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Article 

Optimal Deployment 
Peter Lohmander 

Optimal Solutions, Hoppets Grand 6, SE-903 34, Umea, Sweden; peter@lohmander.com 

Abstract: This study focuses on the optimal deployment problem, and determines the optimal size of a 
military force to send to the battle field. The decision is optimized, based on an objective function, that 
considers the cost of deployment, the cost of the time it takes to win the battle, and the costs of killed and 
wounded soldiers with equipment. The cost of deployment is modeled as an explicit function of the number 
of deployed troops and the value of a victory with access to a free territory, is modeled as a function of the 
length of the time it takes to win the battle. The cost of lost troops and equipment, is a function of the size of 
the reduction of these lives and resources. An objective function, based on these values and costs, is 
optimized, under different parameter assumptions. The battle dynamics is modeled via the Lanchester 
differential equation system based on the principles of directed fire. First, the deterministic problem is solved 
analytically, via derivations and comparative statics analysis. General mathematical results are reported, 
including the directions of changes of the optimal deployment decisions, under the influence of alternative 
types of parameter changes. Then, the first order optimum condition from the analytical model, in 
combination with numerically specified parameter values, is used to determine optimal values of the levels of 
deployment in different situations. A concrete numerical case, based on documented facts from the Battle of 
Iwo Jima, during WW II, is analyzed, and the optimal US deployment decisions are determined under 
different assumptions. The known attrition coefficients of both armies, from USA and Japan, and the initial 
size of the Japanese force, are parameters. The analysis is also based on some parameters without empirical 
documentation, that are necessary to include to make optimization possible. These parameter values are 
motivated in the text. The optimal solutions are found via Newton- Raphson iteration. Finally, a stochastic 
version of the optimal deployment problem is defined. The attrition parameters are considered as stochastic, 
before the deployment decisions have been made. The attrition parameters of the two armies have the same 
expected values as in the deterministic analysis, are independent of each other, have correlation zero, and 
have relative standard deviations of 20%. All possible deployment decisions, with 5000 units intervals, from 0 
to 150000 troops, are investigated, and the optimal decisions are selected. The analytical, and the two 
numerical, methods, all show that the optimal deployment level is a decreasing function of the marginal 
deployment cost, an increasing function of the marginal cost of the time to win the battle, an increasing 
function of the marginal cost of killed and wounded soldiers and lost equipment, an increasing function of 
the initial size of the opposing army, an increasing function of the efficiency of the soldiers in the opposing 
army and a decreasing function of the efficiency of the soldiers in the deployed army. With stochastic 
attrition parameters, the stochastic model also shows that the probability to win the battle is an increasing 
function of the size of the deployed army. When the optimal deployment level is selected, the probability of a 
victory is usually less than 100%, since it would be too expensive to guarantee a victory with 100% 
probability. Some of many results of relevance to the Battle of Iwo Jima, are the following: In the 
deterministic Case 0 analysis, the optimal US deployment level is 66200, the time to win the battle is 30 days 
and 14000 US soldiers are killed or wounded. If the marginal cost of the time it takes to win a victory doubles, 
the optimal deployment increases to 75400, the time to win a victory is reduced to 26 days, and less than 
12000 soldiers are killed or wounded. In the stochastic Case 0 analysis, the optimal US deployment level is 
65000, the expected time to win the battle is 46 days and almost 25000 US soldiers are expected to be killed or 
wounded. If the cost per killed or wounded soldier increases from 0 to 5 M $US, the optimal deployment 
level increases to 75000. Then, the victory is expected to appear after 35 days and 19900 US soldiers are expected 
to be killed or wounded. 

Keywords: Lanchester equations; attrition parameters; differential equation system; numerical 
iteration 
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1. Introduction 

Competition can be observed in many different areas. In the domain of economics, we find 
competition between nations, in international trade theory, between companies, in market theory, 
and between individuals, in labor economics. Shatz (2020) gives a wide perspective on connected 
issues. Biological theory includes models of competition between different species, including many 
types of animals and plants. Compare the field covered by Ianelli and Pugliese (2014). Competition 
between nations and coalitions can also lead to wars and other conflicts. Relevant mathematical 
theories and examples are found in Washburn and Kress (2009). In all these kinds of competition, 
we find several interesting and relevant scientific questions, such as: How do the different parties in 
the competition affect the other parties? How will the system develop over time? Can some actors 
influence these competition situations and may optimal strategies be derived? 

When scientific models are developed to describe, analyze, and manage the competition 
situations in economics, biology, and war science, it often turns out that the mathematical structure 
is very similar. In this study, we will focus on typical military problems. The general results and 
approaches can however be expected to be useful also in the fields of biology and economics. Wars 
are military conflicts, usually between nations. Sometimes, the participants belong to, or are 
cooperating with, other nations or coalitions. A recent study of how such wars can be modelled, 
and the strategies optimized, using optimal control theory, is Lohmander (2023). Key ingredients in 
that study are differential equations that show how the involved parties influence each other, via 
attrition warfare, and how the total war system can be controlled and optimized via external arms 
support. Wars can also be studied at lower levels of command and within more constrained 
geographical regions. Lohmander (2019a) and Lohmander (2019b) are two such examples.  

In military operations research, the famous article by Lanchester (1916) is often used as a 
mathematical foundation. There, the general idea is that the sizes of two opposing forces, X and Y, 
change over time, according to principles expressed as two differential equations. One of these 
differential equation systems based on the principles of directed fire, which has often been found to 
fit empirical time series data from real battles, very well, states that the time derivative of the size of 
force X, is negative and proportional to the size of force Y. Furthermore, the time derivative of the 
size of force Y, is negative and proportional to the size of force X. In battles with aimed fire, the 
attrition of a force can under simplified assumptions be shown to be proportional to the number of 
enemies. Lanchester models for aimed fire are differential equation systems that can be applied to 
describe and derive the dynamics of such battles. Estimations of attrition coefficients, the force 
reductions per time unit, per unit of the enemy force, have been reported in the literature, based on 
time series data from historical battles. Engel (1954), Bracken (1995), Tam (1998), Hung et al (2005) 
and Stymfal (2022) include such applications and estimations of the Lanchester models based on 
real military time series from different battles. Braun (1993) describes some of the applied 
differential equations and approaches. 

Relevant empirical data would ideally contain complete time series of the numbers of units of 
both forces. Sometimes, the time series are incomplete, and only the time series of one force is 
known. In some cases, the time series of one force is completely known, but only the initial and the 
final sizes of the enemy force are known. In earlier research, estimations of attrition coefficients 
have sometimes been made in discrete time, based on the observed time series data of one force, X, 
and the assumed and calculated time path of the size of the other force, Y. Such estimations have 
been made in several steps.  

Mostly, deterministic models are approximations of a reality that is not perfectly predictable. 
Of course, this is true also in the present area of analysis. Rothschild and Stiglitz (1970) and (1971) 
define risk, and increasing risk, in mathematically convenient ways, which makes it possible to 
study how stochastic parameter variations affect variables, systems, and optimal decisions. 
Lohmander (1986) and (1988) combines and applies the risk definitions of Rothschild and Stiglitz 
(1970) and (1971) with the famous Jensen’s inequality, Jensen (1906), biological production 
functions, and price series of natural resources, via analytical stochastic dynamic programming, to 
show how increasing risk in market prices and growth processes dynamically affect optimal 
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decision in biological production. In a similar way, stochastic parameters should be expected to 
influence the decisions and outcomes of dynamic competition, battles, and wars. This is also 
investigated and reported in this paper. 

The literature related to the Lanchester differential equations, contains generalizations and 
modifications in different directions. Often, the motivation is rational decision support, such as 
determination of the optimal size of some military force. Some of these studies concern general 
mathematically derived principles and results, and other articles have real military decision 
problems in mind. An early article in this class is Taylor (1979). He investigates the initial force 
commitment problem in battles governed by Lanchester equations. He defines three different 
decision criteria, or objective functions, namely the victor’s loss, the loss ratio, and the loss 
difference. The analysis is based on general qualitative comparative statics methods, and the 
determination of the signs of partial derivatives. He finds that the optimal initial force commitment 
decision is sensitive to the decision criterion. From the perspective of economic theory, the 
conclusion that objective functions influence the optimal decisions, are not surprising. However, 
from an economic perspective, the articles choice of objective function seems arbitrary. If military 
missions should be economically rational, it is important to define costs and revenues as functions 
of possible military decisions, and to let these functions be used to define the objective function that 
governs the military decisions. The models and analyses in this this paper are created to optimize 
strategic decisions problems with explicit economic objectives in mind. 

Another author that studies the optimal force structure, is Chan (2016). He focuses on the 
Lanchester square law, general findings from the battle of Trafalgar, and the quality and quantity of 
the Singapore defense forces. A key conclusion is that it is necessary to maintain high quality of the 
forces in peace time, since possible opponents may have large numbers of attacking units. 
Minguela-Castro et al (2021) presents a multi stage decision support model, for strategic military 
decision making. With such a structure, it is possible to adapt the forces to new information about 
the actions taken by the enemy and other possible events. The Battle of Crete, during World War II, 
is discussed in relation to the dynamic model. The objective function is based on the expected value 
of battle casualties and the fulfillment of the mission. Exactly how these objectives are combined is 
not clear to the reader. Obviously, the objective function is not defined in economic terms. 
Lystopadova and Khalaim (2023) give a general introduction to Lanchester differential equations 
and include some examples from the war during the years 2022 to 2024 in Ukraine. They write that 
dynamic force predictions can be made, based on the fire powers of the Russian and Ukrainian 
armies.  

Some studies extend the Lanchester model system to cover multi front problems, optimal 
dynamic reinforcements, international cooperation, and combinations of units from the army, the 
navy and/or the air force. The optimal partitioning of available military defense resources to 
counter attacks in different fronts, with Lanchester dynamics, is studied by Sheeba and Ghose 
(2008). The decision problem is defined as a Time-Zero-Allocation problem, and analytical and 
numerical solutions are given. Chen and Qui (2014) investigate the optimal reinforcement problem. 
They apply Lanchester dynamics within a differential game model and derive optimal 
reinforcement strategies. Algorithm convergence results and numerical examples are included. 

The Lanchester model can also be extended to handle cooperation between different players 
and endogenously optimized intelligence levels. This is done, via optimal control, by Hy et al 
(2020), in a study on optimal counter terrorism. Kostic and Jovanovic (2023) is a promising study 
from a methodological point of view. Different kinds of forces, such as air force and army, 
cooperate. During different phases of a war, they can cooperate in several ways. The system of 
differential equations is governed by Lanchester equations, but the set of equations changes at 
different points in time. This way, rather complicated dynamic strategies that involve different 
kinds of forces can be defined, studied, and rapidly optimized, with a simple mathematical 
structure and limited numerical and computational efforts. Of course, a sufficiently simple model 
structure, that makes it possible to easily communicate the general model ideas and results to the 
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involved parties, and that also makes it quite clear how an objective function can be developed to 
cover the essential costs and revenues of the system, are all important to successful applications.  

In several mathematical models, with fundamental links to the classical Lanchester system, 
partly new assumptions are introduced. The classical ordinary differential equations are replaced 
by partial differential equations and more dimensions, the number of parties in the conflicts 
increases, networks are introduced and perhaps even deterministic chaos appears. With such 
adjusted model assumptions, it is sometimes possible to illustrate, discuss and highlight several 
principles from classical military strategy. Often, however, such model developments make it 
difficult or impossible to find closed form solutions. Still, qualitative analysis may lead to some 
general qualitative results, and particular numerical specifications and iteration can be used to 
create examples and illustrations of typical solutions. Spradlin and Spradlin (2007) move away from 
the ordinary Lanchester differential equations to partial differential equations. With this approach, 
they do not only investigate the development of the system over time. The spatial distributions of 
the armies over the battlefield are simultaneously studied. Numerical simulations with this 
approach are reported.  

Lanchester models usually handle two party conflicts. Kress et al (2018), however, extend the 
analysis to three party conflicts. The motivation includes conflicts in Syria, where, as they write, 
several parties have been involved, such as Russia, Turkey, Iran, al-Qaeda, Jabahat al Nusra, ISIS, 
the free Syrian army, Hezbollah, Kurds, and the Assad regime. The results are reported in phase 
portraits, that show regions where different parties can win the war. It is important to be aware that 
the study and the results are based on fixed force allocations. It is quite clear that other results can 
be obtained in case the different parties are allowed to adaptively change the behavior over time, as 
the situation develops. The authors conclude that, the possibility of temporary cooperation would 
lead to many challenges in a differential game setup. This is certainly true. It is also true that such a 
development of the dynamic multiplayer games seems necessary, if we are interested to understand 
and control the real and highly complicated conflicts in the region. Sometimes, it is interesting and 
important to generalize the Lanchester system to cover more strategy dimensions. Kalloniatis et al 
(2020) do that, via the development of a networked Lanchester model, with fire integration and 
manouvres. McCartney (2022) studies repeated battles with reinforcements. The reinforcements 
follow different principles, that can give different outcomes. With nonlinear reinforcements, we 
may obtain quasi-periodic behavior, deterministic chaos, and fractal partitioning. In our present 
world, the situation can in many regions be interpreted as chaotic. Maybe, models of this type are 
useful to model such phenomena.  

The Lanchester differential equation system is a highly relevant and useful basis for qualified 
strategy optimization. Fundamental facts, such as sizes of forces and attrition coefficients, that 
determine the outcomes of conflicts, are used in a mathematically straight forward way. Without 
fundamental mathematical descriptions of the forces in action, logically defendable alternatives 
simply do not, and cannot, exist.  

This study: 
This study has the ambition to determine the optimal size of the military force to send to the 

battle field. This decision is optimized, based on an objective function, that considers the costs of 
deployment, the cost of the time it takes to win the battle, and the costs of killed and wounded 
soldiers with equipment. The optimal decisions are determined via analytical and numerical 
methods. 

Step 1: 
First the deterministic optimization problem is defined and solved, based on an economically 

specified objective function and explicit general solution of the ordinary Lanchester differential 
equation system. Comparative statics analysis, via differentiation, determines how the optimal 
decisions change under the influence of parameter changes. Then, the first order optimum 
condition and the Newton-Raphson method, are used to determine the optimal decisions, in a set of 
numerically specified cases. The method is illustrated via empirically estimated parameters from 
the Battle of Iwo Jima, during WW II. 
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Step 2: 
Stochastic attrition coefficients are introduced, since these coefficients cannot generally be 

assumed to be perfectly known before battles start. The expected value of the total result, in 
economic terms, is optimized. Optimal decisions are determined, with consideration of the 
stochastic attrition parameters, in different numerically specified cases. The outcomes of the battles, 
such as the numbers of killed and wounded soldiers, and the time it takes before one party wins the 
battle, are affected by the stochastic attrition parameters, and cannot be perfectly predicted. It is 
important to be aware that, even if the optimal number of soldiers is sent to the battle, it is possible 
that the enemy wins the victory. It would simple be too costly to make sure that, whatever happens 
and whatever the attrition parameter values turn out to be, you will always win a possible battle. 
For this reason, a relevant objective function must be defined and calculated as a function of 
different kinds of decision dependent stochastic outcomes, including a decision dependent 
probability to win the battle.  

2. Materials and Methods 

This study concerns optimization of strategical military decisions. The perspective on the topic 
is as general as possible and the analysis is based on the famous Lanchester differential equations 
under the influence of directed, or aimed, fire, as illustrated in Equation (1). There we see how the 
state of the system, ( , )x y , representing the sizes of two opposing forces, changes over time, 
, 0t t T≤ ≤ < ∞ . The two parameters, ( , )a b , are called attrition coefficients. Newtonian notation, 

with time derivatives marked by dots, is used.      

(1. )
0, 0, 0, 0

(1. )

x ay a
a b x y

y bx b

 = − > > > >
 = −





 (1) 

In the later sections of this paper, general analytical methods are used to analyze and solve this 
equation system and the more complicated problem, where the solutions of the differential 
equation system (1) are used as subproblems within general strategy optimization problems. Since 
the differential equation system is a central component of the relevant strategy optimization 
problems, we start with a briefing on the properties of the system (1), based on fundamental 
methods, including qualitative analysis and simulation. 

From (1), we construct (2).   

(2. )
0, 0, 0, 0

(2. )

x ay a
x x a b x y
y bx b
y y

 − =


> > > >
 −

=






 (2) 

Consider this special case: The time derivatives of the sizes of the resources, divided by the 
sizes of that resources, are equal. In such a case, the time path of (x, y) should follow a straight line 
in the first quadrant, moving towards origo. This is seen below. From (2) we get (3). 

x y ay bx
x y x y

   − − = ⇒ =     

 

 (3) 

Equation (3) can be rewritten as (4). 
bx ay
y x
=  (4) 

From (4) we derive (5), which is consistent with the famous Lanchester square law. Compare 
Lanchester (1916). 

2 2bx ay=  (5) 
From (5) we get (6), which leads to (7) and (8). 
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2 2ax y
b

=  (6) 

ax y
b

=  (7) 

by x
a

=  (8) 

Figure 1 shows the time path of (x, y) in the special case, when Equation (5) holds. Note that (x, 
y) follows the time path in the direction of the arrows. The lengths of these arrows indicate how 
rapidly (x, y) moves. The arrows get shorter as we move towards origo. The reason is that the time 
derivative of x is proportional to -y, and the time derivative of y is proportional to -x. Compare (1). 
Hence, x and y are strictly decreasing functions of time. In fact, since (x, y) moves slower and 
slower, and the speed approaches zero, as (x, y) approaches origo, (x, y) never reaches origo. 
Compare Equations (9) and (10). 

 
Figure 1. The time path of (x, y) in the special case, when bx2=ay2. 

( ) ( )2 2lim 0 , ( ) ( )
t

x b x t a y t
→∞

= =


 (9) 

( ) ( )2 2lim 0 , ( ) ( )
t

y b x t a y t
→∞

= =


 (10) 
In Figure 2, we find the time path of (x, y) in the special case, when bx2=ay2, as a function of the 

ratio b/a. The coefficients a and b may change for many different reasons. We may consider the 
following cases:  
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Figure 2. The time path of (x,y) in the special case, when bx2=ay2, is a function of the ratio b/a. The 
graph shows how the time path changes if the ratio b/a increases or decreases. 

Case 1: A force with x units defends an area and another force with y units attacks the same 
area. If the defender prepares the defense efficiently, it is more difficult to reduce x, and easier to 
reduce y. In other words, a decreases and b increases. Compare the differential Equations (1). This 
means that the ratio b/a increases. Then, as Figure 2 shows, the time path of the special case shifts 
from the black dotted line to red dotted line. 

Case 2: A force with y units defends an area and another force with x units is attacking the 
same area. If the defender prepares the defense efficiently, it is more difficult to reduce y, and easier 
to reduce x. This means that one parameter, a, increases and the other, b, decreases. Compare the 
differential Equations (1). This means that the ratio b/a decreases. Then, as Figure 2 shows, the time 
path of the special case moves from the black dotted line to the blue dotted line. 

Deviations from the line by x
a

= , imply that (x, y) will not converge towards origo. This is 

shown in Figure 3. If we start at a point on the original time path (yellow), and let the value of x 
increase, we move to the blue point. Then, the adjusted time path of (x, y) will later reach a point on 
the x-axis, x1. There, x > 0 and y = 0. If we start at a point on the original time path (yellow), but let 
the value of y increase, we move to the red point. Then, the new time path of (x,y) will reach a point 
on the y-axis, y1. There, x = 0 and y > 0.  
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Figure 3. Deviations from the line 
by x
a

= , imply that (x, y) will not converge to origo. 

The results found in Figure 4 follow from Figure 3. T is the point in time when x or y equals 
zero. If (x,y) at some point in time, t, such that t<T, is found in the blue sector, then x(T)>0 and 
y(T)=0. If (x,y) at some point in time, t, such that t<T, is found in the red sector, then x(T)=0 and 
y(T)>0.  

 

Figure 4. Deviations from the line 
by x
a

= , imply that (x, y) will not converge to origo. T is the 

point in time when x or y equals zero. If (x, y) at some point in time, t, such that t<T, is found in the 
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blue sector, then x(T)>0 and y(T)=0. If (x, y) at some point in time, t, such that t<T, is found in the red 
sector, then x(T)=0 and y(T)>0. 

Now, we will investigate the dynamics of (x, y) when we use some well documented 
empirically determined parameters from a real case. Compare the studies of the battle of Iwo Jima, 
by Engel (1954), Braun (1993), Washburn and Kress (2009) and by Stymfal (2022). In this study, we 
consider the data and dynamics from day D+6, when all the US troops had landed on Iwo Jima, 
according to the definitions in Stymfal (2022). According to the empirical data, x0 = 66150 and y0 = 
18000. In the different studies, the attrition coefficient estimates differ marginally. Here, we use 
these figures, very close to all reported estimates: a = 0.05347 and b = 0.01045. In this paper, x0 is 
treated as a decision variable. Different ways to optimize x0, and the optimal values of x0 in 
different situations, will be determined. In the graph in Figure 5, x0 is assumed to be 65000.  

 

Figure 5. x(t) and y(t), for t = 0, 1, …, 31. t = time (days), (x0, y0) = (65000, 18000). a = 0.05347 and b = 
0.01045. The graph is constructed via a discrete time approximation of the differential equation 
system (1). Each time step represents one day (24 hours). Time t = 0 corresponds to time D+6, when 
all US troops had landed on Iwo Jima, in Stymfal (2022). 

Figure 6 shows the positions of (x, y) in the beginnings of each day, during the battle. In Figure 
7, the same values of (x, y) have been used to construct a continuous function. 
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Figure 6. (x(t), y(t)), for t = 0, 1, …, 31, in case (x0, y0) = (65000, 18000), a = 0.05347 and b = 0.01045. 
The graph is constructed via a discrete time approximation of the differential equation system (1). 
Each time step represents one day (24 hours). Note that the distances between the neighbor points 
decreases as T increases. 

 
Figure 7. Continuous time path of (x(t), y(t)). (x0, y0) = (65000, 18000), a = 0.05347 and b = 0.01045. 
The graph is constructed via a discrete time approximation of the differential equation system (1). 

Now, let us determine the initial value of x, x0, that leads to the special case, bx2=ay2, based on 
the initial value of y, y0 = 18000, and the parameters a = 0.05347 and b = 0.01045. See Equation (11). 
With that value of x0, the time derivatives of the size of the resources, divided by the sizes of the 
resources, are equal. In that case, the time path of (x, y) follows a straight line in the first quadrant, 
moving towards origo. 

0 0
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b
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(11) 
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In Figure 8 we see how x(t) and y(t) develop over time, in case x0 = 40716. The attrition 
coefficients have the same values as in Figure 5. Note, in Figure 8, how both resources decrease over 
time, and that the ratio x/y remains constant. In Figure 5, y was reduced to zero at t = 31. Figure 8, 
shows x and y during the first 100 days. They both approach zero, but will never reach zero. The 
conflict will continue forever. 

 
Figure 8. x(t) and y(t), for t = 0, 1, …, 100. t = time (days), (x0, y0) = (40716, 18000). a = 0.05347 and b = 
0.01045. The graph is constructed via a discrete time approximation of the differential equation 
system (1). Each time step represents one day (24 hours). . 

In Figures 9 and 10, we see that the point (x, y) really moves in a straight line towards origo, 
during the first 100 days. The sequence of points shows that the speed slows down. Consequently, 
(x, y) never reaches origo. The conflict continues forever. 
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Figure 9. (x(t), y(t)), for t = 0, 1, …, 100. t = time (days), (x0, y0) = (40716, 18000). a = 0.05347 and b = 
0.01045. The graph is constructed via a discrete time approximation of the differential equation 
system (1). Each time step represents one day (24 hours). . 

 

Figure 10. A continuous time approximation of (x(t), y(t)), for 0 < t < 100. t = time (days), (x0, y0) = 
(40716, 18000). a = 0.05347 and b = 0.01045. 

If x0 is reduced to 30000, which is less than 40716, as derived in Equation (11), the system 
develops quite differently. The Figures 11–13 show how x reaches zero when y still has a value 
close to 12000. 
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Figure 11. x(t) and y(t), for t = 0, 1, …, 39. t = time (days), (x0, y0) = (30000, 18000). a = 0.05347 and b = 
0.01045. The graph is constructed via a discrete time approximation of the differential equation 
system (1). 

 
Figure 12. (x(t), y(t)), for t = 0, 1, …, 39. (x0, y0) = (30000, 18000). a = 0.05347 and b = 0.01045. The 
graph is constructed via a discrete time approximation of the differential equation system (1). 
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Figure 13. A continuous time approximation of (x(t), y(t)), for 0 < t < 39. t = time (days), (x0, y0) = 
(30000, 18000). a = 0.05347 and b = 0.01045. The graph is constructed via a discrete time 
approximation of the differential equation system (1). 

Clearly, we have seen that the initial value of x, x0, strongly influences several things of 
importance to the decision makers. Consider two decision makers, BLUE and RED. BLUE is the 
commander of the x resources, and RED commands the y resources. BLUE is the defender and RED 
is a potential attacker. Figure 4 can be used to determine the lowest value of x0 that makes it 
possible to get a solution such that BLUE wins a potential conflict, in the sense that BLUE will have 
a strictly positive value of x after a conflict where RED has lost all resources, which means that y is 
zero. BLUE can also use Equation (7) directly, to determine a value of x, conditional on the observed 
value of y. Then, if x is marginally increased, BLUE will not be completely out of x resources after a 
potential conflict, as seen in Figure 3. Hopefully, from the BLUE perspective, this fact can also stop 
RED from attacking BLUE. 

In principle, it is possible to determine x0 this way: Estimate the values of y, a and b. Then, use 
Equation (7) to determine a value of x, called x2, that makes sure that we have a point on the time 
path leading to origo, found in Figure 1. Then, let the value of x0 be x2 + x3, where x3 > 0 makes sure 
that we are in the safe BLUE region, according to Figure 4. Of course, if we increase x3, this 
generally costs money. During peace time, it is economically tempting to reduce the value of x3 as 
much as possible. This has also been seen in several countries, during the period after World War II.  

It is important to be aware that the reduction of x3 does not only reduce the defense budget. 
The estimates of y, a and b may be too optimistic from the BLUE perspective. Then, with a too low 
value of x3, and the true values of y, a and b, the system may move to the red region in Figure 4. In 
other words, the probability that BLUE would not survive a possible war with RED increases, if a 
low value of x3 is selected. 

However, it is not likely that BLUE is only interested to “win” a possible war in the sense that 
some small number of the units x can survive a possible attack. The Figures 5–13 have clearly 
shown that BLUE can adjust the time it takes for a conflict to end, via the selection of x0. The time it 
takes to stop a possible attack from RED is important in several ways. If a war goes on for a long 
time, this negatively influences the economically profitable production and trade. Furthermore, 
during a war, infrastructure and the environment are destroyed. Civilians are killed and wounded. 
Hence, it is important to determine how BLUE can reduce the time to stop the war, via the selection 
of x0. 

The number of killed and wounded soldiers should also be considered. It is important to 
determine how BLUE can reduce the number of destroyed resources, x, such as killed and 
wounded soldiers, via the selection of x0.  
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In the later parts of this paper, detailed analytical and numerical investigations of these effects 
and decisions are included. Here, some introductory simple examples are given, with different 
values of x0. They show the time it takes to end a possible war, and the size of force reductions. In 
five different cases, found in Figure 14, x0 takes the values 30000, 40716, 45000, 52500 or 65000. 

 
Figure 14. (x(t), y(t)), for t = 0, 1, …, T. t = time (days), T is the point in time when one of the 
variables x or y, takes the value zero. a = 0.05347 and b = 0.01045. y0 = 18000. In the five different 
cases, x0 takes the value 30000, 40716, 45000, 52500 or 65000. The graph is constructed via a discrete 
time approximation of the differential equation system (1). 

Note, in Figure 14, that it is possible to calculate the total number of lost x resources, at 
different points in time. That kind of information is shown in Figure 15. The total number of lost y 
resources, at different points in time, is shown in Figure 16.   
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Figure 15. KIAx denotes the total number of lost x resources, at different points in time, t, until t = T. 
T is the point in time, when y(T) = 0. KIAx(x0/1000) = x0 – x(t). a = 0.05347 and b = 0.01045. y0 = 18000. 
In the four different cases, x0 takes the value 45000, 65000, 85000, or 105000. The graph is constructed 
via a discrete time approximation of the differential equation system (1). 
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Figure 16. KIAy is the total number of lost y resources, at different points in time, t, until t = T.  T is 
the point in time when y(T) = 0. KIAy(x0/1000) = y0 – y(t). a = 0.05347 and b = 0.01045. In all cases, y0 = 
18000. In the four different cases, x0 takes the value 45000, 65000, 85000, or 105000. The graph is 
constructed via a discrete time approximation of the differential equation system (1). 

In Figure 17, we see how the time of termination of a conflict, the point in time when the 
attacker RED has no more resources available, is affected by the value of x0. Clearly, a conflict stops 
more rapidly in case BLUE selects a larger value of x0. 

 

Figure 17. T, the time of termination, is the point in time, when y(T) = 0. a = 0.05347 and b = 0.01045. 
y0 = 18000. In the four different cases, x0 takes the value 45000, 65000, 85000, or 105000. The graph is 
constructed via a discrete time approximation of the differential equation system (1). 

In Figure 18, we see how the number of lost resources, x, at the time of termination of a 
conflict, is affected by the value of x0. Obviously, the number of resources, x, that are lost during the 
war, decreases if BLUE selects a larger value of x0. 
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Figure 18. KIAx at termination is the total number of lost x resources, at time t = T. T is the point in 
time, when y(T) = 0. a = 0.05347 and b = 0.01045. y0 = 18000. In the four different cases, x0 takes the 
value 45000, 65000, 85000, or 105000. The graph is constructed via a discrete time approximation of 
the differential equation system (1). 

Formal analysis: 
Briefing on this section: 
The complete dynamics of the battle in continuous time is determined. First, the general 

solution to the Lanchester differential equation system, which is a homogenous second order 
differential equation system, is derived. This may be interpreted as a 2-dimensional Two Point 
Boundary Value Problem (TPBVP). Equation (12) corresponds to Equation (1), but also includes 
initial conditions. 

We study the differential equation system (12). The state of the system, ( ( ), ( ))x t y t , 
representing the sizes of the two opposing forces, changes over time, , 0t t T≤ ≤ < ∞ . The two 
parameters, ( , )a b , are called attrition coefficients. Newtonian notation, with time derivatives 
marked by dots, is used. 

0 0

(12. )
0, 0, (0) 0, (0) 0

(12. )

x ay a
a b x x y y

y bx b

 = − > > = > = >
 = −





 (12) 

From (12.a), we get (13). 
1y a x−= −


 (13) 

Differentiation of (13) with respect to time, gives (14). 
1y a x−= −

 

 (14) 

(14) and (12.b) give (15). That can be rewritten as (16) and (17), which is a homogenous second 
order differential equation. 

1a x bx−− = −


 (15) 

1 0a x bx− − =


 (16) 

0x abx− =


 (17) 
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Let us assume that the functional form (18) is relevant. The parameters ( , )m λ  are assumed to 
be strictly different from zero. 

( ) , 0, 0,0tx t me m t Tλ λ= ≠ ≠ ≤ ≤ < ∞  (18) 
Then, the following procedure can be used to determine the state variable as an explicit 

function of time. Equations (17) and (18) give (19). 
2 0t tme abmeλ λλ − =  (19) 

Equation (19) can be simplified to (20). 

( )2 0tab meλλ − =  (20) 
Equations (18) and (20) imply (21). 

2 0abλ − =  (21) 
From the quadratic Equation (21), we obtain the solution (22).  

abλ = ±  (22) 
Let r be defined according to (23). 

r ab=  (23) 
Clearly, two solutions exist. 

1 rλ = −  (24) 

2 rλ =  (25) 
Observation:  

0 0a b> ∧ > , as we see in Equation (12), which means that there are two real roots. These 
roots have different values. Hence, the general solution of the differential equation is: 

1 2( ) rt rtx t m e m e−= +  (26) 

Furthermore, from (13) we already know that: 1y a x−= −


 
As a result, we get (27). 

( )1
1 2( ) rt rty t a rm e rm e− −= − − +  (27) 

The expression (27) may be rewritten as (28). 

1 2( ) rt rtr ry t m e m e
a a

−= −  (28) 

Hence, the solution to the differential equation system (12) is given in (29). 

1 2

1 2

( )

( )

rt rt

rt rt

x t m e m e
r ry t m e m e
a a

−

−

 = +



= −

 (29) 

To determine the time path ( )( ), ( )x t y t  we need to know the four parameters ( )1 2, , ,m m a r . 

We already know the initial value of 0, (0)y y y= . In this study, we are interested to determine the 

optimal value of 0x . We want to be sure that we will win the battle, which means that ( ) 0x T >
and ( ) 0y T =  at a point in time, T . This point in time, when the enemy has no more available 
resource, is denoted the terminal time. 

From Equation (29), the initial conditions (30) and (31) follow:  

1 2 0(0)x m m x= + =  (30) 

1 2 0(0) r ry m m y
a a

= − =  (31) 

The terminal conditions, (32) and (33), are also derived from Equation (29): 

1 2( ) rT rT
Tx T m e m e x−= + =  (32) 
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1 2( ) rT rT
T

r ry T m e m e y
a a

−= − =   
(33) 

The nonlinear simultaneous equation system (34) must be satisfied. We assume that a feasible 
solution exists and that this solution is unique. 

1 2 0

1 2

1 2 0

1 2

(34. )
(34. )

(34. )

(34. )

rT rT
T

rT rT
T

m m x a
m e m e x b

r rm m y c
a a

r rm e m e y d
a a

−

−

+ =
 + =

 − =



− =


 (34) 

Determination of ( )1 2,m m : 

01

02

1 1 xm
yms s
   

=    −     
 (35) 

r ab bs
a a a

= = =  (36) 

1 1
2D s

s s
= = −

−
 (37) 

From Cramer’s rule, we get: 

0

0 0 0
1

1

2

x
y s sx ym

D s
− − −

= =
−

 (38) 

1 0 0
0 0

1 2 2

ax yx s y bm
− ++

= =  (39) 

10 0
1 0 ,

2
x vy am v s

b
−+

= > = =  (40) 

0

0 0 0
2

1

2

x
s y y sxm

D s
−

= =
−

 (41) 

0 0
0 0

2 2 2

ax yx vy bm
−−

= =  (42) 

2
2 20 0

2 0 02
0 0

0
0
0

x xa am bx ay
y b y b

> > > >       
       = ⇔ = ⇔ = ⇔ =       
       < < < <       

 (43) 

Observations: 

Two different proofs are given in the end of this paper that show that 
2 2

0 0( ) bx ayx T
b
−

= . 

If 2 2
0 0bx ay> , then ( )y t reaches zero when ( ) 0x t > . In that case, 2 0m > . 

If 2 2
0 0bx ay< , then ( )x t reaches zero when ( ) 0y t > . In that case, 2 0m < . 
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If 2 2
0 0bx ay= (which is extremely unlikely), then ( )x t and ( )y t both converge to zero. Then, 

2 0m = . 

The case when 2 2
0 0bx ay= is not further studied in this paper, since the probability of that 

case is practically zero. 
Determination of T. 
From now on, we only consider the case where 2 2

0 0bx ay> . Consequently, ( )y t reaches zero 

when ( ) 0x t >  and 2 0m > . Let us determine T as the point in time when ( ) 0Ty T y= = . 

1 2 0rT rT
Ty sm e sm e−= − =  (44) 
( )1 2 0

0 0

rT rTs m e m e−× − =

≠ =
 (45) 

( )1 2 0rT rTm e m e− − =  (46) 

( )2
1 2 0

0 0

rT rTe m m e− − =

≠ =
 (47) 

2
2 1

rTm e m=  (48) 
2 1

2

rT me
m

=  (49) 

1

2

2 mrT LN
m

 
=  

 
 (50) 

0 0

0 0
0 0

0 0

2 2

ax y
bLNx vy aLN x yx vy bT

r ab

 
+ 

 
 +  −   −   = =  

(51) 

In Figure 15, we see how the terminal time T is affected by the initial sizes of the two forces, 
when the attrition coefficients from Iwo Jima are used. In Figure 16, it is demonstrated that the 
terminal time T is reduced, in case the attrition coefficient b increases. 
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Figure 15. T(x0, y0). a = 0.05347, b = 0.01045. Compare Equation (51). 
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Figure 16. T(x0, y0). a = 0.05347, b = 0.01045. (Yellow and green). T(x0, y0). a = 0.05347, b = 0.02045. 
(Purple and turquoise). Compare Equation (51). 

Determination of the derivative of T with respect to x0. 

( ) ( ) ( )
( )

1 0 0 0 00 0
2

0 0 0 0 0

1 1
2

x vy x vyx vydT r
dx x vy x vy

−  × − − + × −
=    + −  

 (52) 

( ) ( )( )
1 0

0 0 0 0 0

22 vydT r
dx x vy x vy

− −
=

+ −
 (53) 

( )( )
0

0 0 0 0 0

vydT
dx r x vy x vy

−
=

+ −
 (54) 

( )
0

2 2 2
0 0 0

vydT
dx r x v y

−
=

−
 (55) 

0

2 20
0 0

a ydT b
adx ab x y
b

−
=

 − 
 

 (56) 

0

2 20
0 0

ydT
adx b x y
b

−
=

 − 
 

 
(57) 

0
2 2

0 0 0

0ydT
dx bx ay

−
= <

−
 (58) 

Determination of the second derivative of T with respect to x0. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2024                   doi:10.20944/preprints202402.1265.v1



 24 

 

( )
( )

2
0 0

22 2 2
0 0 0

2y bxd T
dx bx ay

− −
=

−
 (59) 

( )
2

0 0
22 2 2

0 0 0

2 0bx yd T
dx bx ay

= >
−

 (60) 

Determination of xT via the function x(t) and the value of T when yT = 0: 

1 2( ) rT rT
Tx T m e m e x−= + =  (61) 

0 0 0 0( )
2 2

rT rTx vy x vyx T e e−+ −   = +   
   

 (62) 

0 0 0 0

0 0 0 0

2 2

0 0 0 0( )
2 2

x vy x vyLN LN
x vy x vy

r r
r r

x vy x vyx T e e

      + +
      

− −      −    
   
   
   + −   = +   

   
 

(63) 

0 0 0 0

0 0 0 0

2 2

0 0 0 0( )
2 2

x vy x vyLN LN
x vy x vy

x vy x vyx T e e

      + +
      

− −      −   
   
   
   + −   = +   

   
 

(64) 

0 0 0 0 0 0 0 0

0 0 0 0

( )
2 2

x vy x vy x vy x vyx T
x vy x vy

+ − − +   = +   + −   
 (65) 

0 0 0 0 0 0 0 0( )
2 2

x vy x vy x vy x vy
x T

+ − − +
= +  (66) 

0 0 0 0( )x T x vy x vy= + −  (67) 

( ) ( )( )2
0 0 0 0( )x T x vy x vy= + −  (68) 

( )2 2 2 2
0 0( )x T x v y= −  (69) 

2 2 2
0 0( )x T x v y= −  (70) 

2 2
0 0( ) ax T x y

b
 = −  
 

 (71) 

2 2
0 0( ) bx ayx T

b
−

=  (72) 

Alternative method to determine xT: 
dx ay
dt
dy bx
dt

 = −

 = −


 

 
 

(73) 

dx ay
dy bx

−
=
−

  
(74) 

bx dx ay dy=  (75) 

0 0

T Tx y

x y

bx dx ay dy=∫ ∫  
 

(76) 
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0 0

2 2

2 2

T Tx y

x y

x yb a
   

=   
   

 
 

(77) 

2 22 2
0 0

2 2 2 2
T Tx yx yb a

   
− = −   

   
 

 
(78) 

( ) ( )2 2 2 2
0 0T Tb x x a y y− = −  (79) 

( ) ( )2 2 2
0 0 , 0T Tb x x a y y− = − =  (80) 

2 2 2
0 0 , 0T Tbx bx ay y= − =  (81) 
2 2

2 0 0 , 0T T
bx ayx y

b
−

= =   
(82) 

2 2
0 0 , 0T T

bx ayx y
b
−

= =  
 

(83) 
Q.E.D. 
In Figure 17, we see how the size of the x force at the terminal time T is affected by the initial 

sizes of the two forces, when the attrition coefficients from Iwo Jima are used. 

 

Figure 17. xT(x0,y0). a = 0.05347, b = 0.01045. Compare Equation (83). 

In Figure 17, we see the number of killed or wounded soldiers from the x force at the terminal 
time T, as a function of the initial sizes of the two forces, when the attrition coefficients from Iwo 
Jima are used. 
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Figure 18. K(x0, y0) = x0 - xT(x0,y0). a = 0.05347, b = 0.01045. Compare Equation (83). 

In Figure 18, we see the number of killed or wounded soldiers from the x force at the terminal 
time T, as a function of the initial sizes of the two forces, when the attrition coefficients from Iwo 
Jima are used. We also see how the number of killer or wounded soldiers from the x force at the 
terminal time T, for different combinations of the initial sizes of the two forces, is affected in case 
the attrition coefficient b increases. If the coefficient b increases, a smaller number of soldiers from 
the x force are killed or wounded.  
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Figure 19. K(x0, y0) = x0 - xT(x0,y0). a = 0.05347, b = 0.01045. (Purple). Compare Equation (83). K(x0, 
y0) = x0 - xT(x0,y0). a = 0.05347, b = 0.02045. (Yellow). Compare Equation (83). 

Determination of the derivative of xT with respect to x0 when yT = 0: 
2 2

0 0 , 0T T
bx ayx y

b
−

= =  
 

(84) 

( )
1 1

2 22 2
0 0 , 0T Tx b bx ay y

−
= − =   

(85) 

( ) ( )
1 1

2 22 2
0 0 0

0

1 2
2

Tdx b bx ay bx
dx

− − = − 
 

  
(86) 

( )
1 1

2 22 2
0 0 0

0

0Tdx b bx ay x
dx

−
= − >   

(87) 

0
2 2

0 0 0

0T b xdx
dx bx ay

= >
−

  
(88) 

Determination of the second derivative of xT with respect to x0 when yT = 0: 

( ) ( )
1 3 12

2 2 2 2 22 2 2
0 0 0 0 02

0

1 2
2

Td x b bx ay bx bx ay
dx

− − 
= − − + − 

 
 

 
(89) 

( ) ( )
1 3 12

2 2 2 2 22 2 2
0 0 0 0 02

0

Td x b bx ay bx bx ay
dx

− − 
= − − + − 

 
 

 
(90) 

( ) ( )( )
1 12 12 2 2 2 22 2

0 0 0 0 02
0

1Td x b bx ay bx ay bx
dx

− −
= − − − +   

(91) 
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( )
1 212

2 2 02 2
0 02 2 2

0 0 0

1T bxd x b bx ay
dx bx ay

−  −
= − + − 

 
 

(92) 

( ) ( )
1 12

2 2 2 2 22 2
0 0 0 0 02 2 2

0 0 0

1Td x b bx ay bx bx ay
dx bx ay

−  
= − − + − − 

 
 

(93) 

( ) ( )
1 32

2 2 22 2
0 0 02

0

Td x b bx ay ay
dx

−
= − −   

(94) 

( )

22
0

32
2 20 2

0 0

0T a byd x
dx bx ay

−
= <

−
  

(95) 

Summary of important results 

0 0

0 0

2

ax y
bLN
ax y
bT

ab

 
+ 

 
 − 
 =  

 
 
 

(96) 

0
2 2

0 0 0

0ydT
dx bx ay

−
= <

−
  

(97) 

( )
2

0 0
22 2 2

0 0 0

2 0bx yd T
dx bx ay

= >
−

  
(98) 

2 2
0 0 , 0T T

bx ayx y
b
−

= =  
 

(99) 

0
2 2

0 0 0

0T b xdx
dx bx ay

= >
−

  
(100) 

( )

22
0

32
2 20 2

0 0

0T a b yd x
dx bx ay

−
= <

−
  

(101) 

Economic optimization in the deterministic case: 
Economic optimization of the deployment decision, is based on an objective function. This 

objective function is the sum of the possible revenues minus the different costs, that are 
consequences of the decision. In the first version of this optimization problem, the revenue 
associated with an instant victory, is denoted G. The maximization of such an objective function, 
denoted π , is presented in general form in Equation (102). The decision variable is the initial size of 
force x. The listed parameters are the attrition coefficients, a and b, the marginal cost of the time of 
the victory, Tc , the marginal cost of killed or wounded soldiers with equipment, 

Txc , and the initial 

size of force y. 

( )
0

0 0max ; , , , , ,
TT xx

x a b c c G yπ  (102) 

A more explicit form of the objective function is found in Equation (103). ( )0C x is the total 

cost of the 0x  soldiers with equipment, sent to the battle field. It is important to be aware that this 
total cost includes the costs of military education, transport, and possible alternative values of 
utilization of the deployed soldiers. For instance, the soldiers could probably also have been used in 
industrial production, or in some other way, if they would not have been sent to this particular 
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battle field. Furthermore, it could also have been possible to send some of them to some other battle 
field.  

( ) ( ) ( )( )
0

0 0 0 0 0 0max , , , , , ,
TT x Tx

C x G c T x y a b c x x x y a bπ = − + − − −  (103) 

Equation (104) is an even more explicit form of the objective function. 

( )
0

0 0

2 20 0
0 0

0 0max
2 TT xx

ax y
bLN
ax y

bx aybC x G c c x
r b

π

 
+ 

 
 −   − = − + − − −  

 
 

 
 
 

(104) 

The Figures 20 and 21 illustrate the objective function (104) as a function of the initial sizes of 
the two forces. The functions and values in Figure 20 are: C(x0) = 1000 + 1x0, G = 200000, cT = 730 and 
cxT =2. a = 0.05347, b = 0.01045. The attrition coefficients are collected from the empirical estimations 
based on the Battle of Iwo Jima. Compare Figure 5 and Stymfal (2022).  

 

Figure 20. The objective function in Equation (104), as a function of the initial sizes of the two forces. 
Parameters: C(x0) = 1000 + 1x0, G = 200000, cT = 730 and cxT =2. a = 0.05347, b = 0.01045. The graph 
illustrates that the optimal value of x0 is an increasing function of y0. Furthermore, the optimal value 
of the objective function of the commander of force x, is a decreasing function of the initial size of 
the force y. Clearly, if the value y0 would have a much larger value than 20000, as illustrated in the 
graph, the maximum of the objective function value, would be strictly negative. Then, the optimal 
decision of the commander of the x forces would be not to participate in the battle at all. 
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Figure 21. The objective function in Equation (104), as a function of the initial sizes of the two forces, 
with alternative values of the attrition coefficient “b”. Attrition coefficients: Yellow: a = 0.05347, b = 
0.01045, Turquoise: a = 0.05347, b = 0.02045. Other functions and parameters: C(x) = 1000 + 1x, G = 
200000, cT = 730 and cxT =2. The graph illustrates that the objective function value of the commander 
of the x forces is an increasing function of the attrition coefficient b, and that the optimal number of 
units x to send to the battle field is a decreasing function of b, for all possible sizes of the enemy 
force, if the optimal decision x0 is strictly positive. 

Motivation for the introduced parameter values, used in CASE 0: 
The two parameters in the function C(x0), G, cT and cxT have no documented empirical 

background. In fact, it is not even clear that these parameter values have ever been empirically 
determined, decided, or documented in connection to the real battle. Still, since the values of these 
parameters are necessary to know, in case we should be able to optimize the deployment decision 
x0, in a logically defendable manner, with consideration of the economically relevant conditions 
present in the objective function (104), these numerically specified parameter values are now 
suggested. We assume that the unit of the objective function is M$US, in the price level of 2024. 

First, we should be aware that fix costs and fix revenues do not affect the optimal deployment 
decision, as long as the optimal deployment decision is strictly positive. The fix cost parameter in

( )0C x  is 1000, which represents 1billion $US. The marginal cost of one soldier in ( )0C x  is 1 

M$US, which may be reasonable with consideration of the fact that the economic value of 
alternative use of one person in the labor force, plus several other costs, may be considerable. The 
value of G, 200 billion $US, represents the value of instant access to the island Iwo Jima, during the 
end of WW II. This island was very important during the final part of the war, but the economic 
value G was probably never calculated. The parameter cT shows how rapidly the value of access to 
the island declines, per day, when we wait for the victory. With the suggested parameter value, the 
economic value of access to the island would be 0 after 274 days, or 9 months. Hence, each month, 
the economic value of access to the island falls with approximately 11% of the value of instant 
access to the island. The economic value of each lost killed or wounded soldier, with equipment, cxT, 
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is assumed to be set to 2 M$US. Such economically defined values, of lost lives, are almost never 
reported. Still, such values are necessary parameters, when the optimal deployment problem 
should be solved. The reader is encouraged to search for empirically estimated parameters of the 
types that now have been introduced. If new values are found, the updated complete analysis may 
be repeated. 

In Figure 21, we see how the objective function (104) is affected, in case the attrition coefficient 
b increases. Then, the objective function of the x force commander, increases. Furthermore, the 
optimal value of x0 decreases. 

A unique maximum: 
First order optimum condition: 

0 0 0 0

0
T

T
T x

dxd dC dTc c
dx dx dx dx
π
= − − + =   

(105) 
( ) ( )0 0 0 0

0 0 0 0

, , , , , ,
0

T

T
T x

dT x y a b dx x y a bd dC c c
dx dx dx dx
π
= − − + =   

(106) 

0 0 0 0

0
T

T
T x

dxd dC dTc c
dx dx dx dx
π
= − − + =   

(107) 
22 2 2

2 2 2 2
0 0 0 0

T

T
T x

d xd d C d Tc c
dx dx dx dx
π
= − − +   

(108) 
22 2 2

2 2 2 2
0 0 0 0

0 0 0 0 0 0
T

T
T x

d xd C d T dc c
dx dx dx dx

π 
≥ ∧ > ∧ > ∧ > ∧ < ⇒ < 

 
 

 
(109) 

Hence, the solution of the first order optimum condition represents a unique maximum of the 
objective function. 

Comparative statics analysis: 
Now, we determine how parameter changes affect the optimal deployment decision: 
With comparative statics analysis, we see how the optimum is maintained when different 

possible parameter changes take place. First, the cost per day of the battle is adjusted. The first 
order optimum condition is differentiated with respect to the optimal value of 0x , denoted *

0x , 

and Tc : 
2

*
02

0 0 0

0T
d d dTd dx dc
dx dx dx
π π 

= − = 
 

 
 

(110) 
2

*
02

0 0
T

d dTdx dc
dx dx
π

=   
(111) 

( )
( )

*
00

2

2
0

0
0

0T

dT
dxdx

dc d
dx
π

 
  < = = >

< 
 
 

 

 
 
 

(112) 

Hence, if the cost per day before the victory increases, then the optimal deployment level 
increases. This is understandable, since the process will end more rapidly if the initial number of 
units is larger. 

2
*

02
0 0 0

0
T

T
x

dxd dd dx dc
dx dx dx
π π 

= + = 
 

 
 

(113) 
2

*
02

0 0
T

T
x

dxd dx dc
dx dx
π

= −   
(114) 
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( )
( )

*
00

2

2
0

0
0

0
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T

x

dx
dxdx

dc d
dx
π

 
−  < = = >

< 
 
 

 

 
 
 

(115) 

The result shows that if the cost per unit of killed or wounded troops with equipment 
increases, then the optimal deployment level increases. This is understandable, since the number of 
surviving units is an increasing function of the initial number of units. 

( ) ( )0 0 0 0

0 0 0 0

, , , , , ,
0

T

T
T x

dT x y a b dx x y a bd dC c c
dx dx dx dx
π
= − − + =   

(116) 

0
2 2

0 0 0

0ydT
dx bx ay

−
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−
  

(117) 

0
2 2

0 0 0

0T b xdx
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TT x
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dx dx bx ay bx ay
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(125) 

Hence, if the attrition coefficient a increases, then the optimal deployment increases. 
11 2 22 2
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0
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(133) 

Hence, if the attrition coefficient b increases, then the optimal deployment decreases. This is 
also illustrated in Figure 21. 

3. Results 

Numerical results are reported from two alternative optimization models. Both models are 
documented in the Appendix. 

Numerical Model 1: 
Continuous optimization model with Newton Raphson iteration: 
This model, directly based on the analytical derivations presented in the earlier sections, 

determines the optimal decisions and consequences, via the Newton- Raphson method applied to 
the first order optimization condition. Table 1. contains the output from the model when the Case 0 
parameters are used. In the first and second rows, the parameters are shown. x0_0 is the initial 
value of x0, when the iteration method starts. Then, the steps of the iteration are listed. The table 
shows the number of the iteration, n, the value of the deployment, x0, the time of the victory, T 
(days), the number of killed and wounded soldiers, K, and the change of x0, dx0. The iterations stop 
when dx0 is sufficiently close to zero. The optimal results are found in the last row. Table 1. and the 
Figures 22–24, show the optimal results in different cases. Table A1 in the Appendix includes 
numerical information. 
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Figure 22. The optimal values of x0, according to Numerical model 1, in alternative cases. 

 

Figure 23. The optimal values of T, the day of the victory, according to Numerical model 1, in 
alternative cases. 

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

O
pt

im
al

 v
al

ue
 o

f x
0

Case

0

5

10

15

20

25

30

35

40

45

T 
(D

ay
s)

Case

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2024                   doi:10.20944/preprints202402.1265.v1



 35 

 

 
Figure 24. The optimal values of K, the number of killed and wounded soldiers, according to 
Numerical model 1, in alternative cases. 

Table 1. Output from Numerical Model 1, Case 0. 

 
Numerical Model 2: 
Discrete optimization model with stochastic attrition coefficients: 
This model, partly based on the analytical derivations presented in the earlier sections, 

determines the optimal decisions and consequences, via numerical calculations, for alternative 
deployment levels. The optimal value of the objective functions is defined as the highest value of 
the investigated alternatives.  

Table 2 contains the output from the model when the Case 0 parameters are used. The cases 
and parameters are not all identical as in the Numerical model 1. R_Wx1 is the value of instant 
access to the island, and corresponds to G. R_tF corresponds to cTX. R_x0 corresponds to the 
marginal cost of C(x) multiplied by -1. R_KIAx corresponds to cxT. a_mean and b_mean are the 
expected values of the attrition coefficients a and b. a_sigma and b_sigma are the relative standard 
deviations of the attrition coefficients a and b. E_xF and E_yF are the expected numbers of soldiers, 
x and y, that are still alive after the battle. E_KIAx and E_KIAy are the expected numbers of killed 
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Case

       F     cx0       G       cT      cK 

    1000   1. 000  200000  730. 000   2. 000 

         a         b       y0     x0_0 

  0. 053470  0. 010450    18000    90000 

 

  n      x0       T       K           dx0 

  0   90000 

  1   75787  25. 395   11866 - 14213. 471601 

  2   71793  27. 214   12662  - 3993. 160551 

  3   69728  28. 277   13123  - 2065. 419803 

  4   65658  30. 680   14149  - 4069. 855630 

  5   66147  30. 366   14016    488. 771454 

  6   66156  30. 360   14014      9. 613701 

  7   66156  30. 360   14014      0. 003585 

  8   66156  30. 360   14014      0. 000000 
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or wounded soldiers in the two armies, after the battle. E_Wx is the probability that the army with 
the x resources wins the battle and E_Wy is the probability that the army with the y resources wins 
the battle. E_tF is the expected time (Day) when one of the armies wins the battle. E_Rx and E_Ry 
are the expected objective function values of the two armies, in the unit billion $US. (The details of 
E_Ry are not of relevance here. More details may be found in the Appendix.) In the final two rows, 
the optimal deployment decision, x0, and the optimal objective function value, E_Rx, are presented. 
Table 2.b and the Figures 25–27, show the optimal results in different cases. Table A2 in the 
Appendix includes numerical information. 

 
Figure 25. The optimal values of x0, according to Numerical model 2, in alternative cases. 

 

Figure 26. The optimal expected values of E(T), the day of the victory, according to Numerical 
model 2, in alternative cases. 
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Figure 27. The optimal expected values of K, (= KIAx), the number of killed and wounded soldiers, 
according to Numerical model 2, in alternative cases. 
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Table 2. Output from Numerical Model 2, Case 0. 

 

4. Discussion 

The decision problem studied in this paper, to determine the optimal size of a military force to 
send to the battle field, is based on several assumptions. We should be aware that, in many 
conflicts, the objective function is not mathematically defined. There may be several reasons for this 
fact. Maybe, the decision maker simply does not know the potential value of a victory, the costs of 
different possible delays of a victory, the true costs of deployment of different numbers of soldiers, 
the costs of killed and wounded soldiers and destroyed equipment, and the attrition coefficients. 
Maybe the knowledge of mathematics is not sufficient. The analysis and optimization in this paper 
has shown that the optimal size of the deployed force is strongly dependent on the listed 
parameters. If the value of a potential victory is not sufficiently high, the optimal decision may be to 
avoid the battle completely. Then, in a formal analysis, the optimal objective function would be 
negative. This way, the costs of deployment, delays, killed and wounded soldiers and destroyed 
equipment, can all be avoided. Clearly, without an objective function that covers all relevant costs 
and revenues, with numerically specified cost and revenue functions and parameters, it is not 
possible to observe and react on such possible negative values, before it is too late. In the case of the 
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Battle of Iwo Jima, the value of a potential victory is a function of the properties of the general 
strategy plans in the Pacific Ocean and connected areas, during WW II. Hence, it would have been 
necessary to investigate and optimize the complete strategic plan, with or without access to the 
island Iwo Jima, to be able to determine an approximate value of a potential victory at Iwo Jima. 
Furthermore, to be able to determine the costs of different possible time delays before access to the 
island would be possible, several alternative general strategies in the Pacific would have to be 
developed. Obviously, such analyses could have been very difficult and time consuming, at the 
time of the battle, partly because of the lack of modern computers. Nowadays, however, the 
computational capacity provides no relevant constraints to this kind of analysis. In the analysis in 
this paper, it has been demonstrated that the optimal size of the deployed force, and the expected 
numbers of killed or wounded soldiers, are strongly dependent on the marginal cost of potential 
delays of a victory. In the deterministic case, if the marginal cost of waiting for a victory doubles, 
the optimal size of the deployed force increases by almost 10000 soldiers. Then, the victory appears 
4 days earlier and the number of killed or wounded soldiers decreases by more than 2000. In one of 
the stochastic cases, if the marginal cost per killed or wounded soldier increases by 5 M $US, the 
optimal size of the deployed force increases by 10000 soldiers. Then, the expected victory occurs 11 
days earlier and the expected number of killed or wounded soldiers decreases by more than 5000. 
Hence, if we are truly interested to develop the optimal strategic plan, and care about the lives of 
soldiers, we simply must define the objective function correctly and perform the relevant 
optimization. 

5. Conclusions 

This study focuses on the optimal deployment problem, and determines the optimal size of a 
military force to send to the battle field. The decision is optimized, based on an objective function, 
that considers the cost of deployment, the cost of the time it takes to win the battle, and the costs of 
killed or wounded soldiers and equipment. The cost of deployment is modeled as an explicit 
function of the number of deployed troops and the value of a victory with access to a free territory, 
is modeled as a function of the length of the time it takes to win the battle. The cost of lost troops 
and other equipment, is a function of the size of the reduction of these lives and resources. An 
objective function, based on these values and costs, is optimized, under different parameter 
assumptions. The battle dynamics is modeled via the Lanchester differential equation system based 
on the principles of directed fire. First the deterministic problem is solved analytically, via 
derivations and comparative statics analysis. General mathematical results are reported, including 
the directions of changes of the optimal deployment decisions, under the influence of alternative 
types of parameter changes. Then, the first order optimum condition from the analytical model, in 
combination with numerically specified parameter values, is used to determine optimal values of 
the levels of deployment in different situations. A concrete numerical case, based on documented 
facts from the Battle of Iwo Jima, during WW II, is analyzed, and the optimal US deployment 
decisions are determined under different assumptions. The known attrition coefficients of both 
armies, from USA and Japan, and the initial size of the Japanese force, are parameters. The analysis 
is also based on some parameters without empirical documentation, that are necessary to include to 
make optimization possible.  The optimal solutions are found via Newton Raphson iteration. 
Finally, a stochastic version of the optimal deployment problem is defined. The attrition parameters 
are considered as stochastic, before the deployment decisions have been made. The attrition 
parameters of the two armies have the same expected values as in the deterministic analysis, are 
independent of each other, have correlation zero, and have relative standard deviations of 20%. All 
possible deployment decisions, with 5000 units intervals, from 0 to 150000, are investigated, and the 
optimal decisions are selected. The analytical, and the two numerical, methods, all show that the 
optimal deployment level is a decreasing function of the marginal deployment cost, an increasing 
function of the marginal cost of the time to win the battle, an increasing function of the marginal 
cost of killed and wounded soldiers and lost equipment, an increasing function of the initial size of 
the opposing army, an increasing function of the efficiency of the soldiers in the opposing army and 
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a decreasing function of the efficiency of the soldiers in the deployed army. The stochastic model 
also shows that the probability to win the battle is an increasing function of the size of the deployed 
army. When the optimal deployment level is selected, the probability of a victory is usually less 
than 100%, since it would be too expensive to guarantee a victory with 100%. Some of many results 
of relevance to the Battle of Iwo Jima, are the following: In the deterministic Case 0 analysis, the 
optimal US deployment level is 66200, the time to win the battle is 30 days and 14000 US soldiers 
are killed or wounded. If the marginal cost of the time to wait for a victory doubles, the optimal 
deployment increases to 75400, the time to win is reduced to 26 days, and less than 12000 soldiers 
are killed or wounded. In the stochastic Case 0 analysis, the optimal US deployment level is 65000, 
the expected time to win the battle is 46 days and almost 25000 US soldiers are expected to be killed or 
wounded. If the cost per killed or wounded soldier increases by 5 M$US, the optimal deployment 
level increases to 75000. Then, the victory is expected to appear after 35 days and 19900 US soldiers 
are expected to be killed or wounded. 

Appendix 

Numerical Model 1: 
Continuous optimization model with Newton Raphson iteration: 

Table A1. Optimal results from Numerical Model 1, in different cases. 

Case Case  x0 T K 
0 Case 0 66156 30.36 14014 
1 cx0 = 2 54281 41.17 18384 
2 cT = 1460 75419 25.551 11935 
3 cK = 4 77210 24.81 11608 
4 y0 = 23000 81670 31.862 18716 
5 a = 0.033470 56857 34.353 10006 
6 b = 0.02045 47292 21.703 10018 

Software developed in the computer language QB64: 
Rem 
Rem OptStrat_240114_1950 
Rem Peter Lohmander 
 
Cls 
Open "AOpt_Out.txt" For Output As #1 
 
DefDbl A-Z 
 
F = 1000 
cx0 = 1 
G = 200000 
cT = 730 
cK = 2.0 
a = .05347 
b = .01045 
y0 = 18000 
x0 = 90000 
dx0 = 1 
dPdx0 = 0 
d2Pdx02 = 0 
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T = 0 
K = 0 
 
Print "       F     cx0       G       cT      cK" 
Print Using "########"; F; 
Print Using "####.###"; cx0; 
Print Using "########"; G; 
Print Using "#####.###"; cT; 
Print Using "####.###"; cK 
 
Print "" 
Print "         a         b       y0     x0_0" 
Print Using "###.######"; a; b; 
Print Using "#########"; y0; 
Print Using "#########"; x0 
 
Print "" 
Print "  n      x0       T       K           dx0" 
 
Print #1, "       F     cx0       G       cT      cK" 
Print #1, Using "########"; F; 
Print #1, Using "####.###"; cx0; 
Print #1, Using "########"; G; 
Print #1, Using "#####.###"; cT; 
Print #1, Using "####.###"; cK 
 
Print #1, "" 
Print #1, "         a         b       y0     x0_0" 
Print #1, Using "###.######"; a; b; 
Print #1, Using "#########"; y0; 
Print #1, Using "#########"; x0 
 
Print #1, "" 
Print #1, "  n      x0       T       K           dx0" 
 
For n = 0 To 20 
    Print Using "###"; n; 
    Print #1, Using "###"; n; 
    If n = 0 GoTo 2 
 
    Print Using "########"; x0; 
    Print Using "####.###"; T; 
    Print Using "########"; K; 
    Print Using "#######.######"; dx0 
 
    Print #1, Using "########"; x0; 
    Print #1, Using "####.###"; T; 
    Print #1, Using "########"; K; 
    Print #1, Using "#######.######"; dx0 
 
    GoTo 3 
    2 Rem 
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    If n > 0.1 Then GoTo 3 
    Print Using "########"; x0 
    Print #1, Using "########"; x0 
 
    3 Rem 
    dx02 = (dx0 * dx0) ^ .5 
    If dx02 < 0.000001 Then GoTo 4 
 
    dPdx0 = -cx0 - cT * (-y0 / (b * x0 * x0 - a * y0 * y0)) - cK * (1 - ((b ^ .5) * x0 / ((b * x0 * x0 - a * y0 * 

y0) ^ .5))) 
 
    d2Pdx02 = -cT * (2 * b * x0 * y0) / ((b * x0 * x0 - a * y0 * y0) ^ 2) - cK * (a * (b ^ .5) * y0 * y0) / ((b 

* x0 * x0 - a * y0 * y0) ^ (3 / 2)) 
 
    dx0 = (-1) * dPdx0 / d2Pdx02 
 
    Rem Convergence stabilizer 
    dx0_test = (dx0 * dx0) ^ 0.5 
    If dx0_test > 5000 Then dx0 = dx0 * 0.3 
 
    x0 = x0 + dx0 
 
    T = Log((x0 + ((a / b) ^ .5) * y0) / (x0 - ((a / b) ^ .5) * y0)) / (2 * (a * b) ^ .5) 
 
    K = x0 - ((b * x0 * x0 - a * y0 * y0) / b) ^ .5 
 
Next n 
 
4 Rem 
 
Close #1 
End 
 
RESULTS CASE 0 (According to the original software version): 
       F     cx0       G       cT      cK 
    1000   1.000  200000  730.000   2.000 
         a         b       y0     x0_0 
  0.053470  0.010450    18000    90000 
 
  n      x0       T       K           dx0 
  0   90000 
  1   75787  25.395   11866 -14213.471601 
  2   71793  27.214   12662  -3993.160551 
  3   69728  28.277   13123  -2065.419803 
  4   65658  30.680   14149  -4069.855630 
  5   66147  30.366   14016    488.771454 
  6   66156  30.360   14014      9.613701 
  7   66156  30.360   14014      0.003585 
  8   66156  30.360   14014      0.000000 
RESULTS CASE 1 (cx0 = 2): 
       F     cx0       G       cT      cK 
    1000   2.000  200000  730.000   2.000 
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         a         b       y0     x0_0 
  0.053470  0.010450    18000    90000 
 
  n      x0       T       K           dx0 
  0   90000 
  1   50504  47.215   20624 -39495.713055 
  2   53285  42.560   18912   2781.032194 
  3   54212  41.263   18419    927.034539 
  4   54281  41.170   18384     68.677048 
  5   54281  41.170   18384      0.331041 
  6   54281  41.170   18384      0.000008 
  7   54281  41.170   18384     -0.000000 
 
RESULTS CASE 2 (cT = 1460): 
       F     cx0       G       cT      cK 
    1000   1.000  200000 1460.000   2.000 
         a         b       y0     x0_0 
  0.053470  0.010450    18000    90000 
 
  n      x0       T       K           dx0 
  0   90000 
  1   83643  22.499   10579  -6357.049117 
  2   80557  23.546   11047  -3086.257186 
  3   78776  24.200   11338  -1780.791194 
  4   75080  25.697   11999  -3695.964467 
  5   75416  25.552   11936    335.709627 
  6   75419  25.551   11935      3.426741 
  7   75419  25.551   11935      0.000350 
  8   75419  25.551   11935      0.000000 
RESULTS CASE 3 (cK = 4.0): 
       F     cx0       G       cT      cK 
    1000   1.000  200000  730.000   4.000 
         a         b       y0     x0_0 
  0.053470  0.010450    18000    90000 
 
  n      x0       T       K           dx0 
  0   90000 
  1   84755  22.147   10421  -5245.016446 
  2   82009  23.040   10822  -2746.123451 
  3   80375  23.611   11076  -1633.407381 
  4   76930  24.923   11658  -3445.217337 
  5   77208  24.811   11609    277.570355 
  6   77210  24.810   11608      2.164392 
  7   77210  24.810   11608      0.000130 
  8   77210  24.810   11608     -0.000000 
 
RESULTS CASE 4 (y0 = 23000): 
       F     cx0       G       cT      cK 
    1000   1.000  200000  730.000   2.000 
         a         b       y0     x0_0 
  0.053470  0.010450    23000    90000 
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  n      x0       T       K           dx0 
  0   90000 
  1   86810  29.278   17317  -3190.065298 
  2   85006  30.128   17780  -1803.655790 
  3   81303  32.067   18826  -3702.890302 
  4   81665  31.865   18717    361.867276 
  5   81670  31.862   18716      4.387576 
  6   81670  31.862   18716      0.000630 
  7   81670  31.862   18716      0.000000 
 
RESULTS CASE 5 (a = 0.033470): 
       F     cx0       G       cT      cK 
    1000   1.000  200000  730.000   2.000 
         a         b       y0     x0_0 
  0.033470  0.010450    18000    90000 
 
  n      x0       T       K           dx0 
  0   90000 
  1   64609  29.272    8604 -25390.678169 
  2   61518  31.085    9109  -3090.877732 
  3   59846  32.174    9410  -1671.977709 
  4   56484  34.648   10087  -3362.124354 
  5   56852  34.357   10007    367.209670 
  6   56857  34.353   10006      5.740354 
  7   56857  34.353   10006      0.001362 
  8   56857  34.353   10006      0.000000 
 
RESULTS CASE 6 (b = 0.020450): 
       F     cx0       G       cT      cK 
    1000   1.000  200000  730.000   2.000 
         a         b       y0     x0_0 
  0.053470  0.020450    18000    90000 
 
  n      x0       T       K           dx0 
  0   90000 
  1   41565  26.243   11892 -48434.782573 
  2   45537  22.885   10516   3972.157477 
  3   47126  21.809   10063   1588.180413 
  4   47290  21.704   10018    164.537547 
  5   47292  21.703   10018      1.493795 
  6   47292  21.703   10018      0.000121 
  7   47292  21.703   10018     -0.000000 
 
Numerical Model 2: 
Discrete optimization model with stochastic attrition coefficients: 

Table A2. Output from Numerical Model 2, Case 0. 

Case Case  x0 T K 
0 Case 0 65000 46 24929 
1 R_KIAx = -3 70000 40 22063 
2 R_KIAx = -5 75000 35 19899 
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3 R_tF = -2000 75000 35 19899 
4 R_tF = -4000 85000 29 16871 

Software developed in the computer language QB64: 
Rem 
Rem STBLPL_230919_2053_r 
Rem Peter Lohmander 
 
DefDbl A-Z 
 
Dim m_value(11), m_freq(11), n_value(11), n_freq(11), a_value(11), b_value(11) 
 
Screen _NewImage(1000, 1000, 256) 
Cls 
 
Rem Open "C:\Users\Peter\OneDrive\Desktop\STBLPL\STBLPL_Out.txt" For Output As #2 
 
y0 = 21500 
 
R_Wx1 = 300000 
R_Wx2 = 0 
R_tF = 0 
R_x0 = -2 
R_KIAx = 0 
 
 
a_mean = 0.0544 
b_mean = 0.0106 
 
a_sigma = 0.2 
b_sigma = 0.2 
 
c_value = (18 / 105) ^ 0.5 
 
Print "" 
Print "     RESULTS FROM STBLPL 230919_2044 by Peter Lohmander" 
Print "" 
Print "       PARAMETERS = " 
Print "         R_Wx1   = "; R_Wx1 
Print "         R_Wx2   = "; R_Wx2 
Print "         R_tF    = "; R_tF 
Print "         R_x0    = "; R_x0 
Print "         R_KIAx  = "; R_KIAx 
Print "         a_mean  = "; a_mean 
Print "         b_mean  = "; b_mean 
Print "         a_sigma = "; a_sigma 
Print "         b_sigma = "; b_sigma 
Print "" 
 
 
Rem Values of m(i) and n(i) 
For i = 1 To 11 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 February 2024                   doi:10.20944/preprints202402.1265.v1



 46 

 

    m_value(i) = (i - 6) * c_value * a_sigma 
    n_value(i) = (i - 6) * c_value * b_sigma 
Next i 
 
Rem Relative Frequences of m(i) and n(i) 
For i = 1 To 6 
    m_freq(i) = i / 36 
    n_freq(i) = i / 36 
Next i 
For i = 7 To 11 
    m_freq(i) = (12 - i) / 36 
    n_freq(i) = (12 - i) / 36 
Next i 
 
Rem Values of a and b 
 
For i = 1 To 11 
    a_value(i) = a_mean * (1 + m_value(i)) 
    b_value(i) = b_mean * (1 + n_value(i)) 
Next i 
 
GoTo 100 
Rem Optional tests of distributions (if the line before this line is removed) 
E_m = 0 
E_m2 = 0 
E_n = 0 
E_n2 = 0 
For i = 1 To 11 
    E_m = E_m + m_freq(i) * m_value(i) 
    E_m2 = E_m2 + m_freq(i) * (m_value(i)) ^ 2 
    E_n = E_n + n_freq(i) * n_value(i) 
    E_n2 = E_n2 + n_freq(i) * (n_value(i)) ^ 2 
Next i 
Print "  E_m = "; E_m; "  E_m2 = "; E_m2 
Print "  E_n = "; E_n; "  E_n2 = "; E_n2 
Print "" 
Rem Tests of a and b values 
For i = 1 To 11 
    Print " i = "; i; " a_value(i) = "; a_value(i); "  b_value(i) = "; b_value(i) 
Next i 
100 Rem 
 
Opt_x0 = 0 
Opt_E_Rx = -99999999 
 
Print "      x0      y0    E_xF    E_yF  E_KIAx  E_KIAy    E_Wx    E_Wy    E_tF    E_Rx    E_Ry" 
 
 
For x0_index = 0 To 150 Step 5 
    x0 = x0_index * 1000 
 
    Rem The expected values of the result variables are set to zero before the (a,b) loop begins. 
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    E_xF = 0 
    E_yF = 0 
    E_KIAx = 0 
    E_KIAy = 0 
    E_Wx = 0 
    E_Wy = 0 
    E_tF = 0 
    E_Rx = 0 
    E_Ry = 0 
 
    Rem Loop with alternative values of a and b 
 
    For m_index = 1 To 11 
        For n_index = 1 To 11 
 
            Prob = m_freq(m_index) * n_freq(n_index) 
 
            Rem Engel coefficients 
            a = a_value(m_index) 
            b = b_value(n_index) 
 
            x = x0 
            y = y0 
 
            For t = 1 To 100 
 
                xt = x 
                yt = y 
 
                x = xt - a * yt 
                y = yt - b * xt 
 
                If x < 1 Then GoTo 2 
                If y < 1 Then GoTo 2 
 
            Next t 
 
            2 Rem 
 
            tF = t 
 
            xF = x 
            yf = y 
 
            If xF < 0 Then xF = 0 
            If yf < 0 Then yf = 0 
 
            Wx = 0 
            Wy = 0 
 
            If xF > yf Then Wx = 1 
            If xF < yf Then Wy = 1 
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            KIAx = x0 - xF 
            KIAy = y0 - yf 
 
            If KIAx > x0 Then KIAx = x0 
            If KIAy > y0 Then KIAy = y0 
 
            Rx = (R_Wx1 * Wx * Exp(R_Wx2 * tF) + R_tF * tF + R_x0 * x0 + R_KIAx * KIAx) / 1000 
            Ry = (-500000 * Wx * Exp(-.02 * tF) - .3 * y0 - 1 * KIAy) / 1000 
 
            E_xF = E_xF + Prob * xF 
            E_yF = E_yF + Prob * yf 
            E_KIAx = E_KIAx + Prob * KIAx 
            E_KIAy = E_KIAy + Prob * KIAy 
            E_Wx = E_Wx + Prob * Wx 
            E_Wy = E_Wy + Prob * Wy 
            E_tF = E_tF + Prob * tF 
            E_Rx = E_Rx + Prob * Rx 
            E_Ry = E_Ry + Prob * Ry 
 
        Next n_index 
    Next m_index 
 
    Print Using "########"; x0; y0; E_xF; E_yF; E_KIAx; E_KIAy; 
    Print Using "###.####"; E_Wx; E_Wy; 
    Print Using "########"; E_tF; E_Rx; E_Ry 
 
    If E_Rx > Opt_E_Rx Then Opt_x0 = x0 
    If E_Rx > Opt_E_Rx Then Opt_E_Rx = E_Rx 
 
Next x0_index 
 
Print "" 
Print "              Optimal value of x0 = Opt_x0 = "; Opt_x0 
Print "          Optimal value of E_Rx = Opt_E_Rx = "; Opt_E_Rx 
Print "" 
 
3 Rem 
Rem Close #2 
End 
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Results in Case 1: 
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Results in Case 2: 
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Results in Case 3: 
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Results in Case 4: 
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