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Optimal Deployment

Peter Lohmander

Optimal Solutions, Hoppets Grand 6, SE-903 34, Umea, Sweden; peter@lohmander.com

Abstract: This study focuses on the optimal deployment problem, and determines the optimal size of a
military force to send to the battle field. The decision is optimized, based on an objective function, that
considers the cost of deployment, the cost of the time it takes to win the battle, and the costs of killed and
wounded soldiers with equipment. The cost of deployment is modeled as an explicit function of the number
of deployed troops and the value of a victory with access to a free territory, is modeled as a function of the
length of the time it takes to win the battle. The cost of lost troops and equipment, is a function of the size of
the reduction of these lives and resources. An objective function, based on these values and costs, is
optimized, under different parameter assumptions. The battle dynamics is modeled via the Lanchester
differential equation system based on the principles of directed fire. First, the deterministic problem is solved
analytically, via derivations and comparative statics analysis. General mathematical results are reported,
including the directions of changes of the optimal deployment decisions, under the influence of alternative
types of parameter changes. Then, the first order optimum condition from the analytical model, in
combination with numerically specified parameter values, is used to determine optimal values of the levels of
deployment in different situations. A concrete numerical case, based on documented facts from the Battle of
Iwo Jima, during WW 1I, is analyzed, and the optimal US deployment decisions are determined under
different assumptions. The known attrition coefficients of both armies, from USA and Japan, and the initial
size of the Japanese force, are parameters. The analysis is also based on some parameters without empirical
documentation, that are necessary to include to make optimization possible. These parameter values are
motivated in the text. The optimal solutions are found via Newton- Raphson iteration. Finally, a stochastic
version of the optimal deployment problem is defined. The attrition parameters are considered as stochastic,
before the deployment decisions have been made. The attrition parameters of the two armies have the same
expected values as in the deterministic analysis, are independent of each other, have correlation zero, and
have relative standard deviations of 20%. All possible deployment decisions, with 5000 units intervals, from 0
to 150000 troops, are investigated, and the optimal decisions are selected. The analytical, and the two
numerical, methods, all show that the optimal deployment level is a decreasing function of the marginal
deployment cost, an increasing function of the marginal cost of the time to win the battle, an increasing
function of the marginal cost of killed and wounded soldiers and lost equipment, an increasing function of
the initial size of the opposing army, an increasing function of the efficiency of the soldiers in the opposing
army and a decreasing function of the efficiency of the soldiers in the deployed army. With stochastic
attrition parameters, the stochastic model also shows that the probability to win the battle is an increasing
function of the size of the deployed army. When the optimal deployment level is selected, the probability of a
victory is usually less than 100%, since it would be too expensive to guarantee a victory with 100%
probability. Some of many results of relevance to the Battle of Iwo Jima, are the following: In the
deterministic Case 0 analysis, the optimal US deployment level is 66200, the time to win the battle is 30 days
and 14000 US soldiers are killed or wounded. If the marginal cost of the time it takes to win a victory doubles,
the optimal deployment increases to 75400, the time to win a victory is reduced to 26 days, and less than
12000 soldiers are killed or wounded. In the stochastic Case 0 analysis, the optimal US deployment level is
65000, the expected time to win the battle is 46 days and almost 25000 US soldiers are expected to be killed or
wounded. If the cost per killed or wounded soldier increases from 0 to 5 M $US, the optimal deployment
level increases to 75000. Then, the victory is expected to appear after 35 days and 19900 US soldiers are expected
to be killed or wounded.

Keywords: Lanchester equations; attrition parameters; differential equation system; numerical
iteration
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1. Introduction

Competition can be observed in many different areas. In the domain of economics, we find
competition between nations, in international trade theory, between companies, in market theory,
and between individuals, in labor economics. Shatz (2020) gives a wide perspective on connected
issues. Biological theory includes models of competition between different species, including many
types of animals and plants. Compare the field covered by Ianelli and Pugliese (2014). Competition
between nations and coalitions can also lead to wars and other conflicts. Relevant mathematical
theories and examples are found in Washburn and Kress (2009). In all these kinds of competition,
we find several interesting and relevant scientific questions, such as: How do the different parties in
the competition affect the other parties? How will the system develop over time? Can some actors
influence these competition situations and may optimal strategies be derived?

When scientific models are developed to describe, analyze, and manage the competition
situations in economics, biology, and war science, it often turns out that the mathematical structure
is very similar. In this study, we will focus on typical military problems. The general results and
approaches can however be expected to be useful also in the fields of biology and economics. Wars
are military conflicts, usually between nations. Sometimes, the participants belong to, or are
cooperating with, other nations or coalitions. A recent study of how such wars can be modelled,
and the strategies optimized, using optimal control theory, is Lohmander (2023). Key ingredients in
that study are differential equations that show how the involved parties influence each other, via
attrition warfare, and how the total war system can be controlled and optimized via external arms
support. Wars can also be studied at lower levels of command and within more constrained
geographical regions. Lohmander (2019a) and Lohmander (2019b) are two such examples.

In military operations research, the famous article by Lanchester (1916) is often used as a
mathematical foundation. There, the general idea is that the sizes of two opposing forces, X and Y,
change over time, according to principles expressed as two differential equations. One of these
differential equation systems based on the principles of directed fire, which has often been found to
fit empirical time series data from real battles, very well, states that the time derivative of the size of
force X, is negative and proportional to the size of force Y. Furthermore, the time derivative of the
size of force Y, is negative and proportional to the size of force X. In battles with aimed fire, the
attrition of a force can under simplified assumptions be shown to be proportional to the number of
enemies. Lanchester models for aimed fire are differential equation systems that can be applied to
describe and derive the dynamics of such battles. Estimations of attrition coefficients, the force
reductions per time unit, per unit of the enemy force, have been reported in the literature, based on
time series data from historical battles. Engel (1954), Bracken (1995), Tam (1998), Hung et al (2005)
and Stymfal (2022) include such applications and estimations of the Lanchester models based on
real military time series from different battles. Braun (1993) describes some of the applied
differential equations and approaches.

Relevant empirical data would ideally contain complete time series of the numbers of units of
both forces. Sometimes, the time series are incomplete, and only the time series of one force is
known. In some cases, the time series of one force is completely known, but only the initial and the
final sizes of the enemy force are known. In earlier research, estimations of attrition coefficients
have sometimes been made in discrete time, based on the observed time series data of one force, X,
and the assumed and calculated time path of the size of the other force, Y. Such estimations have
been made in several steps.

Mostly, deterministic models are approximations of a reality that is not perfectly predictable.
Of course, this is true also in the present area of analysis. Rothschild and Stiglitz (1970) and (1971)
define risk, and increasing risk, in mathematically convenient ways, which makes it possible to
study how stochastic parameter variations affect variables, systems, and optimal decisions.
Lohmander (1986) and (1988) combines and applies the risk definitions of Rothschild and Stiglitz
(1970) and (1971) with the famous Jensen’s inequality, Jensen (1906), biological production
functions, and price series of natural resources, via analytical stochastic dynamic programming, to
show how increasing risk in market prices and growth processes dynamically affect optimal
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decision in biological production. In a similar way, stochastic parameters should be expected to
influence the decisions and outcomes of dynamic competition, battles, and wars. This is also
investigated and reported in this paper.

The literature related to the Lanchester differential equations, contains generalizations and
modifications in different directions. Often, the motivation is rational decision support, such as
determination of the optimal size of some military force. Some of these studies concern general
mathematically derived principles and results, and other articles have real military decision
problems in mind. An early article in this class is Taylor (1979). He investigates the initial force
commitment problem in battles governed by Lanchester equations. He defines three different
decision criteria, or objective functions, namely the victor’s loss, the loss ratio, and the loss
difference. The analysis is based on general qualitative comparative statics methods, and the
determination of the signs of partial derivatives. He finds that the optimal initial force commitment
decision is sensitive to the decision criterion. From the perspective of economic theory, the
conclusion that objective functions influence the optimal decisions, are not surprising. However,
from an economic perspective, the articles choice of objective function seems arbitrary. If military
missions should be economically rational, it is important to define costs and revenues as functions
of possible military decisions, and to let these functions be used to define the objective function that
governs the military decisions. The models and analyses in this this paper are created to optimize
strategic decisions problems with explicit economic objectives in mind.

Another author that studies the optimal force structure, is Chan (2016). He focuses on the
Lanchester square law, general findings from the battle of Trafalgar, and the quality and quantity of
the Singapore defense forces. A key conclusion is that it is necessary to maintain high quality of the
forces in peace time, since possible opponents may have large numbers of attacking units.
Minguela-Castro et al (2021) presents a multi stage decision support model, for strategic military
decision making. With such a structure, it is possible to adapt the forces to new information about
the actions taken by the enemy and other possible events. The Battle of Crete, during World War II,
is discussed in relation to the dynamic model. The objective function is based on the expected value
of battle casualties and the fulfillment of the mission. Exactly how these objectives are combined is
not clear to the reader. Obviously, the objective function is not defined in economic terms.
Lystopadova and Khalaim (2023) give a general introduction to Lanchester differential equations
and include some examples from the war during the years 2022 to 2024 in Ukraine. They write that
dynamic force predictions can be made, based on the fire powers of the Russian and Ukrainian
armies.

Some studies extend the Lanchester model system to cover multi front problems, optimal
dynamic reinforcements, international cooperation, and combinations of units from the army, the
navy and/or the air force. The optimal partitioning of available military defense resources to
counter attacks in different fronts, with Lanchester dynamics, is studied by Sheeba and Ghose
(2008). The decision problem is defined as a Time-Zero-Allocation problem, and analytical and
numerical solutions are given. Chen and Qui (2014) investigate the optimal reinforcement problem.
They apply Lanchester dynamics within a differential game model and derive optimal
reinforcement strategies. Algorithm convergence results and numerical examples are included.

The Lanchester model can also be extended to handle cooperation between different players
and endogenously optimized intelligence levels. This is done, via optimal control, by Hy et al
(2020), in a study on optimal counter terrorism. Kostic and Jovanovic (2023) is a promising study
from a methodological point of view. Different kinds of forces, such as air force and army,
cooperate. During different phases of a war, they can cooperate in several ways. The system of
differential equations is governed by Lanchester equations, but the set of equations changes at
different points in time. This way, rather complicated dynamic strategies that involve different
kinds of forces can be defined, studied, and rapidly optimized, with a simple mathematical
structure and limited numerical and computational efforts. Of course, a sufficiently simple model
structure, that makes it possible to easily communicate the general model ideas and results to the



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 February 2024 d0i:10.20944/preprints202402.1265.v1

involved parties, and that also makes it quite clear how an objective function can be developed to
cover the essential costs and revenues of the system, are all important to successful applications.

In several mathematical models, with fundamental links to the classical Lanchester system,
partly new assumptions are introduced. The classical ordinary differential equations are replaced
by partial differential equations and more dimensions, the number of parties in the conflicts
increases, networks are introduced and perhaps even deterministic chaos appears. With such
adjusted model assumptions, it is sometimes possible to illustrate, discuss and highlight several
principles from classical military strategy. Often, however, such model developments make it
difficult or impossible to find closed form solutions. Still, qualitative analysis may lead to some
general qualitative results, and particular numerical specifications and iteration can be used to
create examples and illustrations of typical solutions. Spradlin and Spradlin (2007) move away from
the ordinary Lanchester differential equations to partial differential equations. With this approach,
they do not only investigate the development of the system over time. The spatial distributions of
the armies over the battlefield are simultaneously studied. Numerical simulations with this
approach are reported.

Lanchester models usually handle two party conflicts. Kress et al (2018), however, extend the
analysis to three party conflicts. The motivation includes conflicts in Syria, where, as they write,
several parties have been involved, such as Russia, Turkey, Iran, al-Qaeda, Jabahat al Nusra, ISIS,
the free Syrian army, Hezbollah, Kurds, and the Assad regime. The results are reported in phase
portraits, that show regions where different parties can win the war. It is important to be aware that
the study and the results are based on fixed force allocations. It is quite clear that other results can
be obtained in case the different parties are allowed to adaptively change the behavior over time, as
the situation develops. The authors conclude that, the possibility of temporary cooperation would
lead to many challenges in a differential game setup. This is certainly true. It is also true that such a
development of the dynamic multiplayer games seems necessary, if we are interested to understand
and control the real and highly complicated conflicts in the region. Sometimes, it is interesting and
important to generalize the Lanchester system to cover more strategy dimensions. Kalloniatis et al
(2020) do that, via the development of a networked Lanchester model, with fire integration and
manouvres. McCartney (2022) studies repeated battles with reinforcements. The reinforcements
follow different principles, that can give different outcomes. With nonlinear reinforcements, we
may obtain quasi-periodic behavior, deterministic chaos, and fractal partitioning. In our present
world, the situation can in many regions be interpreted as chaotic. Maybe, models of this type are
useful to model such phenomena.

The Lanchester differential equation system is a highly relevant and useful basis for qualified
strategy optimization. Fundamental facts, such as sizes of forces and attrition coefficients, that
determine the outcomes of conflicts, are used in a mathematically straight forward way. Without
fundamental mathematical descriptions of the forces in action, logically defendable alternatives
simply do not, and cannot, exist.

This study:

This study has the ambition to determine the optimal size of the military force to send to the
battle field. This decision is optimized, based on an objective function, that considers the costs of
deployment, the cost of the time it takes to win the battle, and the costs of killed and wounded
soldiers with equipment. The optimal decisions are determined via analytical and numerical
methods.

Step 1:

First the deterministic optimization problem is defined and solved, based on an economically
specified objective function and explicit general solution of the ordinary Lanchester differential
equation system. Comparative statics analysis, via differentiation, determines how the optimal
decisions change under the influence of parameter changes. Then, the first order optimum
condition and the Newton-Raphson method, are used to determine the optimal decisions, in a set of
numerically specified cases. The method is illustrated via empirically estimated parameters from
the Battle of Iwo Jima, during WW II.
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Step 2:

Stochastic attrition coefficients are introduced, since these coefficients cannot generally be
assumed to be perfectly known before battles start. The expected value of the total result, in
economic terms, is optimized. Optimal decisions are determined, with consideration of the
stochastic attrition parameters, in different numerically specified cases. The outcomes of the battles,
such as the numbers of killed and wounded soldiers, and the time it takes before one party wins the
battle, are affected by the stochastic attrition parameters, and cannot be perfectly predicted. It is
important to be aware that, even if the optimal number of soldiers is sent to the battle, it is possible
that the enemy wins the victory. It would simple be too costly to make sure that, whatever happens
and whatever the attrition parameter values turn out to be, you will always win a possible battle.
For this reason, a relevant objective function must be defined and calculated as a function of
different kinds of decision dependent stochastic outcomes, including a decision dependent
probability to win the battle.

2. Materials and Methods

This study concerns optimization of strategical military decisions. The perspective on the topic
is as general as possible and the analysis is based on the famous Lanchester differential equations
under the influence of directed, or aimed, fire, as illustrated in Equation (1). There we see how the
state of the system, (x,)), representing the sizes of two opposing forces, changes over time,

t,0<t<T <. The two parameters, (a,b), are called attrition coefficients. Newtonian notation,
with time derivatives marked by dots, is used.
X =-ay (1.a)
) a>0,b>0,x>0,y>0 (1)
y=-bx 1.6)

In the later sections of this paper, general analytical methods are used to analyze and solve this
equation system and the more complicated problem, where the solutions of the differential
equation system (1) are used as subproblems within general strategy optimization problems. Since
the differential equation system is a central component of the relevant strategy optimization
problems, we start with a briefing on the properties of the system (1), based on fundamental
methods, including qualitative analysis and simulation.

From (1), we construct (2).

L (2.a)
S a>0,b>0,x>0,y>0 )

y _bx (2.b)
Y Y

Consider this special case: The time derivatives of the sizes of the resources, divided by the
sizes of that resources, are equal. In such a case, the time path of (x, y) should follow a straight line
in the first quadrant, moving towards origo. This is seen below. From (2) we get (3).

X_y 3[—_@:-_@6} -

Xy X Y
Equation (3) can be rewritten as (4).
bx ay
—= @)
y X
From (4) we derive (5), which is consistent with the famous Lanchester square law. Compare
Lanchester (1916).
bx* = ay’ ©®)

From (5) we get (6), which leads to (7) and (8).
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X =Ty ©)
a

= |- 7

x= 7y ()

y= \/gx (8)

Figure 1 shows the time path of (x, y) in the special case, when Equation (5) holds. Note that (x,
y) follows the time path in the direction of the arrows. The lengths of these arrows indicate how
rapidly (x, y) moves. The arrows get shorter as we move towards origo. The reason is that the time
derivative of x is proportional to -y, and the time derivative of y is proportional to -x. Compare (1).
Hence, x and y are strictly decreasing functions of time. In fact, since (x, y) moves slower and
slower, and the speed approaches zero, as (x, y) approaches origo, (X, y) never reaches origo.

Compare Equations (9) and (10).

o
+-
v
x

Figure 1. The time path of (x, y) in the special case, when bx?*=ay?.

grgic:o Bb(x(0)) =a(y®)) 9)
lim y=0 b(x(®)) =a(y®)) (10)

In Figure 2, we find the time path of (x, y) in the special case, when bx?=ay?, as a function of the
ratio b/a. The coefficients a and b may change for many different reasons. We may consider the

following cases:
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A 4
x

Figure 2. The time path of (x,y) in the special case, when bx*=ay?, is a function of the ratio b/a. The
graph shows how the time path changes if the ratio b/a increases or decreases.

Case 1: A force with x units defends an area and another force with y units attacks the same
area. If the defender prepares the defense efficiently, it is more difficult to reduce X, and easier to
reduce y. In other words, a decreases and b increases. Compare the differential Equations (1). This
means that the ratio b/a increases. Then, as Figure 2 shows, the time path of the special case shifts
from the black dotted line to red dotted line.

Case 2: A force with y units defends an area and another force with x units is attacking the
same area. If the defender prepares the defense efficiently, it is more difficult to reduce y, and easier
to reduce x. This means that one parameter, a, increases and the other, b, decreases. Compare the
differential Equations (1). This means that the ratio b/a decreases. Then, as Figure 2 shows, the time
path of the special case moves from the black dotted line to the blue dotted line.

b
Deviations from the line y = \/:x, imply that (x, y) will not converge towards origo. This is
a

shown in Figure 3. If we start at a point on the original time path (yellow), and let the value of x
increase, we move to the blue point. Then, the adjusted time path of (x, y) will later reach a point on
the x-axis, x1. There, x > 0 and y = 0. If we start at a point on the original time path (yellow), but let
the value of y increase, we move to the red point. Then, the new time path of (x,y) will reach a point
on the y-axis, y1. There, x =0 and y > 0.
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Figure 3. Deviations from the line y =, f—x , imply that (x, y) will not converge to origo.
a

The results found in Figure 4 follow from Figure 3. T is the point in time when x or y equals
zero. If (x,y) at some point in time, t, such that t<T, is found in the blue sector, then x(T)>0 and
y(T)=0. If (x,y) at some point in time, t, such that t<T, is found in the red sector, then x(T)=0 and

y(T)>0.

fb
Figure 4. Deviations from the line y =, |—X, imply that (x, y) will not converge to origo. T is the
a

point in time when x or y equals zero. If (X, y) at some point in time, t, such that t<T, is found in the
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blue sector, then x(T)>0 and y(T)=0. If (x, y) at some point in time, t, such that t<T, is found in the red
sector, then x(T)=0 and y(T)>0.

Now, we will investigate the dynamics of (x, y) when we use some well documented
empirically determined parameters from a real case. Compare the studies of the battle of Iwo Jima,
by Engel (1954), Braun (1993), Washburn and Kress (2009) and by Stymfal (2022). In this study, we
consider the data and dynamics from day D+6, when all the US troops had landed on Iwo Jima,
according to the definitions in Stymfal (2022). According to the empirical data, xo = 66150 and yo =
18000. In the different studies, the attrition coefficient estimates differ marginally. Here, we use
these figures, very close to all reported estimates: a = 0.05347 and b = 0.01045. In this paper, xo is
treated as a decision variable. Different ways to optimize xo, and the optimal values of xo in
different situations, will be determined. In the graph in Figure 5, xo is assumed to be 65000.

70000
60000
50000
40000

30000

Resources

20000
10000

0
0 5 10 15 20 25 30 35

Time (Days)
=X ==Y

Figure 5. x(t) and y(t), for t=0, 1, ..., 31. t = time (days), (xo, yo) = (65000, 18000). a = 0.05347 and b =
0.01045. The graph is constructed via a discrete time approximation of the differential equation
system (1). Each time step represents one day (24 hours). Time t = 0 corresponds to time D+6, when
all US troops had landed on Iwo Jima, in Stymfal (2022).

Figure 6 shows the positions of (x, y) in the beginnings of each day, during the battle. In Figure
7, the same values of (x, y) have been used to construct a continuous function.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 February 2024 d0i:10.20944/preprints202402.1265.v1

10

20000
18000 .
16000 o
14000 d
12000 .

> 10000
8000
6000
4000
2000 f

0

i

0 10000 20000 30000 40000 50000 60000 70000
X

Figure 6. (x(t), y(t)), for t =0, 1, ..., 31, in case (xo, yo) = (65000, 18000), a = 0.05347 and b = 0.01045.
The graph is constructed via a discrete time approximation of the differential equation system (1).
Each time step represents one day (24 hours). Note that the distances between the neighbor points
decreases as T increases.

20000
18000
16000
14000
12000
> 10000
8000
6000
4000
2000
0
0 10000 20000 30000 40000 50000 60000 70000

X

Figure 7. Continuous time path of (x(t), y(t)). (xo, yo) = (65000, 18000), a = 0.05347 and b = 0.01045.
The graph is constructed via a discrete time approximation of the differential equation system (1).

Now, let us determine the initial value of x, xo, that leads to the special case, bx?>=ay? based on
the initial value of y, yo = 18000, and the parameters a = 0.05347 and b = 0.01045. See Equation (11).
With that value of xo, the time derivatives of the size of the resources, divided by the sizes of the
resources, are equal. In that case, the time path of (x, y) follows a straight line in the first quadrant,
moving towards origo.

a 0.05347
3y =Ly = 2237 18000 ~ 40716
0 \[;y° 0.01045 (11)
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In Figure 8 we see how x(t) and y(t) develop over time, in case xo = 40716. The attrition
coefficients have the same values as in Figure 5. Note, in Figure 8, how both resources decrease over
time, and that the ratio x/y remains constant. In Figure 5, y was reduced to zero at t = 31. Figure 8,
shows x and y during the first 100 days. They both approach zero, but will never reach zero. The
conflict will continue forever.

45000
40000
35000
30000
25000
20000
15000
10000

5000

0
0 20 40 60 80 100 120

Time (Days)

Resources

——X —e—y

Figure 8. x(t) and y(t), for t =0, 1, ..., 100. t = time (days), (xo, yo) = (40716, 18000). a = 0.05347 and b =
0.01045. The graph is constructed via a discrete time approximation of the differential equation
system (1). Each time step represents one day (24 hours). .

In Figures 9 and 10, we see that the point (x, y) really moves in a straight line towards origo,
during the first 100 days. The sequence of points shows that the speed slows down. Consequently,
(%, y) never reaches origo. The conflict continues forever.
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20000
18000
16000 -
14000 o*
12000
> 10000
8000
6000
4000
2000
0
0 10000 20000 30000 40000 50000

X

Figure 9. (x(t), y(t)), for t =0, 1, ..., 100. t = time (days), (xo, yo) = (40716, 18000). a = 0.05347 and b =
0.01045. The graph is constructed via a discrete time approximation of the differential equation
system (1). Each time step represents one day (24 hours). .

20000

15000

10000
>

5000

0 10000 20000 30000 40000 50000

Figure 10. A continuous time approximation of (x(t), y(t)), for 0 < t < 100. t = time (days), (xo, yo) =
(40716, 18000). a = 0.05347 and b = 0.01045.

If xois reduced to 30000, which is less than 40716, as derived in Equation (11), the system
develops quite differently. The Figures 11-13 show how x reaches zero when y still has a value
close to 12000.
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Figure 11. x(t) and y(t), for t =0, 1, ..., 39. t = time (days), (xo, yo) = (30000, 18000). a = 0.05347 and b =
0.01045. The graph is constructed via a discrete time approximation of the differential equation
system (1).
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Figure 12. (x(t), y(t)), for t =0, 1, ..., 39. (xo, yo) = (30000, 18000). a = 0.05347 and b = 0.01045. The
graph is constructed via a discrete time approximation of the differential equation system (1).
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Figure 13. A continuous time approximation of (x(t), y(t)), for 0 < t < 39. t = time (days), (xo, yo) =
(30000, 18000). a = 0.05347 and b = 0.01045. The graph is constructed via a discrete time
approximation of the differential equation system (1).

Clearly, we have seen that the initial value of x, xo, strongly influences several things of
importance to the decision makers. Consider two decision makers, BLUE and RED. BLUE is the
commander of the x resources, and RED commands the y resources. BLUE is the defender and RED
is a potential attacker. Figure 4 can be used to determine the lowest value of xo that makes it
possible to get a solution such that BLUE wins a potential conflict, in the sense that BLUE will have
a strictly positive value of x after a conflict where RED has lost all resources, which means that y is
zero. BLUE can also use Equation (7) directly, to determine a value of x, conditional on the observed
value of y. Then, if x is marginally increased, BLUE will not be completely out of x resources after a
potential conflict, as seen in Figure 3. Hopefully, from the BLUE perspective, this fact can also stop
RED from attacking BLUE.

In principle, it is possible to determine xo this way: Estimate the values of y, a and b. Then, use
Equation (7) to determine a value of x, called xz, that makes sure that we have a point on the time
path leading to origo, found in Figure 1. Then, let the value of xo be x2 + x3, where x3 > 0 makes sure
that we are in the safe BLUE region, according to Figure 4. Of course, if we increase xs, this
generally costs money. During peace time, it is economically tempting to reduce the value of xs as
much as possible. This has also been seen in several countries, during the period after World War IL

It is important to be aware that the reduction of xs does not only reduce the defense budget.
The estimates of y, a and b may be too optimistic from the BLUE perspective. Then, with a too low
value of x3, and the true values of y, a and b, the system may move to the red region in Figure 4. In
other words, the probability that BLUE would not survive a possible war with RED increases, if a
low value of xs is selected.

However, it is not likely that BLUE is only interested to “win” a possible war in the sense that
some small number of the units x can survive a possible attack. The Figures 5-13 have clearly
shown that BLUE can adjust the time it takes for a conflict to end, via the selection of xo. The time it
takes to stop a possible attack from RED is important in several ways. If a war goes on for a long
time, this negatively influences the economically profitable production and trade. Furthermore,
during a war, infrastructure and the environment are destroyed. Civilians are killed and wounded.
Hence, it is important to determine how BLUE can reduce the time to stop the war, via the selection
of xo.

The number of killed and wounded soldiers should also be considered. It is important to
determine how BLUE can reduce the number of destroyed resources, x, such as killed and
wounded soldiers, via the selection of xo.
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In the later parts of this paper, detailed analytical and numerical investigations of these effects
and decisions are included. Here, some introductory simple examples are given, with different
values of xo. They show the time it takes to end a possible war, and the size of force reductions. In
five different cases, found in Figure 14, xo takes the values 30000, 40716, 45000, 52500 or 65000.

20000
18000 ....o ...o ..o ..o R
16000 ° o ..-' o ..'
14000 o o o
P04 .o. S
12000 y S
> 10000 4 &
[ J
8000 .,-°
6000 o
[ ]
4000 ..‘.
2000 H
H
0 °
0 10000 20000 30000 40000 50000 60000 70000

X

Figure 14. (x(t), y(t)), for t =0, 1, ..., T. t = time (days), T is the point in time when one of the
variables x or y, takes the value zero. a = 0.05347 and b = 0.01045. yo = 18000. In the five different
cases, xo takes the value 30000, 40716, 45000, 52500 or 65000. The graph is constructed via a discrete

time approximation of the differential equation system (1).

Note, in Figure 14, that it is possible to calculate the total number of lost x resources, at
different points in time. That kind of information is shown in Figure 15. The total number of lost y

resources, at different points in time, is shown in Figure 16.
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Figure 15. KIAx denotes the total number of lost x resources, at different points in time, t, until t="T.
T is the point in time, when y(T) = 0. KIAx(x0/1000) = xo — x(t). a = 0.05347 and b = 0.01045. yo = 18000.
In the four different cases, xo takes the value 45000, 65000, 85000, or 105000. The graph is constructed
via a discrete time approximation of the differential equation system (1).
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Figure 16. KIAy is the total number of lost y resources, at different points in time, t, until t=T. T is
the point in time when y(T) = 0. KIAy(x0/1000) = yo — y(t). a= 0.05347 and b = 0.01045. In all cases, yo =
18000. In the four different cases, xo takes the value 45000, 65000, 85000, or 105000. The graph is
constructed via a discrete time approximation of the differential equation system (1).

In Figure 17, we see how the time of termination of a conflict, the point in time when the
attacker RED has no more resources available, is affected by the value of xo. Clearly, a conflict stops
more rapidly in case BLUE selects a larger value of xo.
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Figure 17. T, the time of termination, is the point in time, when y(T) = 0. a = 0.05347 and b = 0.01045.
yo = 18000. In the four different cases, xo takes the value 45000, 65000, 85000, or 105000. The graph is
constructed via a discrete time approximation of the differential equation system (1).

In Figure 18, we see how the number of lost resources, X, at the time of termination of a
conflict, is affected by the value of xo. Obviously, the number of resources, X, that are lost during the
war, decreases if BLUE selects a larger value of xo.
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Figure 18. KIAx at termination is the total number of lost x resources, at time t = T. T is the point in
time, when y(T) = 0. a = 0.05347 and b = 0.01045. yo = 18000. In the four different cases, xo takes the
value 45000, 65000, 85000, or 105000. The graph is constructed via a discrete time approximation of
the differential equation system (1).

Formal analysis:

Briefing on this section:

The complete dynamics of the battle in continuous time is determined. First, the general
solution to the Lanchester differential equation system, which is a homogenous second order
differential equation system, is derived. This may be interpreted as a 2-dimensional Two Point
Boundary Value Problem (TPBVP). Equation (12) corresponds to Equation (1), but also includes
initial conditions.

We study the differential equation system (12). The state of the system, (x(¢),y(?)),

representing the sizes of the two opposing forces, changes over time, #,0<¢ <7 <. The two
parameters, (a,b), are called attrition coefficients. Newtonian notation, with time derivatives
marked by dots, is used.

x=—ay  (12.a)

) a>0,b6>0,x(0)=x,>0,y(0)=y,>0 (12)
y=-bx (12.6)
From (12.a), we get (13).
y=—qg! M (13)

Differentiation of (13) with respect to time, gives (14).
y=—a' (14)

(14) and (12.b) give (15). That can be rewritten as (16) and (17), which is a homogenous second
order differential equation.

—a! x =—bx (15
a’ ;— bx=0 (16)
;— abx=0 (17)
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Let us assume that the functional form (18) is relevant. The parameters (m, 1) are assumed to
be strictly different from zero.
x(t)=me”, m#0,A#0,0<t<T <o0 (18)
Then, the following procedure can be used to determine the state variable as an explicit
function of time. Equations (17) and (18) give (19).

A’me™ —abme™ =0 (19)
Equation (19) can be simplified to (20).

(/12 — ab)me’“ =0 (20)
Equations (18) and (20) imply (21).

A2 —ab=0 (21)

From the quadratic Equation (21), we obtain the solution (22).

A =+ab (22)
Let 7 be defined according to (23).

r=~ab (23)
Clearly, two solutions exist.

b=t 24)

A=r (25)
Observation:

a>0Ab>0, as we see in Equation (12), which means that there are two real roots. These
roots have different values. Hence, the general solution of the differential equation is:

x(H)=me" +m,e" (26)
Furthermore, from (13) we already know that: y = —a'x
As a result, we get (27).
y(t)=—a" (—rmle'” - rmze") (27)
The expression (27) may be rewritten as (28).
r n T p
y@)=—me" ——m,e" (28)
a a
Hence, the solution to the differential equation system (12) is given in (29).
x(t)=  me" +mye”
(29)

—rt rt

r r
y(t)= —me " ——m,e
a a

To determine the time path (x(t), y(t)) we need to know the four parameters (m1 ,m,,a, r) .
We already know the initial value of y, y(0) = y,. In this study, we are interested to determine the
optimal value of x,. We want to be sure that we will win the battle, which means that x(7") >0

and y(T)=0 at a point in time, 7. This point in time, when the enemy has no more available

resource, is denoted the terminal time.
From Equation (29), the initial conditions (30) and (31) follow:

x(0)=m, +m, =x, (30)
y(O0)=Zm, ~Zm, =y, (31)
a a

The terminal conditions, (32) and (33), are also derived from Equation (29):
x(T)=me"" +me” =x, (32)
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wWT)= Lmle‘rT —Lmze’T =y,
a a (33)

The nonlinear simultaneous equation system (34) must be satisfied. We assume that a feasible
solution exists and that this solution is unique.

m, +m, =X, (34.a)
me’" +me’  =x, (34.0)
r r
—m, ——m, =Y, (34.c) (34)
a a
Lmle_’T —LmzerT =y, (34.d)
a a

Determination of (m1 ,m, ) :

o ol e

m
b b
S = 1 = a = _ (36)
a a a
pl=[. 1]=-2 3
= =2
¢ g (37)
From Cramer’s rule, we get:
x, 1
S &S] B ) (38)
' D] ~2s
X+l
_xts v TN (39)
‘ 2 2
+
l_.7(,'() o 0 , V:S_IZ £ (40)
2 b
1 x,
sl wes (@1)
? |D| -2s
Cxmwe Y (42)
T T
>0 > , > >
X, a X, a
m,3=0p <<= Z@% = Z@bxoz =ray,’ (43)
<0] < Yo <
Observations:
. o . bx)’ - ay,’
Two different proofs are given in the end of this paper that show that x(7') = T

If bx,” > ay,’, then y(t) reaches zero when x(¢) > 0. In that case, m, > 0.

If bx,” <ay,’, then x(t)reaches zero when y(f) > 0. In that case, m, <0 .
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If bx,” = ay,’ (which is extremely unlikely), then x(¢) and y(¢) both converge to zero. Then,
m,=0.
The case when bx02 = ay02 is not further studied in this paper, since the probability of that

case is practically zero.
Determination of T.

From now on, we only consider the case where bx02 > ayoz. Consequently, () reaches zero

when x(¢) >0 andm, > 0. Let us determine T as the point in time when y(T)=y, =0.

V= Smle_rT —smzerT =0 (44)
sx(me™ —m,e”)=0
(m, ) us)
=0 =0
(mle_’T -m,e” )=0 (46)
e (m —me’)=0
(m, —m,e™™) )
=0 =
me”" =m, (48)
2rT _ﬂ
- (49)

2T = LN(—j (50)

x+\/gy
0 520
LNib

LN(XW‘%] - \/Eyo (51)
7 Xo=W, ) b
2r 2@

In Figure 15, we see how the terminal time T is affected by the initial sizes of the two forces,
when the attrition coefficients from Iwo Jima are used. In Figure 16, it is demonstrated that the
terminal time T is reduced, in case the attrition coefficient b increases.
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Figure 15. T(x0, y0). a=0.05347, b = 0.01045. Compare Equation (51).
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Figure 16. T(x0, y0). a = 0.05347, b = 0.01045. (Yellow and green). T(x0, y0). a = 0.05347, b = 0.02045.
(Purple and turquoise). Compare Equation (51).

Determination of the derivative of T with respect to xo.

d_T:(zr)_l[xo —vyojﬂlx(xo —v) = (%, +%)x1j

52
dx, X, + VY, (xo —w, )2 (52)
dr -1 -2vy,
—=(2r
dx, ( ) (xo +vy, )(xo - vyo) (53)
dr -V,
2L 4
dx, r(x0+vy0)(x0—vyo) (54)
ao _
dxo r(x02 _ szoz) (55)

_ 4
dT B byO

o (56)
dx, \/%(xoz _Zyozj

ar____ w

dx, b(xoz ~ % yozj (57)

dT -y,

o ———<0 (58)
x, bx,”—ay,

Determination of the second derivative of T with respect to xo.
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d°T _ —(=2,)2bx,

2 2 59
dx, (bxo2 - ayoz) (59)
a’T 2bx,y,

PPl (60)
0 (bxo —ay, )
Determination of xr via the function x(t) and the value of T when yr = 0:

x(T)=me"" +me” =x, (61)
x(T)= Xo TV e [xo — Y jerT 62)

2 2

2r 2r
_ (63)

x(T)=(x0+vy0je +(xo Vyoje

2 2

2 2
_ (64)

x(T)=(x0+vy0je +(xo V)’oje

2 2
x(T):(xO +Vyoj Xo — VYV, +(x0—vy0J Xo +Vy0 (65)

2 \ Xo Vo 2 Xo =V
x(T):\/x0+vyo\/x0—vyO +\/xo—vyo\/xo+vyo (66)

2 2
X(T):\/xo"'v)’O\/xo_Vyo (67)
2

(1)) = (o + v ) (% = %) (68)
(x(D) =x" =V’ (69)

x(T)=+/x, =v*y,)’ (70)
x(T)zﬂ/xf—(%]yoz (71)
x(T) = /@ (72)

Alternative method to determine xr:

&y
a
dy_ (73)
dt
&_—y
dy —bx (74)
bxdx =aydy (75)

]bedxzyjzaydy

Xo Yo

(76)
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X2 Xr y2 yr
b|—| =a|—

A (E S 15l O (VS '

2 2 2 2 (78)
b(xT2 _xoz) = a(yT2 _yoz) (79)
b(x*=x)=a(-»7) » » =0 (80)
bezszoz—ayOZ s Yr= (81)

2 bxoz_ayo2

= = ()

Xr b Yr (82)
bx, _ay02 _
A T G (83)

Q.E.D.

In Figure 17, we see how the size of the x force at the terminal time T is affected by the initial
sizes of the two forces, when the attrition coefficients from Iwo Jima are used.

100000

x(T)

100000

y<0<

’ 0 x0

Figure 17. x1(x0,y0). a = 0.05347, b = 0.01045. Compare Equation (83).

In Figure 17, we see the number of killed or wounded soldiers from the x force at the terminal
time T, as a function of the initial sizes of the two forces, when the attrition coefficients from Iwo
Jima are used.
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Figure 18. K(x0, y0) = xo - x1(x0,y0). a = 0.05347, b = 0.01045. Compare Equation (83).

In Figure 18, we see the number of killed or wounded soldiers from the x force at the terminal
time T, as a function of the initial sizes of the two forces, when the attrition coefficients from Iwo
Jima are used. We also see how the number of killer or wounded soldiers from the x force at the
terminal time T, for different combinations of the initial sizes of the two forces, is affected in case
the attrition coefficient b increases. If the coefficient b increases, a smaller number of soldiers from
the x force are killed or wounded.
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Figure 19. K(x0, y0) = xo - x1(x0,y0). a = 0.05347, b = 0.01045. (Purple). Compare Equation (83). K(x0,

y0) = X0 - x1(x0,y0). a = 0.05347, b = 0.02045. (Yellow). Compare Equation (83).

Determination of the derivative of xr with respect to xowhen yr=0:

2 2
X, = be — ayO y — O
T > JT
b (84)
L !
2 2\2

Xp=b? (bxo —ay, )2 , yr=0 (85)
dx, (1 -
—L—p 2| —|(bx,”—ay,’) 2 (2bx
dx, 2( ° ) ? (2x,) (86)
dx > -1
—L=p2 (bx02 —ay02) 2x,>0
dx, (87)
dx, Jb X,

= >0
dx, Jbx,’ —ay,’ (88)

Determination of the second derivative of xr with respect to xowhen yr = 0:

ZZZT = b% (—%(bxoz —ay,’ )_z 2bx,> + (bxo2 —ay,’ )_;] (89)
ﬁzb;[—(bx ‘—ay 2)_;bx g +(bx *—ay 2)_;j

dx02 0 0 0 0 0 (90)
d’x, :

= b% (bxo2 -ay,’ )_5 (—(bxo2 -ay,’ )_1 bx,’ + 1)

dx,’ 91)
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dsz l 2 2 *l _b.x 2

=b*(bx,” —ay, ) 2| ——>—+1
dx,’ ( 0 T ) bx,” —ay,’ 92)
dsz 1 2 2 2 1 2 2 2

=b?(bx,” —a 2 —bx,” +bx,” —a
dx.? (b ~ayy’) bx’ —ay,’ (<o’ b ~ay’) (93)
dsz l 2 _i 2

=p2(px2— 2
dx.? ( Yo T D ) ( o ) (94)
d’x, _ ab Yy <0
dx,’ (95)

(bx02 —ay,’ );

Summary of important results

e
0 0
LN _ \b""
e
_ 0 B0 (96)

2\Jab

a___ Ny

dx, bx,”—ay, (97)
2

d 72’ _ 2wy, >0

dx, (bxo2 —ay,’ ) (98)

_|bx —ayy B

N )

dx, _ Jb % .o

dx,  \Jbx,? —ay,? (100)

d’x, _ —ax/Zy(f <0

dx,’ (101)

(bx02 —ay,’ )2

Economic optimization in the deterministic case:

Economic optimization of the deployment decision, is based on an objective function. This
objective function is the sum of the possible revenues minus the different costs, that are
consequences of the decision. In the first version of this optimization problem, the revenue
associated with an instant victory, is denoted G. The maximization of such an objective function,
denoted 7, is presented in general form in Equation (102). The decision variable is the initial size of
force x. The listed parameters are the attrition coefficients, a and b, the marginal cost of the time of

the victory, ¢y, the marginal cost of killed or wounded soldiers with equipment, ¢, , and the initial

size of force y.

max;r(xo;a,b,cT,ch,G,yo) (102)

Xo
A more explicit form of the objective function is found in Equation (103). C (xo)is the total

cost of the X, soldiers with equipment, sent to the battle field. It is important to be aware that this

total cost includes the costs of military education, transport, and possible alternative values of
utilization of the deployed soldiers. For instance, the soldiers could probably also have been used in
industrial production, or in some other way, if they would not have been sent to this particular
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battle field. Furthermore, it could also have been possible to send some of them to some other battle
field.

max 7 =—C|(x, )+ G—CTT(xo,yO,a,b)—ch (xo - X, (xo,yo,a,b)) (103)

Xo

Equation (104) is an even more explicit form of the objective function.
a
Xo + b Yo
LN| ——=—

a
‘Xb - \/___J}O 2 2
max 7 =—-C(x,)+G—¢; : b —c, | % - bx, bayo (104)
Xo r

The Figures 20 and 21 illustrate the objective function (104) as a function of the initial sizes of
the two forces. The functions and values in Figure 20 are: C(xo) = 1000 + 1xo, G = 200000, cr= 730 and
oxr=2. a = 0.05347, b = 0.01045. The attrition coefficients are collected from the empirical estimations
based on the Battle of Iwo Jima. Compare Figure 5 and Stymfal (2022).

200000

50000

20000 100000 XO

Figure 20. The objective function in Equation (104), as a function of the initial sizes of the two forces.
Parameters: C(xo) = 1000 + 1xo, G = 200000, cr= 730 and cxr=2. a = 0.05347, b = 0.01045. The graph
illustrates that the optimal value of xo is an increasing function of yo. Furthermore, the optimal value
of the objective function of the commander of force X, is a decreasing function of the initial size of
the force y. Clearly, if the value yo would have a much larger value than 20000, as illustrated in the
graph, the maximum of the objective function value, would be strictly negative. Then, the optimal
decision of the commander of the x forces would be not to participate in the battle at all.
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200000

20000 qpoooo

Figure 21. The objective function in Equation (104), as a function of the initial sizes of the two forces,
with alternative values of the attrition coefficient “b”. Attrition coefficients: Yellow: a = 0.05347, b =
0.01045, Turquoise: a = 0.05347, b = 0.02045. Other functions and parameters: C(x) = 1000 + 1x, G =
200000, cr= 730 and cxr=2. The graph illustrates that the objective function value of the commander
of the x forces is an increasing function of the attrition coefficient b, and that the optimal number of
units x to send to the battle field is a decreasing function of b, for all possible sizes of the enemy
force, if the optimal decision xo is strictly positive.

Motivation for the introduced parameter values, used in CASE 0:

The two parameters in the function C(x0), G, cr and or have no documented empirical
background. In fact, it is not even clear that these parameter values have ever been empirically
determined, decided, or documented in connection to the real battle. Still, since the values of these
parameters are necessary to know, in case we should be able to optimize the deployment decision
xo, in a logically defendable manner, with consideration of the economically relevant conditions
present in the objective function (104), these numerically specified parameter values are now
suggested. We assume that the unit of the objective function is M$US, in the price level of 2024.

First, we should be aware that fix costs and fix revenues do not affect the optimal deployment
decision, as long as the optimal deployment decision is strictly positive. The fix cost parameter in

C (xo) is 1000, which represents 1billion $US. The marginal cost of one soldier in C (xo) is 1

M$US, which may be reasonable with consideration of the fact that the economic value of
alternative use of one person in the labor force, plus several other costs, may be considerable. The
value of G, 200 billion $US, represents the value of instant access to the island Iwo Jima, during the
end of WW II. This island was very important during the final part of the war, but the economic
value G was probably never calculated. The parameter crshows how rapidly the value of access to
the island declines, per day, when we wait for the victory. With the suggested parameter value, the
economic value of access to the island would be 0 after 274 days, or 9 months. Hence, each month,
the economic value of access to the island falls with approximately 11% of the value of instant
access to the island. The economic value of each lost killed or wounded soldier, with equipment, cxr,
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is assumed to be set to 2 M$US. Such economically defined values, of lost lives, are almost never
reported. Still, such values are necessary parameters, when the optimal deployment problem
should be solved. The reader is encouraged to search for empirically estimated parameters of the
types that now have been introduced. If new values are found, the updated complete analysis may
be repeated.

In Figure 21, we see how the objective function (104) is affected, in case the attrition coefficient
b increases. Then, the objective function of the x force commander, increases. Furthermore, the
optimal value of xo decreases.

A unique maximum:

First order optimum condition:

dz __dC__ 4T . 4

dx, dx, a dx, S dx, (105)
d—ﬂ:_d_c_c dT(XO’yO’a’b)+c de(xoayOaaab):O
dy, dv, T dy, T dy, (106)
dn__dc_ dr | dn
iy dvy dxy T dy, (107)
d*r d*’C d’T dsz
d 2 =" 2 _CT 2 +CxT )
X, dx, dx, dx, (108)
d C2‘20/\% >0/\d 7; >0Ac, >O/\d sz <0|= d 75 <0
xy %o ' dx, dx, (109)

Hence, the solution of the first order optimum condition represents a unique maximum of the
objective function.

Comparative statics analysis:

Now, we determine how parameter changes affect the optimal deployment decision:

With comparative statics analysis, we see how the optimum is maintained when different
possible parameter changes take place. First, the cost per day of the battle is adjusted. The first

order optimum condition is differentiated with respect to the optimal value of x,, denoted xo*,

and ¢;:
dr| d’m , . dT
d| — |=—dx, ———dc, =0
(dxoj dx, ' dx, (110)
2
d—zdx0*=d—TdcT
dx, dx, (111)
dxo*: dx, :(<O)>0
de, {d%j (<0)
) (112)

Hence, if the cost per day before the victory increases, then the optimal deployment level
increases. This is understandable, since the process will end more rapidly if the initial number of
units is larger.

dr\ d’zm , . dx
d|— |= dx, +—Ldc,_ =0

[deJ dx, " dx, T (113)
2
d—jzdxo*=—didcx
dx, dx, (114)
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_dx
dx, 3 dx, (< O) >0
dcx d*r (< 0)
dx02 (115)

The result shows that if the cost per unit of killed or wounded troops with equipment
increases, then the optimal deployment level increases. This is understandable, since the number of
surviving units is an increasing function of the initial number of units.

dr :—dC—c dT(xo,yO,a,b)+c dx; (xy, ¥,,a,b)

— = =0

dx, dx, dx, "T dx, (116)
ar _ _h g

dx, bx,”—ay, (117)
dx; _ Jb % oo

dx, Jbx,t —ay,’ (118)
dr dC —¥, \/B)CO
== 5 |te, | T T——— |70 119
dx, dx, bx,” —ay, " bx, —ay,’ (119)
B -1
dr _ dC . [bxoz—ayozj 1+c E«/bxoz—ayon _0
e, | || =

dx,  dx,

42 b2 — 2\ 2 . bxz—ayz 2 1 . 2_% .
dxo;ra Z—Cr(—l)(xo_—y:yo] (-37)+e, (_1)(\0/1;—)%()} (Ej(bxo —ay,’) 2 (=) (121)

=
2 22\ b2 — a2 1
dr _ y02 ¢ b.xo ay, + c. Xo ay, (l)(beZ _ ay02 ) 2 150
dx,da Vo ! Jb X, 2

(120)

(122)
dr| d’zm , . d'z
d| — |=—=dx, + da=0
[dxoj dx,> " dx,da (123)
2 2
ar deo*:— dr da
dx, dx,da (124)
_d ‘r
dx, \ dxda) (<0) -0
da (a7 (<0) (125)
dx,’
Hence, if the attrition coefficient a increases, then the optimal deployment increases.
_ ——\-!
dz __dc —c by —ayy” | +c —bxoz o | 0 126
dx, dx, Y & Jb x, (126)

1\2

(bxo2 — ay02 jz s
2 2 2\72 2 2\7
Iz _ (4 (bx0 —ay, ] (xoz)Jer, (-1) b (l)(bxo —ay, jz(xoz)

X, 2 b

(127)
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N
(bxo2 —ay02 Jz R
d’n bx,” —ay,’ N b 1\ bx, —ay,’ )2
b _ T( 0 - 0 j (xoz)_ch " (2)( 0 ; 0 (x02)<0
(128)
3
2 2 2 22\,
' =X, (_CT) . 2 _(CxT) 2x0 2 (lj[bxo - j (129)
dx,db (bx02 _ay02) bx," —ay, |\ 2 b
b
2 2 2 22
d'z = x Cr)o —+ €, X0 |Dx,” —ay, <0 (130)
dx,db (bx02 _ ayoz) 2 b
2 2
d| | 24T g s LT g
dx, ) dx, dx,db (131)
2 2
9T gy =L
dx, dx,db (132)

B d’r
d, _\ dxdb) (>0)
db d’z)  (<0) (133)
dx,’

Hence, if the attrition coefficient b increases, then the optimal deployment decreases. This is
also illustrated in Figure 21.

3. Results

Numerical results are reported from two alternative optimization models. Both models are
documented in the Appendix.

Numerical Model 1:

Continuous optimization model with Newton Raphson iteration:

This model, directly based on the analytical derivations presented in the earlier sections,
determines the optimal decisions and consequences, via the Newton- Raphson method applied to
the first order optimization condition. Table 1. contains the output from the model when the Case 0
parameters are used. In the first and second rows, the parameters are shown. x0_0 is the initial
value of xo, when the iteration method starts. Then, the steps of the iteration are listed. The table
shows the number of the iteration, n, the value of the deployment, x0, the time of the victory, T
(days), the number of killed and wounded soldiers, K, and the change of xo, dx0. The iterations stop
when dx0 is sufficiently close to zero. The optimal results are found in the last row. Table 1. and the
Figures 22-24, show the optimal results in different cases. Table Al in the Appendix includes
numerical information.
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Figure 22. The optimal values of xo, according to Numerical model 1, in alternative cases.
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Figure 23. The optimal values of T, the day of the victory, according to Numerical model 1, in

alternative cases.
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Figure 24. The optimal values of K, the number of killed and wounded soldiers, according to
Numerical model 1, in alternative cases.

Table 1. Output from Numerical Model 1, Case 0.

F cx0 G cT cK
1000 1.000 200000 730.000 2.000
a b y0 x0_0
0. 053470 0. 010450 18000 90000

n x0 T K dx0
0 90000
1 75787 25.395 11866 -14213. 471601
2 71793 27.214 12662 -3993. 160551
3 69728 28. 277 13123 -2065. 419803
4 65658 30. 680 14149 -4069. 855630
5 66147 30. 366 14016 488. 771454
6 66156 30. 360 14014 9. 613701
7 66156 30. 360 14014 0. 003585
8 66156 30.360 14014 0. 000000
Numerical Model 2:

Discrete optimization model with stochastic attrition coefficients:

This model, partly based on the analytical derivations presented in the earlier sections,
determines the optimal decisions and consequences, via numerical calculations, for alternative
deployment levels. The optimal value of the objective functions is defined as the highest value of
the investigated alternatives.

Table 2 contains the output from the model when the Case 0 parameters are used. The cases
and parameters are not all identical as in the Numerical model 1. R_Wx1 is the value of instant
access to the island, and corresponds to G. R_tF corresponds to crx. R_x0 corresponds to the
marginal cost of C(x) multiplied by -1. R_KIAx corresponds to cxr. a_mean and b_mean are the
expected values of the attrition coefficients a and b. a_sigma and b_sigma are the relative standard
deviations of the attrition coefficients a and b. E_xF and E_yF are the expected numbers of soldiers,
x and y, that are still alive after the battle. E_KIAx and E_KIAy are the expected numbers of killed
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or wounded soldiers in the two armies, after the battle. E_Wx is the probability that the army with
the x resources wins the battle and E_WYy is the probability that the army with the y resources wins
the battle. E_tF is the expected time (Day) when one of the armies wins the battle. E_Rx and E_Ry
are the expected objective function values of the two armies, in the unit billion $US. (The details of
E_Ry are not of relevance here. More details may be found in the Appendix.) In the final two rows,
the optimal deployment decision, xo, and the optimal objective function value, E_Rx, are presented.
Table 2.b and the Figures 25-27, show the optimal results in different cases. Table A2 in the
Appendix includes numerical information.
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Optimal value of x0
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Figure 25. The optimal values of xo, according to Numerical model 2, in alternative cases.
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Figure 26. The optimal expected values of E(T), the day of the victory, according to Numerical

model 2, in alternative cases.
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Figure 27. The optimal expected values of K, (= KIAx), the number of killed and wounded soldiers,
according to Numerical model 2, in alternative cases.
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Table 2. Output from Numerical Model 2, Case 0.

RESULTS FROM STBLPL Z30919_Z044 by Peter Lohmander

PARAMETERS =
R Uxl = 300000
RUxz = 0
R_tF = 0
R_x0 = -2
R Klax = @0
a_mean = .0544
b_mean = .0106
a_signa = .2
b_sigma = .2
x0 yo E_xF E_ yF E_KIAx E_KIAy E_MWx E_Wy E_tF E_Rx E_Ry
0 21500 0 21500 0 0 0.0000 1.0000 1 6] -b
5000 21500 0 21354 5000 146 0.0000 1.0000 5 -10 =7
10000 21500 0 20967 10000 533 0.0000 1.0000 10 -20 =7
15000 21500 0 20326 15000 1174 0.0000 1.0000 14 -30 -8
20000 21500 6] 19402 20000 2098 0.0000 1.0000 20 -40 -9
25000 21500 0] 18148 25000 3352 0.0000 1.0000 2b =50 -10
30000 21500 ¢} 16469 30000 5031 0.0000 1.0000 33 -60 -11
35000 21500 123 14130 34877 7370 0.0123 0.9877 42 -bb -15
40000 21500 1260 10888 38740 10612 0.1011 0.8989 54 -50 27
45000 21500 5027 7082 39973 14418 0.3218 0.6782 65 ? -59
50000 21500 12269 3724 37731 17776 0.5579 0.4421 67 67 -106
55000 21500 21773 1601 33227 19899 0.8164 0.1836 61 135 -161
60000 21500 31313 580 ZBAB7? 20920 0.9244 0.0756 53 157 -203
65000 21500 40071 174 24929 21326 0.9807 0.0193 416 164 -236
70000 21500 47937 36 22063 21464 0.9961 0.0039 40 159 -260
75000 21500 55101 3 19899 21497 1.0000 0.0000 35 150 -279
80000 21500 61776 0] 18224 21500 1.0000 0.0000 32 140 -295
85000 21500 68129 6] 16871 21500 1.0000 0.0000 29 130 -308
90000 21500 74259 0] 15741 21500 1.0000 0.0000 27 120 -320
95000 21500 80225 4] 14775 21500 1.0000 0.0000 25 110 -331
100000 21500 86064 0] 13936 21500 1.0000 0.0000 24 100 -340
105000 21500 91800 6] 13200 21500 1.0000 0.0000 23 90 -348
110000 21500 97454 0] 12546 21500 1.0000 0.0000 21 go -356
115000 21500 103040 ¢} 11960 21500 1.0000 0.0000 20 70 -363
120000 21500 108567 0] 11433 21500 1.0000 0.0000 19 60 -368
125000 21500 114044 ¢} 10956 21500 1.0000 0.0000 18 50 -375
130000 21500 119481 6] 10519 21500 1.0000 0.0000 18 40 -380
135000 21500 124878 ¢} 10122 21500 1.0000 0.0000 1?7 30 -385
140000 21500 130247 6] 9753 21500 1.0000 0.0000 16 20 -389
145000 21500 135583 ¢} 9417 21500 1.0000 0.0000 16 10 -394
150000 21500 140899 6] 9101 21500 1.0000 0.0000 15 6] -398
Optimal value of x0 = Opt_x0 = 65000
Optimal value of E_Rx = Opt_E_Rx = 164.212962962963

4. Discussion

The decision problem studied in this paper, to determine the optimal size of a military force to
send to the battle field, is based on several assumptions. We should be aware that, in many
conflicts, the objective function is not mathematically defined. There may be several reasons for this
fact. Maybe, the decision maker simply does not know the potential value of a victory, the costs of
different possible delays of a victory, the true costs of deployment of different numbers of soldiers,
the costs of killed and wounded soldiers and destroyed equipment, and the attrition coefficients.
Maybe the knowledge of mathematics is not sufficient. The analysis and optimization in this paper
has shown that the optimal size of the deployed force is strongly dependent on the listed
parameters. If the value of a potential victory is not sufficiently high, the optimal decision may be to
avoid the battle completely. Then, in a formal analysis, the optimal objective function would be
negative. This way, the costs of deployment, delays, killed and wounded soldiers and destroyed
equipment, can all be avoided. Clearly, without an objective function that covers all relevant costs
and revenues, with numerically specified cost and revenue functions and parameters, it is not
possible to observe and react on such possible negative values, before it is too late. In the case of the
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Battle of Iwo Jima, the value of a potential victory is a function of the properties of the general
strategy plans in the Pacific Ocean and connected areas, during WW II. Hence, it would have been
necessary to investigate and optimize the complete strategic plan, with or without access to the
island Iwo Jima, to be able to determine an approximate value of a potential victory at Iwo Jima.
Furthermore, to be able to determine the costs of different possible time delays before access to the
island would be possible, several alternative general strategies in the Pacific would have to be
developed. Obviously, such analyses could have been very difficult and time consuming, at the
time of the battle, partly because of the lack of modern computers. Nowadays, however, the
computational capacity provides no relevant constraints to this kind of analysis. In the analysis in
this paper, it has been demonstrated that the optimal size of the deployed force, and the expected
numbers of killed or wounded soldiers, are strongly dependent on the marginal cost of potential
delays of a victory. In the deterministic case, if the marginal cost of waiting for a victory doubles,
the optimal size of the deployed force increases by almost 10000 soldiers. Then, the victory appears
4 days earlier and the number of killed or wounded soldiers decreases by more than 2000. In one of
the stochastic cases, if the marginal cost per killed or wounded soldier increases by 5 M $US, the
optimal size of the deployed force increases by 10000 soldiers. Then, the expected victory occurs 11
days earlier and the expected number of killed or wounded soldiers decreases by more than 5000.
Hence, if we are truly interested to develop the optimal strategic plan, and care about the lives of
soldiers, we simply must define the objective function correctly and perform the relevant
optimization.

5. Conclusions

This study focuses on the optimal deployment problem, and determines the optimal size of a
military force to send to the battle field. The decision is optimized, based on an objective function,
that considers the cost of deployment, the cost of the time it takes to win the battle, and the costs of
killed or wounded soldiers and equipment. The cost of deployment is modeled as an explicit
function of the number of deployed troops and the value of a victory with access to a free territory,
is modeled as a function of the length of the time it takes to win the battle. The cost of lost troops
and other equipment, is a function of the size of the reduction of these lives and resources. An
objective function, based on these values and costs, is optimized, under different parameter
assumptions. The battle dynamics is modeled via the Lanchester differential equation system based
on the principles of directed fire. First the deterministic problem is solved analytically, via
derivations and comparative statics analysis. General mathematical results are reported, including
the directions of changes of the optimal deployment decisions, under the influence of alternative
types of parameter changes. Then, the first order optimum condition from the analytical model, in
combination with numerically specified parameter values, is used to determine optimal values of
the levels of deployment in different situations. A concrete numerical case, based on documented
facts from the Battle of Iwo Jima, during WW 1I, is analyzed, and the optimal US deployment
decisions are determined under different assumptions. The known attrition coefficients of both
armies, from USA and Japan, and the initial size of the Japanese force, are parameters. The analysis
is also based on some parameters without empirical documentation, that are necessary to include to
make optimization possible. The optimal solutions are found via Newton Raphson iteration.
Finally, a stochastic version of the optimal deployment problem is defined. The attrition parameters
are considered as stochastic, before the deployment decisions have been made. The attrition
parameters of the two armies have the same expected values as in the deterministic analysis, are
independent of each other, have correlation zero, and have relative standard deviations of 20%. All
possible deployment decisions, with 5000 units intervals, from 0 to 150000, are investigated, and the
optimal decisions are selected. The analytical, and the two numerical, methods, all show that the
optimal deployment level is a decreasing function of the marginal deployment cost, an increasing
function of the marginal cost of the time to win the battle, an increasing function of the marginal
cost of killed and wounded soldiers and lost equipment, an increasing function of the initial size of
the opposing army, an increasing function of the efficiency of the soldiers in the opposing army and
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a decreasing function of the efficiency of the soldiers in the deployed army. The stochastic model
also shows that the probability to win the battle is an increasing function of the size of the deployed
army. When the optimal deployment level is selected, the probability of a victory is usually less
than 100%, since it would be too expensive to guarantee a victory with 100%. Some of many results
of relevance to the Battle of Iwo Jima, are the following: In the deterministic Case 0 analysis, the
optimal US deployment level is 66200, the time to win the battle is 30 days and 14000 US soldiers
are killed or wounded. If the marginal cost of the time to wait for a victory doubles, the optimal
deployment increases to 75400, the time to win is reduced to 26 days, and less than 12000 soldiers
are killed or wounded. In the stochastic Case 0 analysis, the optimal US deployment level is 65000,
the expected time to win the battle is 46 days and almost 25000 US soldiers are expected to be killed or
wounded. If the cost per killed or wounded soldier increases by 5 M$US, the optimal deployment
level increases to 75000. Then, the victory is expected to appear after 35 days and 19900 US soldiers
are expected to be killed or wounded.

Appendix

Numerical Model 1:
Continuous optimization model with Newton Raphson iteration:

Table A1l. Optimal results from Numerical Model 1, in different cases.

Case Case x0 T K
0| Case0 66156 30.36 14014
1| cx0=2 54281 41.17 18384
2| cT=1460 75419 25.551 11935
3| cK=4 77210 24.81 11608
4 | y0=23000 81670 31.862 18716
5| a=0.033470 56857 34.353 10006
6 | b=0.02045 47292 21.703 10018

Software developed in the computer language QB64:
Rem

Rem OptStrat_240114_1950

Rem Peter Lohmander

Cls
Open "AOpt_Out.txt" For Output As #1

DefDbl A-Z

F=1000
cx0=1

G =200000
cT=730
cK=2.0
a=.05347
b =.01045
y0 =18000
x0 =90000
dx0=1
dPdx0=0
d2Pdx02 =0
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T=0

K=0

Print " F o0 G T K"
Print Using "#######4"; F;

Print Using "####.44#"; cx0;

Print Using "######4#4"; G;

Print Using "#####.###"; cT;
Print Using "####.#4#4"; cK

Print "

Print " a b y0 x0_0"
Print Using "###.######"; a; b;
Print Using "########4"; y0;

Print Using "########4"; x0

Print "
Print" n x0 T K dxo0"

Print #1, " F o0 G cI K"
Print #1, Using "######4#4"; F;

Print #1, Using "####.#4#"; cx0;

Print #1, Using "#######4"; G;

Print #1, Using "#####.##4"; T,

Print #1, Using "####.###"; cK

Print #1, "

Print #1, " a b y0 x0_0"
Print #1, Using "### ######"; a; b;
Print #1, Using "#########"; y0;

Print #1, Using "#########"; x0

Print #1, "
Print#1," n x0 T K dx0"

Forn=0To 20
Print Using "###"; n;
Print #1, Using "###"; n;
Ifn=0GoTo2

Print Using "######44"; x0;

Print Using "####.#44"; T,

Print Using "#######4"; K;

Print Using "######4 ####44"; dx0

Print #1, Using "######44"; x0;

Print #1, Using "#### 444", T,

Print #1, Using "######4#4"; K;

Print #1, Using "######4 ##4#44"; dx0

GoTo 3
2 Rem
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If n>0.1 Then GoTo 3
Print Using "######44"; x0
Print #1, Using "#######4"; x0

3 Rem
dx02 = (dx0 * dx0) * .5
If dx02 < 0.000001 Then GoTo 4

dPdx0 = -cx0 - T * (-y0 / (b *x0 * x0 - a * y0 * y0)) - <K * (1 - (b 5)*x0/ (b * x0 *x0 - a * y0 *
y0) *.5)))

d2Pdx02=-cT*(2*b*x0*y0) /(b *x0*x0-a*y0*y0)*2)-cK*(a*(b".5) *y0*y0)/((b
*x0*x0-a*y0*y0)”(3/2)

dx0 = (-1) * dPdx0 / d2Pdx02

Rem Convergence stabilizer
dx0_test = (dx0 * dx0) * 0.5
If dx0_test > 5000 Then dx0 = dx0 * 0.3

x0 = x0 + dx0
T =Log((x0+ ((a/b)~.5)*y0) / (xO- ((a/b) ~ .5) * y0)) / 2 * (a * b) ~ .5)
K=x0-((b*x0*x0-a*y0*y0)/b)".5

Next n

4 Rem

Close #1
End

RESULTS CASE 0 (According to the original software version):
F ox0 G I K
1000 1.000 200000 730.000 2.000
a b y0 x0_0
0.053470 0.010450 18000 90000

x0 T K dx0
90000
75787 25.395 11866 -14213.471601
71793 27.214 12662 -3993.160551
69728 28.277 13123 -2065.419803
65658 30.680 14149 -4069.855630
66147 30.366 14016 488.771454
66156 30.360 14014 9.613701
66156 30.360 14014  0.003585
8 66156 30.360 14014  0.000000
RESULTS CASE 1 (cx0 = 2):

F o0 G T K
1000 2.000 200000 730.000 2.000

NON UGl W= OB
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a b y0 x0_0
0.053470 0.010450 18000 90000

x0 T K dx0

90000

50504 47.215 20624 -39495.713055
53285 42.560 18912 2781.032194
54212 41.263 18419 927.034539
54281 41.170 18384 68.677048
54281 41.170 18384  0.331041
54281 41.170 18384  0.000008
54281 41.170 18384 -0.000000

NGk W -— OB

RESULTS CASE 2 (cT = 1460):
F x0 G T K
1000 1.000 200000 1460.000 2.000
a b y0 x0_0
0.053470 0.010450 18000 90000

x00 T K dx0
90000
83643 22.499 10579 -6357.049117
80557 23.546 11047 -3086.257186
78776 24.200 11338 -1780.791194
75080 25.697 11999 -3695.964467
75416 25.552 11936 335.709627
75419 25.551 11935 3.426741
75419 25.551 11935  0.000350
8 75419 25.551 11935  (0.000000
RESULTS CASE 3 (cK =4.0):
F ox0 G T K
1000 1.000 200000 730.000 4.000
a b y0 x00
0.053470 0.010450 18000 90000

N U R W R, OB

x00 T K dx0

90000

84755 22.147 10421 -5245.016446
82009 23.040 10822 -2746.123451
80375 23.611 11076 -1633.407381
76930 24.923 11658 -3445.217337
77208 24.811 11609 277.570355
77210 24.810 11608  2.164392

77210 24.810 11608  0.000130

77210 24.810 11608 -0.000000

IO Ul W NP OB

RESULTS CASE 4 (y0 = 23000):
F o0 G cI K
1000 1.000 200000 730.000 2.000
a b y0 x0_0
0.053470 0.010450 23000 90000
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x0 T K dx0
90000
86810 29.278 17317 -3190.065298
85006 30.128 17780 -1803.655790
81303 32.067 18826 -3702.890302
81665 31.865 18717 361.867276

81670
81670
81670

N O UGl W= OB

31.862
31.862
31.862

18716
18716
18716

4.387576
0.000630
0.000000

RESULTS CASE 5 (a =0.033470):
F ox0 G I K
1000 1.000 200000 730.000 2.000
a b y0 x0_0
0.033470 0.010450 18000 90000
x00 T K dx0
90000
64609 29.272 8604 -25390.678169
61518 31.085 9109 -3090.877732
59846 32.174 9410 -1671.977709

56484 34.648 10087 -3362.124354

56852 34.357
56857 34.353
56857 34.353
56857 34.353

RO Gl WO, OB

10007
10006
10006
10006

367.209670

5.740354
0.001362
0.000000

RESULTS CASE 6 (b = 0.020450):

F o0 G

cT

cK

1000 1.000 200000 730.000 2.000

a b y0

x0_0

0.053470 0.020450 18000 90000

x0 T

90000

41565 26.243
45537 22.885
47126 21.809
47290 21.704
47292 21.703
47292 21.703
47292 21.703

N U R WN R OS

K

dx0

11892 -48434.782573

10516
10063
10018
10018
10018
10018

Numerical Model 2:

Discrete optimization model with stochastic attrition coefficients:

3972.157477
1588.180413
164.537547

1.493795
0.000121
-0.000000

Table A2. Output from Numerical Model 2, Case 0.

Case Case x0 K
0| Case0 65000 46 24929
1| R_KIAx=-3 70000 40 22063
2 | R_ KIAx=-5 75000 35 19899




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 February 2024 d0i:10.20944/preprints202402.1265.v1

45
3 | R_tF=-2000 75000 35 19899
4 | R_tF =-4000 85000 29 16871

Software developed in the computer language QB64:
Rem

Rem STBLPL_230919_2053_r

Rem Peter Lohmander

DefDbl A-Z
Dim m_value(11), m_freq(11), n_value(11), n_freq(11), a_value(11), b_value(11)

Screen _NewImage(1000, 1000, 256)
Cls

Rem Open "C:\ Users\ Peter\ OneDrive\ Desktop\ STBLPL\STBLPL_Out.txt" For Output As #2
y0 = 21500

R_Wx1 = 300000

R_Wx2=0

R tF=0

R x0=-2
R_KIAx=0

a_mean = 0.0544
b_mean =0.0106

a_sigma =0.2
b_sigma =0.2

c_value = (18 /105) 0.5

Print "

Print" RESULTS FROM STBLPL 230919_2044 by Peter Lohmander”
Print "

Print" PARAMETERS ="
Print " R_ Wx1 ="; R_Wxl1
Print " R Wx2 =";R_ Wx2
Print " R_tF =";R_tF

Print " R x0 =";R_x0
Print " R_KIAx ="; R_KIAx
Print " a_mean ="; a_mean
Print " b_mean =";b_mean
Print " a_sigma="; a_sigma
Print " b_sigma="; b_sigma
Print "

Rem Values of m(i) and n(i)
Fori=1To11



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 February 2024 d0i:10.20944/preprints202402.1265.v1

46

m_value(i) = (i- 6) * c_value * a_sigma
n_value(i) = (i - 6) * c_value * b_sigma
Next i

Rem Relative Frequences of m(i) and n(i)
Fori=1To 6
m_freq(i)=1i/36
n_freq(i)=1i/36
Next i
Fori=7To 11
m_freq(i) = (12 -1) /36
n_freq(i)=(12-1)/ 36
Next i

Rem Values of a and b

Fori=1To11
a_value(i) = a_mean * (1 + m_value(i))
b_value(i) = b_mean * (1 + n_value(i))
Next i

GoTo 100
Rem Optional tests of distributions (if the line before this line is removed)
Em=0
E_m2=0
En=0
E n2=0
Fori=1To 11
E_m=E_m +m_freq(i) * m_value(i)
E_m2=E_m2+m_freq(i) * (m_value(i)) " 2
E_n=E_n+n_freq(i) * n_value(i)
E_n2=E_n2+n_freq(i) * (n_value(i)) * 2
Next i
Print" Em="E_m;" Em2=";E_m2
Print" En="E_n;" En2=",E_n2
Print "
Rem Tests of a and b values
Fori=1To 11
Print"i=";1; " a_value(i) ="; a_value(i); " b_value(i) ="; b_value(i)
Next i
100 Rem

Opt_x0=0
Opt_E_Rx=-99999999

Print" x0 y0 E_xF E_yF E_KIAx E_KIAy E Wx E_Wy E_tF E_Rx E_Ry"
For x0_index = 0 To 150 Step 5
x0 = x0_index * 1000

Rem The expected values of the result variables are set to zero before the (a,b) loop begins.
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E_xF=0

E yF=0
E_KIAx=0
E_KIAy=0
E_Wx=0

E Wy=0
E_tF=0
E_Rx=0
E_Ry=0

Rem Loop with alternative values of a and b

Form_index=1To 11
Forn_index =1 To 11

Prob = m_freq(m_index) * n_freq(n_index)
Rem Engel coefficients
a = a_value(m_index)

b =b_value(n_index)

x =x0
y=y0

For t=1 To 100

xt=x
yt=y

x=xt-a*yt
y=yt-b*xt

If x <1 Then GoTo 2
If y <1 Then GoTo 2

Next t
2 Rem
tF=t

xF =x

yi=y
If xF <0 ThenxF=0
If yf <0 Then yf=0
Wy =0

If xF > yf Then Wx =1
If xF <yf Then Wy =1
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KIAx =x0 - xF
KIAy =y0 - yf

If KIAx > x0 Then KIAx = x0
If KIAy > y0 Then KIAy =y0

Rx = (R_Wx1 * Wx * Exp(R_Wx2 * tF) + R_tF * tF + R_x0 * x0 + R_KIAx * KIAx) / 1000
Ry = (-500000 * Wx * Exp(-.02 * tF) - .3 * y0 - 1 * KIAy) / 1000

E_xF = E_xF + Prob * xF
E_yF=E_yF + Prob * yf

E_KIAx =E_KIAx + Prob * KIAx
E_KIAy = E_KIAy + Prob * KIAy
E_Wx=E_Wx+ Prob * Wx
E_Wy =E_Wy + Prob * Wy

E_tF = E_tF + Prob * tF
E_Rx=E_Rx+ Prob * Rx
E_Ry=E_Ry + Prob * Ry

Next n_index
Next m_index

Print Using "#######4"; x0; y0; E_xF; E_yF; E_KIAx; E_KIAy;
Print Using "###.####"; E_Wx; E_Wy;
Print Using "######44"; E_tF; E_Rx; E_Ry

If E_Rx > Opt_E_Rx Then Opt_x0 = x0
If E_Rx > Opt_E_Rx Then Opt_E_Rx =E_Rx

Next x0_index

Print "

Print " Optimal value of x0 = Opt_x0="; Opt_x0

Print " Optimal value of E_Rx=Opt_E_Rx="; Opt_E_Rx
Print "

3 Rem
Rem Close #2
End
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Results in Case 1:

RESULTS FROM STELPL Z30919_2044 by Peter Lohmander

PARAMETERS =
R_Wx1 = 300000
R_Wx2 = 0
R_tF = 0
R_x0 = -2
R_KIax = -3
a_mean = .0544
b_mean = .0106
a_sigma = .2
b_sigma = .2
x0 yo E_xF E_ yF E Klax E_Klay E_Ux E_Uy E_tF E_Rx E_Ry
0 21500 0 21500 0 0 0.0000 1.0000 1 0] -b
5000 21500 0 21354 5000 146 0.0000 1.0000 5 -25 =7
10000 21500 0 20967 10000 533 0.0000 1.0000 10 -50 =7
15000 21500 0 20326 15000 1174 0.0000 1.0000 14 =75 -8
20000 21500 0] 19402 20000 2098 0.0000 1.0000 20 -100 -9
25000 21500 0] 18148 25000 3352 0.0000 1.0000 2b -125 -10
30000 21500 0] 16469 30000 5031 0.0000 1.0000 33 -150 -11
35000 21500 123 14130 34877 7370 0.0123 0.9877 42 -111 -15
40000 21500 1260 108688 38740 10612 ©0.1011 ©0.8989 54 -166 27
45000 21500 5027 2082 39973 14418 0.3218 0.6782 65 -113 -59
L0000 21500 12269 3?24 37731 17776 0.5579 0.4421 67 -46 -106
55000 21500 21773 1601 33227 19899 0.8164 0©0.1836 61 35 -161
00000 21500 31313 580 28687 20920 0.9244 0.0750 53 1 -203
65000 21500 40071 174 24929 21326 0.9807 0.0193 46 a9 -236
70000 21500 47937 36 22063 21464 0.9961 0.0039 40 93 —-260
75000 21500 55101 3 19899 21497 1.0000 0.0000 35 90 279
80000 21500 61776 0] 18224 21500 1.0000 O.0000 32 85 -295
85000 21500 68129 0] 16871 21500 1.0000 0.0000 29 79 -308
0000 21500 74259 0] 15741 21500 1.0000 O.0000 27 73 -320
95000 21500 80225 0] 14775 21500 1.0000 0.0000 25 b6 -331
100000 21500 8o064 0] 13936 21500 1.0000 O.0000 24 ha8 -340
105000 21500 91800 0] 13200 21500 1.0000 0.0000 23 50 -348
110000 21500 97454 0] 12546 21500 1.0000 O.0000 21 42 -356
115000 21500 103040 0] 11960 21500 1.0000 0.0000 20 34 -363
120000 21500 108567 0] 11433 21500 1.0000 O.0000 19 26 -368
125000 21500 114044 0] 10956 21500 1.0000 0.0000 18 1?7 -375
130000 21500 119481 0] 10519 21500 1.0000 O.0000 18 8 -380
135000 21500 124878 0] 10122 21500 1.0000 ©.0000 17 -0 -385
140000 21500 130247 0] 9753 21500 1.0000 O.0000 16 -9 -389
145000 21500 135583 0] 9417 21500 1.0000 ©.0000 16 -18 -394
150000 21500 140899 0] 9101 21500 1.0000 0.0000 15 27 -398

70000
92 .65213298010572

Optimal value of x0 = Opt_x0
Optimal value of E_Rx = Opt_E_Rx
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Results in Case 2:

RESULTS FROM STELPL 230919 Z044 by Peter Lohmander

PARAMETERS =
R_Ux1 = 300000
R_Ux2 = 0
R_tF = 0
R_x0 = -2
R_Klax = -5
a_mean = .0544
b_mean = .0106
a_sigma = .2
b_sigma = .2
x0 yo E_xF E yF E Klax E_Klay E_UWx E_Uy E_tF E_Rx E_Ry
0 21500 0 21500 0 0 0.0000 1.0000 1 0 -b
5000 21500 0 21354 S000 146 0.0000 1.0000 5 -35 =7
10000 21500 0 20967 10000 533 0.0000 1.0000 10 =70 =7
15000 21500 0 20326 15000 1174 0.0000 1.0000 14 -105 -8
20000 21500 0] 19402 20000 2098 0.0000 1.0000 20 -140 -9
25000 21500 0] 18148 25000 3352 0.0000 1.0000 Zb -175 -10
30000 21500 0] 16469 30000 5031 0.0000 1.0000 33 -210 -11
35000 21500 123 14130 34877 7370 0.0123 0.9877 4z -Z241 -15
40000 21500 1260 10868 38740 10612 0©0.1011 0©0.8989 51 -243 27
45000 21500 L0227 2082 39973 14418 0.3218 0.6782 b5 -193 -59
50000 21500 12269 3?24 37731 17776 0.5579 0.4421 67 -1Z21 -106
55000 21500 21773 1601 33227 19899 0.8164 0.1836 b1 -3 -161
60000 21500 31313 580 28687 20920 0.9244 0.0750 53 14 -203
65000 21500 40071 174 24929 21326 0.9807 0.0193 46 40 -236
70000 21500 47937 36 22063 21464 0.9961 0.0039 40 49 —Z60
75000 21500 55101 3 19899 21497 1.0000 0.0000 35 = -279
80000 21500 61776 0] 18224 21500 1.0000 0.0000 32 49 -295
85000 21500 68129 0] 16871 21500 1.0000 O.0000 29 46 -308
90000 21500 74259 0] 15741 21500 1.0000 O.0000 'y 41 -320
95000 21500 80225 0] 14775 21500 1.0000 00000 25 36 -331
100000 21500 86064 0] 13936 21500 1.0000 O.0000 24 30 -340
105000 21500 91800 0] 13200 21500 1.0000 00000 23 24 -348
110000 21500 97454 0] 12546 21500 1.0000 0.0000 21 17 -356
115000 21500 103040 0] 11960 21500 1.0000 O.0000 20 10 -363
120000 21500 108567 0] 11433 21500 1.0000 O.0000 19 3 -368
125000 21500 114044 0] 10956 21500 1.0000 O.0000 18 -5 -375
130000 21500 119481 0] 10519 21500 1.0000 0.0000 18 -13 -380
135000 21500 124878 0] 10122 21500 1.0000 0.0000 17 -Z1 -385
140000 21500 130247 0] 9753 21500 1.0000 0.0000 16 -Z29 -389
145000 21500 135583 0] 9417 21500 1.0000 0.0000 16 -37 -394
150000 21500 140899 0] 9101 21500 1.0000 0.0000 15 -46 -398

Optimal value of x0 = Opt_xO0 = 75000
Optimal value of E_Rx = Opt_E_Rx = 50.50366275890885
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Results in Case 3:

RESULTS FROM 3TBLPL Z30919_Z044 by Peter Lohmander

PARAMETERS =
R_Ux1 = 300000
R_Ux2 = 0
R_tF = 2000
R_x0 = -2
R Klax = 0
a_mean = .0544
b_mean = .0106
a_sigma = .2
b_sigma = .2
x0 yo E_xF E yF E_KIax E_Klay E_Ux E_ Uy E_tF E_Rx E_ Ry
0 21500 0 21500 4] 0 0.0000 1.0000 1 -2 -6
5000 21500 0 21354 5000 146 0.0000 1.0000 5 —Z20 =7
10000 21500 0 20967 10006 533 0.0000 1.0000 10 -39 =7
15000 21500 0 20326 15000 1174 0.0000 1.0000 14 -9 -8
20000 21500 0 19402 20000 2098 0.0000 1.0000 20 -7 -9
25000 21500 0 18148 25000 3352 0.0000 1.0000 26 -101 -10
30000 21500 0 16469 30000 5031 0.0000 1.0000 33 -125 -11
35000 21500 123 14130 34877 7370 0.0123 0.9877 42 -151 -15
40000 21500 1260 10888 36740 10612 ©0.1011 0.83939 54 -159 -27
45000 21500 5027 7082 39973 14418 0.3218 0.6782 65 -123 -59
50000 21500 12269 324 3N 17776 0.5579 0.4421 67 -b7? -106
55000 21500 21773 1601 33227 19899 0.8164 0.1836 61 12 -161
6OOOE 21500 31313 5B0 2B68Y 20920 0.9244 0.0756 53 50 -203
65000 21500 40071 174 24929 21326 0.9807 0.0193 46 e -236
70000 21500 47937 36 22063 21464 0.9961 0.0039 40 79 —-260
75000 21500 55101 3 19899 21497 1.0000 0.0000 35 9 -2
80000 21500 61776 0 18224 21500 1.0000 0.0000 32 76 -295
85000 21500 68129 0 16871 21500 1.0000 O0.0000 29 71 -308
0000 21500 74259 0] 15741 21500 1.0000 0.0000 27 65 -320
95000 21500 80225 0 14775 21500 1.0000 0.0000 25 59 -331
100000 21500 86064 0] 13936 21500 1.0000 00000 24 52 -340
105000 21500 91800 0] 13200 21500 1.0000 O0.0000 23 45 -348
110000 21500 97454 0 12546 21500 1.0000 O0.0000 21 37 -356
115000 21500 103040 0] 11960 21500 1.0000 0.0000 20 29 -363
120000 21500 108567 0 11433 21500 1.0000 0.0000 19 21 -368
125000 21500 114044 0 10956 21500 1.0000 O0.0000 18 13 -375
130000 21500 119481 0] 10519 21500 1.0000 O0.0000 18 5 -380
135000 21500 124878 0 10122 21500 1.0000 00000 17 . -385
140000 21500 130247 0 9753 21500 1.0000 0.0000 16 -13 -389
145000 21500 135583 0] 9417 21500 1.0000 0.0000 16 -Z21 -394
150000 21500 140899 0] 9101 21500 1.0000 0.0000 15 -30 -398
Optimal value of x0 = Opt_x0 = 75000
Optimal value of E_RBx = Opt_E_Rx = 79.00771604938276
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Results in Case 4:

RESULTS FROM STBLPL Z30919_Z044 by Peter Lohmander

PARAMETERS =
R_Wx1 = 300000
R_Wx2 = 0
R_tF = —4000
R_x0 = -Z
R Klax = @
a_mean = .0514
b_mean = .0106
a_sigma = .2
b_sigma = .2
*0 yo E_xF E_yF E_KIax E_KInay E_UWx E_ly E_tF E_Rx E_Ry
o 21500 0 21500 0 0 0.0000 1.0000 1 | -b
5000 21500 0 21354 5000 146 0.0000 1.0000 5 -30 -7
10000 21500 0 20967 10000 533 0.0000 1.0000 10 -58 -7
15000 21500 0 20326 15000 1174 0.0000 1.0000 14 -B88 -8
20000 21500 0 19402 20000 2098 0.0000 1.0000 20 -118 -9
25000 21500 0 18148 25000 3352 0.0000 1.0000 26 -152 -10
Jooge 21500 0 16469 30000 5031 0.0000 1.0000 33 -191 -11
35000 21500 123 14130 34877 7370 0.0123 0.9877 12 -236 -15
40000 21500 1260 10888 38740 10612 ©.1011 0.3989 54 -268 =27
45000 21500 5027 082 39973 14418 0.3218 0.6782 65 -252 -59
50000 21500 12269 3724 37?31 17?76 0.5579 0.4421 67 -201 -106
L5000 21500 21773 1601 33227 19899 0.8164 0.1836 61 -111 -161
60000 21500 31313 580 28687 20920 0.9244 0.0756 53 —ob -203
65000 21500 40071 174 24929 21326 0.9807 0.0193 46 -19 -236
70000 21500 47937 36 22063 21464 0.9961 0.0039 40 -1 -Z2b0
ho00 21500 55101 3 19899 21497 1.0000 0.0000 35 8 -279
goooo 21500 61776 0 18224 21500 1.0000 0O.0000 32 12 -295
85000 21500 68129 0 16871 21500 1.0000 0O.0000 29 12 -308
0000 21500 4259 0 15741 21500 1.0000 0.0000 27 11 -320
95000 21500 80225 0] 14775 21500 1.0000 0.0000 25 8 -331
100000 21500  §6064 0] 13936 21500 1.0000 O0.0000 24 4 -340
105000 21500 91300 0] 13200 21500 1.0000 O.0000 23 -0 -348
110000 21500 97454 0 12546 21500 1.0000 0O.0000 21 -5 -356
115000 21500 103040 0 11960 21500 1.0000 O.0000 20 -11 -363
120000 21500 108567 0 11433 21500 1.0000 0O.0000 19 -18 -368
125000 21500 114044 0] 10956 21500 1.0000 O.0000 18 —-24 -375
130000 21500 119481 0] 10519 21500 1.0000 0O.0000 18 -31 -380
135000 21500 124378 0] 10122 21500 1.0000 O.0000 17 -38 -385
140000 21500 130247 0 9753 21500 1.0000 0O.0000 16 -45 -389
145000 21500 135583 0 9417 21500 1.0000 0O.0000 16 -53 -394
150000 21500 140899 0 9101 21500 1.0000 00,0000 15 -b1 -398
Optimal value of x0 = Opt_x0 = 85000
Optimal value of E Bx = Opt_E_Rx = 12.09876543209877
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