source localization (OSL) is a technology that enables mobile robots or
autonomous vehicles to find an odor source in unknown environments. An effective navigation
algorithm that guides the robot to approach the odor source is the key to successfully locating the odor
source. While traditional OSL approaches primarily utilize an Olfaction-only strategy, guiding robots
to find the odor source by tracing emitted odor plumes, our work introduces a fusion navigation
algorithm that combines both vision and olfaction-based techniques. This hybrid approach addresses
challenges such as turbulent airflow, which disrupts olfaction sensing, and physical obstacles inside
the search area, which may impede vision detection. In this work, we propose a hierarchical control
mechanism that dynamically shifts the robot’s search behavior among four strategies: crosswind
maneuver, Obstacle-avoid Navigation, Vision-based Navigation, and Olfaction-based Navigation.
Our methodology includes a custom-trained deep-learning model for visual target detection and a
moth-inspired algorithm for Olfaction-based navigation. To assess the effectiveness of our approach,
we implemented the proposed algorithm on a mobile robot in a search environment with obstacles.
Experimental results demonstrate that our Vision and Olfaction Fusion algorithm significantly
outperforms Vision-only and Olfaction-only methods, reducing average search time by 54% and 30%,
respectively.

Keywords: odor source localization; moth-inspired algorithm; computer Vision-based Navigation;
robot operating system; multi-modal robotics.

1. Introduction

Sensory systems like olfaction, vision, audition, etc., allow animals to interact with the external
environment. Among these, olfaction is the oldest sensory system to evolve in organisms [1]. Olfaction
allows organisms with receptors for the odorant to identify food, potential mating partners, dangers,
and enemies [2]. In some nocturnal mammals like mice, as much as five percent of the genome is
devoted to olfaction [3]. Similar to animals, a mobile robot integrated with a chemical sensor can
detect odors in the external environment. Robotic Odor source localization (OSL) is the technology that
allows robots to utilize olfaction sensory inputs to navigate toward an unknown target odor source in
the given environment [4]. It has important applications including monitoring wildfires [5], locating
air pollution [6], locating chemical gas leaks [7], locating unexploded mines and bombs [8], locating
underground gas leaks [9], and marine surveys such as finding hydrothermal vents [10], etc.

Locating an unknown odor source requires an effective OSL algorithm guiding the robot based
on sensor observations. Current OSL algorithms include bio-inspired methods that imitate animal
olfactory behaviors, engineering-based methods that rely on mathematical models to estimate potential
odor source locations and machine learning-based methods that use a trained model to guide the
robot toward the odor source. The typical bio-inspired method includes moth-inspired algorithm that
imitates male months mate-seeking behaviors [11], where a robotic agent will follow a ‘surge/casting’
model [12] to reach the odor source. Typical engineering-based methods includes the Particle Filter
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algorithm [13], where the robot will use historic olfaction reading to predict the odor source location.
Finally, typical machine learning-based OSL methods include deep supervised and reinforcement
learning-based methods.

All of these approaches rely on olfaction (e.g., chemical and airflow) sensing to detect and
navigate to the given odor source. However, approaches that rely solely on olfaction sensing struggle
in turbulent airflow environments. In contrast, animals that operate in complex airflow environments
often rely on multiple sensory systems like olfaction and vision for odor source localization. For
example, humans often recognize the presence of an odor source of interest with olfaction (e.g.,
smelling a barbecue), and locate and navigate to the odor source using vision (e.g., locating the
barbecue shop with vision). If there is no valid vision of the odor source, we may search for the source
using olfaction sensing (e.g., moving towards the direction of greater odor concentration or against
the direction of wind flow). Similarly, a robot with both olfaction and vision sensing capabilities (e.g.,
with a camera and chemical sensor) can find an unknown odor source more efficiently, compared to
olfaction-only OSL navigation methods. Thus, this project departs from the existing OSL navigation
methods in utilizing both robotic vision and olfaction for searching the odor source location. The
core of this project involves designing an algorithm that utilizes both vision and olfaction sensing for
locating an unknown odor source location.

The project proposes an effective sensor fusion approach that utilizes a vision method and
bio-mimicking olfaction method to guide the robot toward an unknown odor source in a real-world
obstacle-ridden search area with both laminar and turbulent airflow setups. Figure 1 shows the
proposed method, where we show the developed robot platform equipped with vision and olfaction
sensors. The vision sensors include a camera, and the olfaction sensors include a chemical detector
and anemometer. It also includes a Laser Distance Sensor (LDS) for obstacle detection. The sensor
observations are transmitted to a decision-making model, which is implemented in a remote computer.
The model selects Obstacle-avoid Navigation, Vision-based Navigation, or Olfaction-based Navigation
behavior based on the sensor readings. In the proposed decision-making model, the robotic vision is
achieved by a deep-learning vision model, and the robotic olfaction model is based on a bio-mimicking
moth-inspired algorithm. Based on the current sensor reading, the active search behavior will calculate
the robot heading commands, guiding the robot to approach the odor source location. Finally, the
robot executes the heading command, collects new sensor readings at the new location, and repeats
the loop until the odor source is detected.

Figure 1. Flow diagram of the proposed method for OSL experiment. We utilized the Turtlebot3 robot
platform. We equipped it with a camera, Laser Distance Sensor, Airflow sensor, Chemical sensor, etc.
The robot utilizes 3 navigation behaviors - Obstacle-avoid Navigation, Vision-based Navigation, and
Olfaction-based Navigation to output robot heading and linear velocity.

In order to test the performance of our proposed Vision and Olfaction Fusion Navigation
algorithm, we conducted 30 real-world OSL experiments using Olfaction-only Navigation algorithm,
Vision-only Navigation Algorithm, and the proposed Vision and Olfaction Fusion Navigation
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algorithms in both laminar and turbulent airflow environments. Contributions of this work can
be summarized as:

1. Introduce vision as an additional sensing modality for odor source localization. For vision sensing,
We trained a deep-learning-based computer vision model to detect odor sources from emitted
visible plumes.

2. Develop a multimodal Vision and Olfaction Fusion Navigation algorithm with Obstacle-avoid
Navigation capabilities for OSL tasks.

3. Compare the search performance of Olfaction-only and Vision-only navigation algorithms with the
proposed Vision and Olfaction Fusion Navigation algorithm in a real-world search environment
with obstacles and turbulent airflow setups.

In the remaining of this paper, Section 2 reviews the recent progress of olfactory-based navigation
algorithms; Section 3 reviews technical details of the proposed OSL algorithm; Section 4 presents
details of performing the real-world experiments; Section 5 includes a discussion on the future research
direction based on this work; and finally, Section 6 includes overall conclusion of the work.

2. Related Works

Research on Robotic Odor Source Localization (OSL) has gained significant attention in recent
decades [14]. Technological advancements in robotics and autonomous systems have made it possible
to deploy mobile robots for locating odor or chemical sources. Designing algorithms that mimic the
navigation method of biological organisms is a typical approach in robotic odor source localization
research. Organisms across various sizes rely on scent for locating objects. Whether it’s a bacterium
navigating an amino acid gradient or a wolf tracking down prey, the ability to follow odors can be
crucial for survival.

Chemotaxis is the simplest odor source localization approach in biological organisms, where
they rely only on olfaction for navigation. For example, bacteria exhibit chemotaxis by adjusting
their movement in response to changes in chemical concentration. When they encounter higher
levels of an appealing chemical, their likelihood of making temporary turns decreases, promoting
straighter movement. Conversely, in the absence of a gradient or when moving away from higher
concentrations, the default turning probability is maintained [15]. This simple algorithm enables
single-celled organisms to navigate along a gradient of attractive chemicals through a guided random
walk. Nematodes [16] and crustaceans [17] also, follow Chemotaxis-based odor source localization.
Early attempts at robotic OSL focused on employing such simple gradient following chemotaxis
algorithms. These methods utilized a pair of chemical sensors on plume-tracing robots, directing them
to steer towards higher concentration measurements [18]. Several early studies [19–22] validated the
effectiveness of chemotaxis in laminar flow environments, characterized by low Reynolds numbers.
However, in turbulent flow environments with high Reynolds numbers, alternative methods were
proposed, drawing inspiration from both complex biological and engineering principles.

Odor-gated anemotaxis navigation is a more complex odor source localization method that
utilizes senses of both odor and airflow for navigation. Moths [23–25], birds [26,27], etc. organisms
follow this type of navigation. In particular, mimicking the mate-seeking behavior of male moths led
to the development of the moth-inspired method in robotic odor source localization. This method
was successfully applied in various robotic OSL scenarios [28] .Additionally, diverse bio-inspired
search strategies like zigzag, spiral, fuzzy-inference, and multi-phase exploratory approaches have
been introduced [29] in odor-gate anemotaxis-based solutions. Recent bio-inspired OSL navigation
methods also aimed to make the search environment more complicated. For instance, [30] proposed a
3-dimensional (3-D) moth-inspired OSL search strategy that utilized cross-wind Lévy Walk, spiraling
and upwind surge.

Engineering-based methods take a different approach than bio-mimicking algorithms, relying
on mathematical models for estimating odor source locations. These methods are often times known
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as Infotaxis [31]. These methods involve constructing source probability maps, dividing the search
area into regions, and assigning probabilities indicating the likelihood of containing the odor source.
Algorithms for constructing such maps include Bayesian inference, particle filters , stochastic mapping
[32], source term estimation [33], information-based search [34], partially observable Markov decision
processes [35], etc. Subsequently, robots are guided towards the estimated source via path planning
algorithms such as artificial potential fields, A-star [36,37]. These models also rely on olfaction sensing
for estimating the odor source.

Deep Learning (DL) based methods are increasingly utilized for OSL experiments. Recent
developments involve the use of Deep Neural Networks (DNNs) to predict gas leak locations from
stationary sensor networks or employing reinforcement learning for plume tracing strategies. For
instance, Kim et al. [38] trained an RNN to predict potential odor source locations using data from
stationary sensor networks obtained through simulation. Hu et al. [39] presented a plume tracing
algorithm based on model-free reinforcement learning, utilizing the deterministic policy gradient to
train an actor-critic network for Autonomous Underwater Vehicle (AUV) navigation. Wang et al. [40]
trained an adaptive neuro-fuzzy inference system (ANFIS) to solve the OSL problem in simulations,
yet real-world validations are necessary to confirm its efficacy. In summary, despite the promising
potential of DL technologies, their application in solving OSL problems is still in its early stages and
warrants further research. Most DL-based methods are validated in virtual environments through
simulated flow fields and plume distributions, necessitating real-world implementations to validate
their effectiveness.

Fusing vision with olfaction for odor source localization task is common in complex organisms like
mice [41,42]. Humans also use vision as a primary sensor for odor source navigation tasks. However,
very few works have utilized vision for OSL tasks. Recent advances in computer vision techniques
can allow robots to use vision as an important sensing capability for detecting visible odor sources
or plumes. The added advantage of vision is that it can allow robots to navigate to odor sources
without being affected by sparse odor plumes or turbulent airflow in the navigation path. The main
contribution of this paper is designing a dynamic Vision and Olfaction Fusion Navigation algorithm
for odor source localization in an obstacle-ridden turbulent airflow environment.

3. Materials and Methods

3.1. Overview of the Proposed OSL Algorithm

Figure 2 shows the flow diagram of the proposed navigation algorithm. In this work, the initial
robot search behavior is the ‘Crosswind maneuver’ behavior, where the robot moves cross-wind to
detect initial odor plumes. If the robot encounters obstacles in its surroundings, it switches to the
‘Obstacle-avoid Navigation’ behavior, where the robot will move around to avoid obstacles. During
the robot maneuver, the robot seeks valid visual and olfactory detection. If the robot obtains a valid
visual detection, it employs Vision-based Navigation to approach the odor source location. Similarly, if
the robot obtains sufficient olfactory detection, it employs Olfaction-based Navigation algorithm. If
the robot is in the vicinity of the odor source, it is considered as the source declaration, i.e., the end of
the search. Otherwise, the robot returns to the default ‘Crosswind maneuver’ behavior and repeats the
above process.

In the following section, we present the design of the aforementioned search behaviors, including
Crosswind maneuver (Subsection 3.2), Obstacle-avoid Navigation (Subsection 3.3), Vision-based
Navigation (Subsection 3.4), and Olfactory-based Navigation (Subsection 3.5).
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Figure 2. The flow diagram of the proposed OSL algorithm. There are four navigation behaviors,
including ‘Crosswind maneuver’, ‘Obstacle-avoid Navigation’, ‘Vision-based Navigation’, and
‘Olfaction-based Navigation’.

3.2. Crosswind maneuver Behavior

In an OSL task, the robot does not have any prior information on the odor source location. Thus,
we define a ‘Crosswind maneuver’ behavior, as the default behavior, directing the robot to find initial
odor plume detection or re-detect odor plumes when valid vision and olfaction observations are absent.
Crosswind movement, where the robot heading is perpendicular to the wind direction, increases the
chance of the robot detecting odor plumes [43]. Denote that the wind direction in the inertial frame is
ϕ, thus, the robot heading command in the ‘Crosswind maneuver’ behavior can be defined as:

ψc = ϕInertial + 90. (1)

Besides, it is worth mentioning that we set the robot’s linear speed as a constant and only changed the
heading commands in the ‘Crosswind maneuver’ behavior to simplify the robot control problem and
save search time.

3.3. Obstacle-avoid Navigation Behavior

The ‘Obstacle-avoid Navigation’ behavior is activated when the robot moves close to an obstacle
object within the search environment, which directs the robot to move around and avoid the obstacles.
In this work, the robot employs a Laser Distance Sensor (LDS) to measure the distances from the robot
to any obstacles in five surrounding angles as presented in Figure 3. Specifically, we denote laser[x]
as the measured distance at angle x, including Front (laser[0]), Slightly Left, (laser[45]), Slightly Right
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(laser[315]), Left (laser[90]), and Right (laser[270]). If the obstacle distance in any of the five angles is
less than the threshold, the proposed ‘Obstacle-avoid Navigation’ behavior is activated.

Algorithm 1 shows the pseudo-code for the ’Obstacle-avoid Navigation’ behavior. The main idea
is to identify the relative location of obstacles to the robot and command the robot to move around to
avoid obstacles. Specifically, the robot initially set the linear velocity and angular velocity as vc and
ωc, respectively. Positive values in vc and ωc represent forward and left rotation, respectively, and
negative values represent backward and right rotation, respectively. Initial values of vc and ωc are set
as 0.6 m/s and 0 rad/s in this work.

Figure 3. Five directions in the robot’s laser distance sensing, including Left, Slightly Left, Front,
Slightly Right, and Right. laser[x] denotes the distance between the robot and the object at the angle x,
which is measured from the onboard laser distance sensor.

Algorithm 1 ’Obstacle-avoid Navigation’ Behavior

1: Set robot linear velocity as vc = 0.6 m/s
2: Set robot angular velocity as ωc = 0 rad/s
3: if laser[0] > thr then
4: ωc = 0 rad/s
5: else
6: vc = 0 m/s and ωc = 0 rad/s
7: if (laser[45] > thr) ∨ (laser[315] > thr) then
8: if laser[45] > laser[315] then
9: ωc = 0.5 rad/s

10: else
11: ωc = −0.5 rad/s
12: end if
13: else if (laser[90] > thr) ∨ (laser[270] > thr) then
14: if laser[90] > laser[270] then
15: ωc = 0.5 rad/s
16: else
17: ωc = −0.5 rad/s
18: end if
19: else
20: vc = −0.5 m/s
21: end if
22: end if

In the ‘Obstacle-avoid Navigation’ behavior, the robot will always check if there is a clear path in
the Front direction, i.e., laser[0] > thr (thr is the threshold for obstacle detection, 0.75 m in this work),
and if it is true, the robot will move forward with ωc = 0 rad/s. If the Front is blocked, the robot will
stop and check Slightly Left or Slightly Right for a clear path ((laser[45] > thr) ∨ (laser[315] > thr)).
If there is a clear path in either of these two directions, the robot will compare clearance in Slightly
Left and Slightly Right and rotate left (i.e., ωc = 0.5 rad/s) or right (i.e., ωc = −0.5 rad/s) to face
the greater clearance. If there is no clearance in Slight Left or Slight Right, the robot will check Left
and Right for a clear path ((laser[90] > thr) ∨ (laser[270] > thr)). If there is a clear path, the robot
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will compare Left and Right clearance (laser[90] > laser[270]) and rotate left (ωc = 0.5 rad/s) or right
(ωc = −0.5 rad/s) to face the greater clearance. If there is no clear path in all five directions, the robot
will move back (vc = −0.5 m/s) to escape the dead end.

3.4. Vision-based Navigation

In this work, we employ vision as the main approach to detect odor sources within the search
environment. Vision sensing allows the robot to detect the plume source location in its visual field and
approach it directly. Olfaction-only navigation methods often rely on airflow direction for navigating
to the odor source. This can lead to failure in turbulent airflow environments. Given visual sensing is
not guided by airflow direction, combining it with Olfaction-based Navigation can allow the robot to
find the odor source in turbulent airflow environments.

The proposed Vision-based Navigation relies on computer vision techniques. Specifically, we train
a deep learning-based object detection model, i.e., YOLOv7, to detect vapors emitted from the odor
source. Vapors can be considered as a common and distinct feature for the odor source object, such as
smoke for fire sources, chemical plumes for chemical leaks or hydrothermal vents, etc. It should be
mentioned that if the odor source does not have a distinct plume feature (i.e., transparent vapors), the
robot can still find the odor source using the proposed Olfaction-based Navigation algorithm. We also
provided real-world performance comparison between the Olfaction-based Navigation and the Vision
and Olfaction Fusion Navigation algorithms.

In the proposed vision sensing method, we trained a YOLOv7 model to detect odor plumes in the
continuously captured images. To generate training images, we extracted 243 observation frames with
a resolution of 640 × 480 while the turtlebot was approaching the odor plumes in a variety of angles
and lighting conditions. Figure 4 shows two sample frames used for training the vision model. This
data was split into training, validation, and testing datasets for training the model. Roboflow [44] was
utilized as the annotation tool for accurate bounding boxes and polygons delineation.

Figure 4. Two sample frames that include humidifier odor plumes in different lighting and spatial
conditions. The frames are sampled out of the total 243 frames used for training the vision model. All
of the frames were captured by the Turtlebot robot in the experiment area.

To assess YOLOv7 performance, diverse predefined augmentation techniques in Roboflow were
systematically applied to ‘Dataset-1’. These included rotation (-10° to +10°), shear (±15° horizontally
and vertically), hue adjustment (-25° to +25°), saturation adjustment (-25% to +25%), brightness
adjustment (-25% to +25%), exposure adjustment (-25% to +25%), blur (up to 2.5px), and noise (up to
1% of pixels). Post-augmentation, the resulting augmented dataset, labeled as ‘Dataset-3’, enriched
the training set for a comprehensive evaluation of YOLOv7’s robustness in detecting prescribed odor
plumes. We set the number of training epochs to 100, with a batch size of 16. The resulting training
accuracy was 98% and testing accuracy was 93%.

The implemented vision model returns a box bounding the plume in the image if it detects an
odor plume. The output of the model also includes the horizontal and vertical location of the plume
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bounding box. If the model returns a plume bounding box, the robot continues moving forward (i.e.,
vc = 0.5 m/s) and checks if the horizontal location of the bounding box is in the left or the right half
of the image. The model requires less than 1 second to generate output in our remote computer. The
robot sends 30 image frames per second, and the robot picks every 30th frame as the input to the vision
model.

Equation 2 calculates robot’s heading -

ωc =

1 0.5 m/s if c <
w
2

2 −0.5 m/s if c >
w
2

,
(2)

where c is the horizontal mid-point of the bounding box, and w is the horizontal resolution of the

captured image. If the bounding box is in the left half of the image (i.e., c <
w
2

), the robot rotates left
(i.e., ωc = 0.5 rad/s) to face the plume. Otherwise, it rotates right (ωc = −0.5 rad/s) to face the plume.

3.5. Olfaction-based Navigation

If there is no valid visual detection but the robot can sense above-threshold odor concentration,
Olfaction-based Navigation is employed to guide the robot to approach the odor source location.

Specifically, the proposed Olfaction-based Navigation algorithm commands the robot to move
upwind to approach the odor source location. This behavior is analogous to the ’Surge’ behavior of
the bio-mimicking moth-inspired navigation OSL algorithm [45]. In this behavior, the robot’s linear
velocity is fixed at vc = 0.6 m/s and the heading command, i.e., ψc, is calculated as:

ψc = ϕInertial + 180. (3)

The robot will switch back to Vision-based Navigation once there is a valid vision detection.

3.6. Source Declaration

The robot is considered as successful if the robot position is within 0.9 m of the odor source
location. But if the robot fails to reach the odor source within 200 seconds, the trial run is considered as
a failure.

4. Experiment Results

4.1. Search Area

Figure 5 shows the 2-dimensional 8.2m × 3.3m search area. Two obstacles were placed in the
search area to simulate a complex real-world search environment. Ethanol vapor was used as the odor
source as it is not toxic. Ethanol is also commonly implemented in OSL research [46]. A humidifier
disperses ethanol vapor constantly as odor plume. To increase odor propagation in the search area, an
electric fan was placed behind the humidifier. An additional fan was placed perpendicularly to the first
fan to create a turbulent airflow environment. Using just Fan 1 creates a laminar airflow environment,
and using both fans creates a turbulent airflow environment in the search area.
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Figure 5. The experiment setup. The Turtlebot3 waffle pi mobile robot is used in this work. In
addition to the camera and Laser Distance sensor, the robot is equipped with a chemical sensor and an
anemometer for measuring chemical concentration, wind speeds, and directions. The robot is initially
placed in a downwind area with the object of finding the odor source. A humidifier loaded with ethanol
is employed to generate odor plumes. Two electric fans are placed perpendicularly to create artificial
wind fields. Two obstacles are placed in the search area.

4.2. Mobile Robot Configuration

Turtlebot3 mobile robot platform was used in this work. Its built-in sensors include Raspberry
Pi Camera, a 360-degree LiDAR sensor for sensing and a DYNAMIXEL diver for navigation. The
onboard OpenCR controller allows the Turtlebot3 to be paired with additional sensors for increasing
its functionalities.

Table 1 shows the built-in and added sensors for OSL experiments. Raspberry Pi Camera V2 was
used for image capture, LDS-02 Laser Distance Sensor was used for obstacle detection, WindSonic
Anemometer was used for wind speed and wind direction measurements in the body frame, and MQ3
alcohol detector was used for detecting chemical plume concentration.

Table 1. Type, name, and specification of the built-in camera, laser distance sensor, and added
anemometer, chemical sensor.

Source Sensor Type Module Name Specification

Built-in

Camera
Raspberry pi

camera v2

Video Capture:
1080p30, 720p60

and VGA90.

Laser Distance
Sensor LDS-02

Detection Range:
360-degree.

Distance Range:
160 ∼8,000 mm.

Added

Anemometer
WindSonic,

Gill Inc.

Speed: 0-75m/s.
Wind direction:
0-360 degrees.

Chemical
Sensor

MQ3 alcohol
detector

Concentration:
25 – 500 ppm.

Turtlebot3 has Raspberry Pi 4 as the CPU which has limited computing power. It utilizes Ubuntu
and Robot Operating System (ROS). Ubuntu allows connection capabilities with a remote computer.
ROS allows custom programs in the remote computer to subscribe to specific sensor readings from the
robot and publish heading commands back to the robot in real-time. ROS supports both Python and
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C++ programming languages. Figure 6 presents the proposed system configuration for the robotic
system, which includes a robotic agent, i.e., Turtlebot3, onboard controller, and a ground station, i.e., a
remote Personal Computer (PC). For this study, Ubuntu 20.04 and ROS Noetic were installed in both
the robot and the paired remote computer for controlling the robot. A local area network was used to
connect the robot to the remote PC.

Figure 6. System configuration. This system contains two main components, including the Turtlebot3
and the remote PC. The solid connection line represents physical connection, and the dotted connection
line represents wireless link.

4.3. Experiment Design

To determine the effectiveness of the proposed Vision and Olfaction Fusion Navigation algorithm,
we tested the performance of Olfaction-only navigation and Vision-only navigation algorithms. Figure
7 shows the flow diagram of the two navigation algorithms. In the Olfaction-only navigation algorithm,
the robot used the Crosswind maneuver behavior (Section 3.2), Obstacle-avoid Navigation behavior
(Section 3.3), and Olfaction-based Navigation behavior (Section 3.5). In the absence of sufficient
chemical concentration, the robot followed Crosswind maneuver behavior to maximize the chance
of detecting sufficient plume concentration. If there were obstacles in the robot’s path, it follows
Obstacle-avoid Navigation behavior to circumvent the obstacles. If sufficient odor concentration is
detected, and there are no obstacles in the robot’s path, it follows Olfaction-based Navigation behavior
to reach the odor source.

In the Vision-only navigation algorithm, the robot used the Crosswind maneuver behavior
(Section 3.2), Obstacle-avoid Navigation behavior (Section 3.3), and Vision-based Navigation behavior
(Section 3.4). In the absence of valid plume vision, the robot followed Crosswind maneuver behavior
to maximize the chance of detecting valid plume vision. If there were obstacles in the robot’s path,
it follows Obstacle-avoid Navigation behavior to circumvent the obstacles. If the robot detects a
valid plume visual, and there are no obstacles in the robot’s path, it follows Vision-based Navigation
behavior to reach the odor source.

These three algorithms were tested in two airflow environments, including the e1 - laminar
airflow environment that used one electric fan and the e2 - turbulent airflow environment that used
two perpendicularly placed electric fans. Thus, a total of six experiments setups were designed, i.e.,
three navigation methods in two airflow environments, to test the effectiveness of the proposed fusion
model. Five experiment runs were conducted for each of the six experiment setups, totaling 30 trial
runs. We used the same five starting positions to initialize the test runs. Figure 8 shows the five starting
positions and the two airflow setups for the experiment runs.
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(1) (2)

Figure 7. (1) The flow diagram of the Olfaction-only navigation algorithm. There are three navigation
behaviors, including ‘Crosswind maneuver’, ‘Obstacle-avoid Navigation’, and ‘Olfaction-based
Navigation’. (2) The flow diagram of the Vision-only navigation algorithm. There are three
navigation behaviors, including ‘Crosswind maneuver’, ‘Obstacle-avoid Navigation’, and ‘Vision-based
Navigation’.

(1) e1 (2) e2

Figure 8. (1) The schematic diagram of the search area with e1 - laminar airflow setup. The five robot
starting positions are used for testing the performance of the Olfaction-based Navigation, Vision-based
Navigation, and Vision and Olfaction Fusion Navigation tests. (2) The schematic diagram of the search
area with e2 - turbulent airflow setup.
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4.4. Sample Trials

Figure 9 shows the robot trajectory and snapshots of the Vision and Olfaction Fusion Navigation
trial run in a turbulent airflow environment. In this run, the robot initialized at t=1 s, found sufficient
chemical concentration, and started following Olfaction-based Navigation. At t=22 s, the robot detected
valid visual detection of the odor plumes and started to follow Vision-based Navigation. At t=49 s the
robot faced the second obstacle and started to follow Obstacle-avoid Navigation behavior. It avoided
the obstacle, re-detected plume vision, and started to follow Vision-based Navigation until it reached
the odor source at t=72 s.

Figure 9. Robot trajectory graphs and snapshots of OSL tests with the Vision and Olfaction Fusion
Navigation algorithm in turbulent airflow environment.

4.5. Experiment Trials

Table 2 shows the run times of the 30 trial runs, i.e., five trial runs using one of three navigation
algorithms in two airflow environments. Figure 10 shows the robot trajectories in those 30 trial runs.
Olfaction-only navigation algorithm uses airflow direction to navigate toward the odor source. It
performed well in laminar airflow environments - the robot followed relatively direct airflow towards
the odor source. However, in turbulent airflow environments, the robot got diverted by the complex
airflow directions and often failed to reach the odor source by the designated time limit. Vision-based
Navigation performed poorly in both laminar and turbulent airflow environments. Because of the
obstacle placement, the robot had no visual of the plume from the starting position. It needed to follow
the Crosswind maneuver and Obstacle-avoid Navigation behaviors until it had a valid plume vision.
In most runs, the robot’s 200-second time limit was over before it could find and navigate to the odor
source. Vision and Olfaction Fusion Navigation algorithm test runs were consistently successful in
both laminar and turbulent airflow environments. The Crosswind maneuver and Olfaction-based
Navigation led the robot toward the odor source which allowed the robot to detect plume vision. Once
it started to follow Vision-based Navigation, the robot was not affected by turbulent airflow.
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|
(1) e1o1 (2) e1o2 (3) e1o3 (4) e1o4 (5) e1o5 (6) e2o1 (7) e2o2 (8) e2o3 (9) e2o4 (10) e2o5

(11) e1v1 (12) e1v2 (13) e1v3 (14) e1v4 (15) e1v5 (16) e2v1 (17) e2v2 (18) e2v3 (19) e2v4 (20) e2v5

(21) e1vo1 (22) e1vo2 (23) e1vo3 (24) e1vo4 (25) e1vo5 (26) e2vo1 (27) e2vo2 (28) e2vo3 (29) e2vo4 (30) e2vo5

Figure 10. Trajectories of OSL repeat experiments. Olfaction-only Navigation algorithm trials (o1-o5) in - (1-5) laminar airflow environment (e1), and (6-10) turbulent
airflow environment (e2). Similarly, Vision-only Navigation algorithm trials (v1-v5) in e1 (11-15) and e2 (16-20), Vision and Olfaction Fusion Navigation algorithm
trials (vo1-vo5) in - e1 (21-25) and e2 (26-30). The behaviors that the robot was following under the three navigation algorithms are Crosswind - crosswind maneuver
behavior, Obstacle - Obstacle-avoid Navigation behavior, Olfaction - Olfaction-based Navigation behavior, and Vision - Vision-based Navigation behavior. Robot
starting positions are highlighted with a blue star, the obstacles are the orange boxes, and the odor source is the red point with the surrounding circular source
declaration region.
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Table 2. Search Time of the Vision-only, Olfaction-only, and the Proposed Vision and Olfaction Fusion
Navigation Algorithms.

Robot Initial
Position (x, y),

Orientation (z, w)

Olfaction-only
Navigation

Algorithm (s)

Vision-only
Navigation

Algorithm (s)

Vision and Olfaction
Fusion Navigation

Algorithm (s)

Laminar
Airflow

Env.

(-2.9, 1.5),
(-0.6, 1.0) 63.1 - 63.9

(-3.1, 0.5),
(0.0, 35.0) 71.3 149.3 69.9

(-2.6, -0.4),
(0.7, 0.7) 74.3 - 67.5

(-2.0, 0.6),
(1.0, -0.1) 73.8 - 75.7

(-1.8, 0.7),
(0.0, 0.1) 59.1 - 61.1

Turbulent
Airflow

Env.

(-2.9, 1.5),
(-0.6, 1.0) - - 64.0

(-3.1, 0.5),
(0.0, 35.0) - - 113.1

(-2.6, -0.4),
(0.7, 0.7) 196.4 - 130.7

(-2.0, 0.6),
(1.0, -0.1) - 102.8 131.9

(-1.8, 0.7),
(0.0, 0.1) 72.3 - 68.5

4.6. Statistic Analysis

Figure 11 shows the combined robot trajectories of the three navigation algorithms in the two
airflow environments. Table 3 summarizes the repeated test results in terms of success rate, averaged
search time, and average traveled distance. For failed experiment runs, 200 s was used for calculating
the Average Search Time (s). We can observe from the results that the proposed Vision and Olfaction
Fusion Navigation algorithm has the highest success rate, the lowest average search time, and the
lowest average distance traveled among the three methods. This is critical in real-world odor source
localization applications, as we want the robot to find odor sources as quickly as possible.

Table 3. Result Statistics, i.e., Success Rate and Average Search Time of Vision-based Navigation,
Olfaction-based Navigation, and the Proposed Vision and Olfaction Fusion Navigation Algorithms.

Airflow
Environment

Navigation
Algorithm

Success
Rate

Avg. Search
Time (s)

Avg. Travelled
Distance (m)

Laminar
Olfaction-only 5/5 68.3 6.1

Vision-only 1/5 189.9 11.7
Vision and

Olfaction Fusion 5/5 67.6 6.2

Turbulent
Olfaction-only 2/5 173.7 9.7

Vision-only 1/5 180.6 13.7
Vision and

Olfaction Fusion 5/5 101.6 7.8

Combined
Olfaction-only 7/10 121.0 7.9

Vision-only 2/10 185.2 12.7
Vision-Olfaction

Fusion 10/10 84.6 7.0
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(1) e1o (2) e1v (3) e1vo

(4) e2o (5) e2v (6) e2vo

Figure 11. Robot trajectories of repeated tests in six navigation algorithm and airflow environment
combinations. Trajectories in laminar airflow environments are - (1) e10 - Olfaction-only navigation
algorithm, (2) e1v - Vision-only navigation algorithm, and (3) e1vo - Vision and Olfaction Fusion
Navigation algorithm. Trajectories in turbulent airflow environment are - (4) e20 - Olfaction-only
navigation algorithm, (5) e2v - Vision-only navigation algorithm, (6) e2vo - Vision and Olfaction
Fusion Navigation algorithm. The behaviors that the robot was following under the three navigation
algorithms are shown in the trajectory. These behaviors include Crosswind - crosswind maneuver
behavior, Obstacle - Obstacle-avoid Navigation behavior, Olfaction - Olfaction-based Navigation
behavior, and Vision - Vision-based Navigation behavior. Five robot starting positions are highlighted
with a blue star, the obstacles are the orange boxes, and the odor source is the red point with the
surrounding circular source declaration region.

5. Future Research Direction

A number of improvements can be made to the proposed OSL algorithm in the future. Firstly,
the proposed navigation algorithm follows a homogeneous crosswind maneuver behavior for finding
odor plumes. The search behavior doesn’t take into account past vision or olfaction sensing history.
Similarly, the moth-inspired algorithm used in this paper only uses current olfaction readings for
finding the odor source. Whereas engineering-based solutions like the Particle Filter utilize past sensor
readings for estimating the odor source and plume location. Thus, future research scope includes
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pairing engineering-based Olfaction navigation with Vision-based Navigation for improved crosswind
maneuver and Olfaction-based Navigation. The implemented Obstacle-avoid Navigation algorithm
in this paper also relies only on the current laser readings to sense and circumvent obstacles. In
this case, reactive path planning algorithms include Fuzzy Logic, Neural Networks, bug algorithms,
etc. [47] can be adopted for more efficient Obstacle-avoid Navigation behavior. Additionally, the
future scope of this robot platform includes using machine learning algorithms for calculating
robot headings. For instance, the reinforcement learning (RL) [48] and supervised learning [49]
methods can be used for olfactory-based navigation in robots. Transformer-based Vision-Language
and Vision-Language-Action (VLA) models are gaining traction as a prevalent approach in robotics.
Recent applications of such a model include the PaLM-E model [50], and the RT-2 [51]. Exploring
the possibilities of the Vision-Language models as the primary decision-maker for multi-modal odor
source localization is another exciting possibility in OSL research.

6. Conclusion

The combination of computer vision and robotic olfaction provides a more comprehensive
observation of the environment, enabling the robot to interact with the environment in more ways
and enhancing navigation performance. This paper proposes the incorporation of vision sensing
in OSL. Specifically, the paper proposes a Vision and Olfaction Fusion Navigation algorithm with
Obstacle-avoid Navigation capability for 2-D odor source localization tasks for ground mobile robots.
For conducting real-world experiments to test the proposed algorithm, a robot platform based on
the Turtlebot3 mobile robot was developed with olfaction and vision-sensing capabilities. The
proposed navigation algorithm had five behaviors, i.e., Crosswind maneuver behavior to find odor
plume, Obstacle-avoid Navigation behavior to circumvent obstacles in the environment, Vision-based
Navigation to approach the odor source using vision sensing, Olfaction-based Navigation to approach
the odor source using olfaction sensing, and source declaration. For the Vision-based Navigation
behavior, a YOLOv7-based vision model was trained to detect visible odor plumes. For Olfaction-based
Navigation behavior, we used moth-inspired algorithm. To test the performance of the proposed Vision
and Olfaction Fusion Navigation algorithm, we tested the performance of the Olfaction-only navigation
algorithm, Vision-only navigation algorithm, and the proposed Vision and Olfaction Fusion Navigation
algorithm separately in real-world experiment setups. Furthermore, we tested the performance of
the three navigation algorithms in laminar and turbulent airflow environments to compare their
strengths. We used five predefined starting robot positions for each navigation algorithm and repeated
them for both airflow environments - resulting in 30 total experiment runs. The search results of the
OSL experiments show that the proposed Vision and Olfaction Fusion Navigation algorithm had
a higher success rate, lower average search time, and lower average traveled distance for finding
the odor source compared to Olfaction-only and Vision-only navigation algorithms in both laminar
and turbulent airflow environments. The result of our experiment indicates that vision sensing is
a promising addition to olfaction sensing in ground-mobile robot-based Odor Source Localization
research.
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Abbreviations

The following abbreviations are used in this manuscript:

AUV Autonomous Underwater Vehicle
ANFIS Adaptive Neuro-fuzzy Inference System
DL Deep Learning
DNN Deep Neural Networks
LDS Laser Distance Sensor
OSL Odor Source Localization
PC Personal Computer
ROS Robot Operating System
SLAM Simultaneous Localization and Mapping
VLA Vision-Language-Action model
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