Submitted:
27 February 2024
Posted:
28 February 2024
You are already at the latest version
Abstract
Keywords:
1. Epidemiology, transmission and pathogenicity
2. Parasite and human host responses
3. Treatment and prevention
4. Transmission models


5. Model considerations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Neglected tropical diseases 2022; Available from: https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases. Last accessed on 30.01.2024.
- Nelwan, M.L., Schistosomiasis: Life Cycle, Diagnosis, and Control. Curr Ther Res Clin Exp, 2019. 91: p. 5-9. [CrossRef]
- Webster, J.P., et al., Parasite Population Genetic Contributions to the Schistosomiasis Consortium for Operational Research and Evaluation within Sub-Saharan Africa. Am J Trop Med Hyg, 2020. [CrossRef]
- Colley, D.G., et al., Human schistosomiasis. Lancet, 2014. 383(9936): p. 2253-64. [CrossRef]
- Molehin, A.J., Schistosomiasis vaccine development: update on human clinical trials. J Biomed Sci, 2020. 27(1): p. 28. [CrossRef]
- Gray, D.J., et al., Schistosomiasis elimination: lessons from the past guide the future. Lancet Infect Dis, 2010. 10(10): p. 733-6. [CrossRef]
- Molehin, A.J., et al., Development of a schistosomiasis vaccine. Expert Rev Vaccines, 2016. 15(5): p. 619-27. [CrossRef]
- Siddiqui, A.A. and S.Z. Siddiqui, Sm-p80-Based Schistosomiasis Vaccine: Preparation for Human Clinical Trials. Trends Parasitol, 2017. 33(3): p. 194-201. [CrossRef]
- Colley, D.G. and W.E. Secor, Immunology of human schistosomiasis. Parasite Immunol, 2014. 36(8): p. 347-57. [CrossRef]
- Zhang, P., Z. Feng, and F. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies. Math Biosci, 2007. 205(1): p. 83-107. [CrossRef]
- Galvani, A.P., Age-dependent epidemiological patterns and strain diversity in helminth parasites. J Parasitol, 2005. 91(1): p. 24-30. [CrossRef]
- Kura, K., et al., What is the impact of acquired immunity on the transmission of schistosomiasis and the efficacy of current and planned mass drug administration programmes? PLoS Negl Trop Dis, 2021. 15(12): p. e0009946. [CrossRef]
- Hairston, N.G., An analysis of age-prevalence data by catalytic models. A contribution to the study of bilharziasis. Bull World Health Organ, 1965. 33(2): p. 163-75.
- Driciru, E., et al., Immunological Considerations for Schistosoma Vaccine Development: Transitioning to Endemic Settings. Front Immunol, 2021. 12: p. 635985. [CrossRef]
- Keeling M, T.M., House T, Danon L. The Mathematics of Vaccination 2013; Available from: https://www.semanticscholar.org/paper/The-Mathematics-of-Vaccination-Keeling-Tildesley/886d59bf0388ebfba90dbb01480e9958582a0471. Last accessed on 15.01.2024.
- Cortes-Selva, D., et al., Maternal schistosomiasis impairs offspring Interleukin-4 production and B cell expansion. PLoS Pathog, 2021. 17(2): p. e1009260. [CrossRef]
- Novato-Silva, E., G. Gazzinelli, and D.G. Colley, Immune responses during human schistosomiasis mansoni. XVIII. Immunologic status of pregnant women and their neonates. Scand J Immunol, 1992. 35(4): p. 429-37. [CrossRef]
- Tweyongyere, R., et al., Effect of praziquantel treatment of Schistosoma mansoni during pregnancy on immune responses to schistosome antigens among the offspring: results of a randomised, placebo-controlled trial. BMC Infect Dis, 2011. 11: p. 234. [CrossRef]
- Santos, P., et al., Gestation and breastfeeding in schistosomotic mothers differently modulate the immune response of adult offspring to postnatal Schistosoma mansoni infection. Mem Inst Oswaldo Cruz, 2016. 111(2): p. 83-92. [CrossRef]
- Avendano, C. and M.A. Patarroyo, Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections. Int J Mol Sci, 2020. 21(21). [CrossRef]
- Garcia-Bernalt Diego, J., et al., Loop-Mediated Isothermal Amplification in Schistosomiasis. J Clin Med, 2021. 10(3). [CrossRef]
- Boatin, B.A., et al., A research agenda for helminth diseases of humans: towards control and elimination. PLoS Negl Trop Dis, 2012. 6(4): p. e1547. [CrossRef]
- Gurarie, D., et al., Refined stratified-worm-burden models that incorporate specific biological features of human and snail hosts provide better estimates of Schistosoma diagnosis, transmission, and control. Parasit Vectors, 2016. 9(1): p. 428. [CrossRef]
- Panzner U, B.J., Natural intra- and intercalde human hybrid schostosomes in Africa with considerations on prevention through vaccination. Microorganisms. 2021. 9(7), 1465. [CrossRef]
- Hu, H., P. Gong, and B. Xu, Spatially explicit agent-based modelling for schistosomiasis transmission: human-environment interaction simulation and control strategy assessment. Epidemics, 2010. 2(2): p. 49-65.
- Adekiya, T.A., et al., The Effect of Climate Change and the Snail-Schistosome Cycle in Transmission and Bio-Control of Schistosomiasis in Sub-Saharan Africa. Int J Environ Res Public Health, 2019. 17(1). [CrossRef]
- Borlase, A., J.P. Webster, and J.W. Rudge, Opportunities and challenges for modelling epidemiological and evolutionary dynamics in a multihost, multiparasite system: Zoonotic hybrid schistosomiasis in West Africa. Evol Appl, 2018. 11(4): p. 501-515. [CrossRef]
- Morand, S., V.R. Southgate, and J. Jourdane, A model to explain the replacement of Schistosoma intercalatum by Schistosoma haematobium and the hybrid S. intercalatum x S. haematobium in areas of sympatry. Parasitology, 2002. 124(Pt 4): p. 401-8. [CrossRef]
- Mone, H., et al., Natural Interactions between S. haematobium and S. guineensis in the Republic of Benin. ScientificWorldJournal, 2012. 2012: p. 793420. [CrossRef]
- Webster, B.L., L.A. Tchuem Tchuente, and V.R. Southgate, A single-strand conformation polymorphism (SSCP) approach for investigating genetic interactions of Schistosoma haematobium and Schistosoma guineensis in Loum, Cameroon. Parasitol Res, 2007. 100(4): p. 739-45. [CrossRef]
- Steinauer, M.L., et al., Introgressive hybridization of human and rodent schistosome parasites in western Kenya. Mol Ecol, 2008. 17(23): p. 5062-74. [CrossRef]
- Huyse, T., et al., Bidirectional introgressive hybridization between a cattle and human schistosome species. PLoS Pathog, 2009. 5(9): p. e1000571. [CrossRef]
- Leger, E. and J.P. Webster, Hybridizations within the Genus Schistosoma: implications for evolution, epidemiology and control. Parasitology, 2017. 144(1): p. 65-80. [CrossRef]
- Steinauer, M.L., M.S. Blouin, and C.D. Criscione, Applying evolutionary genetics to schistosome epidemiology. Infect Genet Evol, 2010. 10(4): p. 433-43. [CrossRef]
- Rollinson, D., Biochemical genetics in the study of schistosomes and their intermediate hosts. Parassitologia, 1985. 27(1-2): p. 123-39.
- Wright, C.A. and G.C. Ross, Hybrids between Schistosoma haematobium and S. mattheei and their identification by isoelectric focusing of enzymes. Trans R Soc Trop Med Hyg, 1980. 74(3): p. 326-32. [CrossRef]
- Catalano, S., et al., Rodents as Natural Hosts of Zoonotic Schistosoma Species and Hybrids: An Epidemiological and Evolutionary Perspective From West Africa. J Infect Dis, 2018. 218(3): p. 429-433. [CrossRef]
- Wang, S., X.Q. Zhu, and X. Cai, Gene Duplication Analysis Reveals No Ancient Whole Genome Duplication but Extensive Small-Scale Duplications during Genome Evolution and Adaptation of Schistosoma mansoni. Front Cell Infect Microbiol, 2017. 7: p. 412. [CrossRef]
- Rey, O., et al., Diverging patterns of introgression from Schistosoma bovis across S. haematobium African lineages. PLoS Pathog, 2021. 17(2): p. e1009313. [CrossRef]
- Panzner U., Clinical Applications of Isothermal Diagnosis for Human Schistosomiasis Encyclopedia, 2022. 2(2), 690-704. [CrossRef]
- Farrell, S.H. and R.M. Anderson, Helminth lifespan interacts with non-compliance in reducing the effectiveness of anthelmintic treatment. Parasit Vectors, 2018. 11(1): p. 66. [CrossRef]
- Panzner U., E.J., Kim JH, Marks F, Carter D, Siddiqui AA Recent advances and methodological considerations on vaccine candidates for human schistosomiasis. Frontiers in Tropical Diseases, 2021. [CrossRef]
- May, R.M. and M.E. Woolhouse, Biased sex ratios and parasite mating probabilities. Parasitology, 1993. 107 (Pt 3): p. 287-95. [CrossRef]
- Beltran, S. and J. Boissier, Schistosome monogamy: who, how, and why? Trends Parasitol, 2008. 24(9): p. 386-91. [CrossRef]
- Stothard, J.R., et al., Future schistosome hybridizations: Will all Schistosoma haematobium hybrids please stand-up! PLoS Negl Trop Dis, 2020. 14(7): p. e0008201. [CrossRef]
- Pearce, E.J. and A.S. MacDonald, The immunobiology of schistosomiasis. Nat Rev Immunol, 2002. 2(7): p. 499-511. [CrossRef]
- Loker, E.S. and S.V. Brant, Diversification, dioecy and dimorphism in schistosomes. Trends Parasitol, 2006. 22(11): p. 521-8. [CrossRef]
- Coutinho, F.A., M. Griffin, and J.D. Thomas, A model of schistosomiasis incorporating the searching capacity of the miracidium. Parasitology, 1981. 82(1): p. 111-20. [CrossRef]
- Yang, Y., et al., Evolution of host resistance to parasite infection in the snail-schistosome-human system. J Math Biol, 2012. 65(2): p. 201-36. [CrossRef]
- Koopman, J.P.R., E. Driciru, and M. Roestenberg, Controlled human infection models to evaluate schistosomiasis and hookworm vaccines: where are we now? Expert Rev Vaccines, 2021. 20(11): p. 1369-1371. [CrossRef]
- Keating, J.H., R.A. Wilson, and P.J. Skelly, No overt cellular inflammation around intravascular schistosomes in vivo. J Parasitol, 2006. 92(6): p. 1365-9. [CrossRef]
- Farhan Kabir Patwary, J.A., Amy Sturt, Emily L Webb, Van Lieshout Lisette, Bonnie Webster, Amaya Bistinduy, Female Genital Schistosomiasis: Diagnostic Validation for Recombinant DNA-Polymerase-Amplification Assay using Cervicovaginal Lavage. An International Journal of Obstetrics and Gynaecology 2021. 128:Supplement 2(248-).
- Le, L. and M.H. Hsieh, Diagnosing Urogenital Schistosomiasis: Dealing with Diminishing Returns. Trends Parasitol, 2017. 33(5): p. 378-387. [CrossRef]
- Gandasegui, J., et al., The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis. PLoS Negl Trop Dis, 2015. 9(7): p. e0003963. [CrossRef]
- Rosser, A., et al., Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit Vectors, 2015. 8: p. 446. [CrossRef]
- Archer, J., et al., Analytical and Clinical Assessment of a Portable, Isothermal Recombinase Polymerase Amplification (RPA) Assay for the Molecular Diagnosis of Urogenital Schistosomiasis. Molecules, 2020. 25(18). [CrossRef]
- Bayoumi, A., et al., Loop-Mediated Isothermal Amplification (Lamp): Sensitive and Rapid Detection of Schistosoma Haematobium DNA in Urine Samples of Egyptian Suspected Cases. J Egypt Soc Parasitol, 2016. 46(2): p. 299-308. [CrossRef]
- Siddiqui, A.J., et al., A Critical Review on Human Malaria and Schistosomiasis Vaccines: Current State, Recent Advancements, and Developments. Vaccines (Basel), 2023. 11(4). [CrossRef]
- Mo, A.X., et al., Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals. Am J Trop Med Hyg, 2014. 90(1): p. 54-60. [CrossRef]
- Fonseca, C.T., et al., Schistosoma tegument proteins in vaccine and diagnosis development: an update. J Parasitol Res, 2012. 2012: p. 541268. 2012. [CrossRef]
- Fulford, A.J., et al., A statistical approach to schistosome population dynamics and estimation of the life-span of Schistosoma mansoni in man. Parasitology, 1995. 110 (Pt 3): p. 307-16. [CrossRef]
- Meurs, L., et al., Epidemiology of mixed Schistosoma mansoni and Schistosoma haematobium infections in northern Senegal. Int J Parasitol, 2012. 42(3): p. 305-11. [CrossRef]
- Skelly, P.J. and R. Alan Wilson, Making sense of the schistosome surface. Adv Parasitol, 2006. 63: p. 185-284. [CrossRef]
- Van Hellemond, J.J., et al., Functions of the tegument of schistosomes: clues from the proteome and lipidome. Int J Parasitol, 2006. 36(6): p. 691-9. [CrossRef]
- Loukas, A., M. Tran, and M.S. Pearson, Schistosome membrane proteins as vaccines. Int J Parasitol, 2007. 37(3-4): p. 257-63. [CrossRef]
- El Ridi, R., et al., Innate immunogenicity and in vitro protective potential of Schistosoma mansoni lung schistosomula excretory--secretory candidate vaccine antigens. Microbes Infect, 2010. 12(10): p. 700-9. [CrossRef]
- Mitchell, K.M., et al., Protective immunity to Schistosoma haematobium infection is primarily an anti-fecundity response stimulated by the death of adult worms. Proc Natl Acad Sci U S A, 2012. 109(33): p. 13347-52. [CrossRef]
- Civitello, D.J. and J.R. Rohr, Disentangling the effects of exposure and susceptibility on transmission of the zoonotic parasite Schistosoma mansoni. J Anim Ecol, 2014. 83(6): p. 1379-86. [CrossRef]
- Wang, S. and R.C. Spear, Exploring the impact of infection-induced immunity on the transmission of Schistosoma japonicum in hilly and mountainous environments in China. Acta Trop, 2014. 133: p. 8-14. [CrossRef]
- Fukushige, M., F. Mutapi, and M.E.J. Woolhouse, Population level changes in schistosome-specific antibody levels following chemotherapy. Parasite Immunol, 2019. 41(1): p. e12604. [CrossRef]
- McManus, D.P., et al., Schistosomiasis-from immunopathology to vaccines. Semin Immunopathol, 2020. 42(3): p. 355-371. [CrossRef]
- Qi, L., et al., Multiple infection leads to backward bifurcation for a schistosomiasis model. Math Biosci Eng, 2019. 16(2): p. 701-712. [CrossRef]
- Petney, T.N. and R.H. Andrews, Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol, 1998. 28(3): p. 377-93. [CrossRef]
- Attallah, A.M., et al., Placental and oral delivery of Schistosoma mansoni antigen from infected mothers to their newborns and children. Am J Trop Med Hyg, 2003. 68(6): p. 647-51. [CrossRef]
- Al-Naseri, A., et al., A comprehensive and critical overview of schistosomiasis vaccine candidates. J Parasit Dis, 2021. 45(2): p. 557-580. [CrossRef]
- da Paz, V.R.F., D. Sequeira, and A. Pyrrho, Infection by Schistosoma mansoni during pregnancy: Effects on offspring immunity. Life Sci, 2017. 185: p. 46-52. [CrossRef]
- Wynn, T.A. and K.F. Hoffmann, Defining a schistosomiasis vaccination strategy - is it really Th1 versus Th2? Parasitol Today, 2000. 16(11): p. 497-501. [CrossRef]
- Stadecker, M.J., et al., The immunobiology of Th1 polarization in high-pathology schistosomiasis. Immunol Rev, 2004. 201: p. 168-79. [CrossRef]
- Kalantari, P., S.C. Bunnell, and M.J. Stadecker, The C-type Lectin Receptor-Driven, Th17 Cell-Mediated Severe Pathology in Schistosomiasis: Not All Immune Responses to Helminth Parasites Are Th2 Dominated. Front Immunol, 2019. 10: p. 26. [CrossRef]
- Ahmad, G., et al., Prime-boost and recombinant protein vaccination strategies using Sm-p80 protects against Schistosoma mansoni infection in the mouse model to levels previously attainable only by the irradiated cercarial vaccine. Parasitol Res, 2009. 105(6): p. 1767-77. [CrossRef]
- Wilson, M.S., et al., Immunopathology of schistosomiasis. Immunol Cell Biol, 2007. 85(2): p. 148-54. [CrossRef]
- Fairfax, K., et al., Th2 responses in schistosomiasis. Semin Immunopathol, 2012. 34(6): p. 863-71. [CrossRef]
- Wilson MS, M.-K.M., Pesce JT, Ramalingam TR, Thompson R, Wynn TA, Immunopathology of schistosomiasis Immunology and cell biology, 2007. 85(2):148-54. Epub 2006 Dec 12. [CrossRef]
- Negrao-Correa, D., et al., Association of Schistosoma mansoni-specific IgG and IgE antibody production and clinical schistosomiasis status in a rural area of Minas Gerais, Brazil. PLoS One, 2014. 9(2): p. e88042. [CrossRef]
- Vereecken, K., et al., Associations between specific antibody responses and resistance to reinfection in a Senegalese population recently exposed to Schistosoma mansoni. Trop Med Int Health, 2007. 12(3): p. 431-44. [CrossRef]
- Garraud, O., et al., Class and subclass selection in parasite-specific antibody responses. Trends Parasitol, 2003. 19(7): p. 300-4. [CrossRef]
- Hotez, P.J., et al., Developing vaccines to combat hookworm infection and intestinal schistosomiasis. Nat Rev Microbiol, 2010. 8(11): p. 814-26. [CrossRef]
- Ahmad, G., et al., Preclinical prophylactic efficacy testing of Sm-p80-based vaccine in a nonhuman primate model of Schistosoma mansoni infection and immunoglobulin G and E responses to Sm-p80 in human serum samples from an area where schistosomiasis is endemic. J Infect Dis, 2011. 204(9): p. 1437-49. [CrossRef]
- Eloi-Santos, S.M., et al., Idiotypic sensitization in utero of children born to mothers with schistosomiasis or Chagas' disease. J Clin Invest, 1989. 84(3): p. 1028-31. [CrossRef]
- Malhotra, I., et al., Cord Blood Antiparasite Interleukin 10 as a Risk Marker for Compromised Vaccine Immunogenicity in Early Childhood. J Infect Dis, 2018. 217(9): p. 1426-1434. [CrossRef]
- Dauby, N., et al., Uninfected but not unaffected: chronic maternal infections during pregnancy, fetal immunity, and susceptibility to postnatal infections. Lancet Infect Dis, 2012. 12(4): p. 330-40. [CrossRef]
- Elliott, A.M., et al., Treatment with anthelminthics during pregnancy: what gains and what risks for the mother and child? Parasitology, 2011. 138(12): p. 1499-507. [CrossRef]
- Malhotra, I., et al., In utero exposure to helminth and mycobacterial antigens generates cytokine responses similar to that observed in adults. J Clin Invest, 1997. 99(7): p. 1759-66. [CrossRef]
- Lewert, R.M. and S. Mandlowitz, Schistosomiasis: prenatal induction of tolerance to antigens. Nature, 1969. 224(5223): p. 1029-30. [CrossRef]
- Blackwell, A.D., Helminth infection during pregnancy: insights from evolutionary ecology. Int J Womens Health, 2016. 8: p. 651-661. [CrossRef]
- Lacorcia, M., et al., Fetomaternal immune cross talk modifies T-cell priming through sustained changes to DC function. J Allergy Clin Immunol, 2021. 148(3): p. 843-857 e6. [CrossRef]
- Ludwig, E., et al., Placental gene expression and antibody levels of mother-neonate pairs reveal an enhanced risk for inflammation in a helminth endemic country. Sci Rep, 2019. 9(1): p. 15776. [CrossRef]
- Seydel, L.S., et al., Association of in utero sensitization to Schistosoma haematobium with enhanced cord blood IgE and increased frequencies of CD5- B cells in African newborns. Am J Trop Med Hyg, 2012. 86(4): p. 613-9. [CrossRef]
- Freer, J.B., et al., Schistosomiasis in the first 1000 days. Lancet Infect Dis, 2018. 18(6): p. e193-e203. [CrossRef]
- Malhotra, I., et al., Helminth- and Bacillus Calmette-Guerin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J Immunol, 1999. 162(11): p. 6843-8. [CrossRef]
- Tweyongyere, R., et al., Effect of maternal Schistosoma mansoni infection and praziquantel treatment during pregnancy on Schistosoma mansoni infection and immune responsiveness among offspring at age five years. PLoS Negl Trop Dis, 2013. 7(10): p. e2501. [CrossRef]
- Ondigo, B.N., et al., Impact of Mothers' Schistosomiasis Status During Gestation on Children's IgG Antibody Responses to Routine Vaccines 2 Years Later and Anti-Schistosome and Anti-Malarial Responses by Neonates in Western Kenya. Front Immunol, 2018. 9: p. 1402. [CrossRef]
- Flugge, J., et al., Impact of Helminth Infections during Pregnancy on Vaccine Immunogenicity in Gabonese Infants. Vaccines (Basel), 2020. 8(3). [CrossRef]
- Vlas, S.J., et al., SCHISTOSIM: a microsimulation model for the epidemiology and control of schistosomiasis. Am J Trop Med Hyg, 1996. 55(5 Suppl): p. 170-5. [CrossRef]
- Vale, N., et al., Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance. Antimicrob Agents Chemother, 2017. 61(5). [CrossRef]
- Ogongo, P., et al., The Road to Elimination: Current State of Schistosomiasis Research and Progress Towards the End Game. Front Immunol, 2022. 13: p. 846108. [CrossRef]
- World Health Organization. Report of the WHO informal consultation on the use of praziquantel during pregnancy/lactation and albendazole/menendazole in children under 24 months. 2002; Available from: https://www.who.int/publications/i/item/WHO-CDS-CPE-PVC-2002.4. Last accessed on 10.01.2024.
- Cioli, D., et al., Schistosomiasis control: praziquantel forever? Mol Biochem Parasitol, 2014. 195(1): p. 23-9. [CrossRef]
- Schneeberger, P.H.H., et al., Investigations on the interplays between Schistosoma mansoni, praziquantel and the gut microbiome. Parasit Vectors, 2018. 11(1): p. 168. [CrossRef]
- Mutapi, F., et al., Human schistosomiasis in the post mass drug administration era. Lancet Infect Dis, 2017. 17(2): p. e42-e48. [CrossRef]
- Eyoh, E., et al., The anthelmintic drug praziquantel promotes human Tr1 differentiation. Immunol Cell Biol, 2019. 97(5): p. 512-518. [CrossRef]
- Stylianou, A., et al., Developing a mathematical model for the evaluation of the potential impact of a partially efficacious vaccine on the transmission dynamics of Schistosoma mansoni in human communities. Parasit Vectors, 2017. 10(1): p. 294. [CrossRef]
- Chisango, T.J., et al., Benefits of annual chemotherapeutic control of schistosomiasis on the development of protective immunity. BMC Infect Dis, 2019. 19(1): p. 219. [CrossRef]
- Kabuyaya, M., M.J. Chimbari, and S. Mukaratirwa, Efficacy of praziquantel treatment regimens in pre-school and school aged children infected with schistosomiasis in sub-Saharan Africa: a systematic review. Infect Dis Poverty, 2018. 7(1): p. 73. [CrossRef]
- Mitchell, K.M., et al., Predicted impact of mass drug administration on the development of protective immunity against Schistosoma haematobium. PLoS Negl Trop Dis, 2014. 8(7): p. e3059. [CrossRef]
- Chan, M.S., The consequences of uncertainty for the prediction of the effects of schistosomiasis control programmes. Epidemiol Infect, 1996. 117(3): p. 537-50. [CrossRef]
- Hu, G.H., et al., The role of health education and health promotion in the control of schistosomiasis: experiences from a 12-year intervention study in the Poyang Lake area. Acta Trop, 2005. 96(2-3): p. 232-41. [CrossRef]
- Xiang, J., H. Chen, and H. Ishikawa, A mathematical model for the transmission of Schistosoma japonicum in consideration of seasonal water level fluctuations of Poyang Lake in Jiangxi, China. Parasitol Int, 2013. 62(2): p. 118-26. [CrossRef]
- Gray, D.J., et al., Transmission dynamics of Schistosoma japonicum in the lakes and marshlands of China. PLoS One, 2008. 3(12): p. e4058. [CrossRef]
- McManus, D.P., Prospects for development of a transmission blocking vaccine against Schistosoma japonicum. Parasite Immunol, 2005. 27(7-8): p. 297-308. [CrossRef]
- Molehin, A.J., D.P. McManus, and H. You, Vaccines for Human Schistosomiasis: Recent Progress, New Developments and Future Prospects. Int J Mol Sci, 2022. 23(4). [CrossRef]
- Churcher, T.S. and M.G. Basanez, Density dependence and the spread of anthelmintic resistance. Evolution, 2008. 62(3): p. 528-37. [CrossRef]
- Munisi, D.Z., et al., The Efficacy of Single-Dose versus Double-Dose Praziquantel Treatments on Schistosoma mansoni Infections: Its Implication on Undernutrition and Anaemia among Primary Schoolchildren in Two On-Shore Communities, Northwestern Tanzania. Biomed Res Int, 2017. 2017: p. 7035025. [CrossRef]
- Crellen, T., et al., Reduced Efficacy of Praziquantel Against Schistosoma mansoni Is Associated With Multiple Rounds of Mass Drug Administration. Clin Infect Dis, 2016. 63(9): p. 1151-1159. [CrossRef]
- Thomas, C.M. and D.J. Timson, The Mechanism of Action of Praziquantel: Six Hypotheses. Curr Top Med Chem, 2018. 18(18): p. 1575-1584. [CrossRef]
- Knowles, S.C., et al., Epidemiological Interactions between Urogenital and Intestinal Human Schistosomiasis in the Context of Praziquantel Treatment across Three West African Countries. PLoS Negl Trop Dis, 2015. 9(10): p. e0004019. [CrossRef]
- Fenwick, A., Praziquantel: do we need another antischistosoma treatment? Future Med Chem, 2015. 7(6): p. 677-80. [CrossRef]
- Lamberton, P.H., et al., Modelling the effects of mass drug administration on the molecular epidemiology of schistosomes. Adv Parasitol, 2015. 87: p. 293-327. [CrossRef]
- Kura, K., et al., Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination. PLoS Negl Trop Dis, 2019. 13(6): p. e0007349. [CrossRef]
- Hollingsworth, T.D., Counting Down the 2020 Goals for 9 Neglected Tropical Diseases: What Have We Learned From Quantitative Analysis and Transmission Modeling? Clin Infect Dis, 2018. 66(suppl_4): p. S237-S244. [CrossRef]
- King, C.H., The evolving schistosomiasis agenda 2007-2017-Why we are moving beyond morbidity control toward elimination of transmission. PLoS Negl Trop Dis, 2017. 11(4): p. e0005517. [CrossRef]
- Toor, J., et al., Determining post-treatment surveillance criteria for predicting the elimination of Schistosoma mansoni transmission. Parasit Vectors, 2019. 12(1): p. 437. [CrossRef]
- Anderson, R.M., et al., Studies of the Transmission Dynamics, Mathematical Model Development and the Control of Schistosome Parasites by Mass Drug Administration in Human Communities. Adv Parasitol, 2016. 94: p. 199-246. [CrossRef]
- Zwang, J. and P.L. Olliaro, Clinical efficacy and tolerability of praziquantel for intestinal and urinary schistosomiasis-a meta-analysis of comparative and non-comparative clinical trials. PLoS Negl Trop Dis, 2014. 8(11): p. e3286. [CrossRef]
- Toor, J., et al., Are We on Our Way to Achieving the 2020 Goals for Schistosomiasis Morbidity Control Using Current World Health Organization Guidelines? Clin Infect Dis, 2018. 66(suppl_4): p. S245-S252. [CrossRef]
- Gurarie, D. and C.H. King, Heterogeneous model of schistosomiasis transmission and long-term control: the combined influence of spatial variation and age-dependent factors on optimal allocation of drug therapy. Parasitology, 2005. 130(Pt 1): p. 49-65. [CrossRef]
- Macdonald, G., The dynamics of helminth infections, with special reference to schistosomes. Trans R Soc Trop Med Hyg, 1965. 59(5): p. 489-506. [CrossRef]
- Fukuhara, K., et al., Analysis of the effectiveness of control measures against Schistosoma mekongi using an intra- and inter-village model in Champasak Province, Lao PDR. Parasitol Int, 2011. 60(4): p. 452-9. [CrossRef]
- Liang, S., et al., Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc Natl Acad Sci U S A, 2007. 104(17): p. 7110-5. [CrossRef]
- Ishikawa, H., et al., Modeling the dynamics and control of Schistosoma japonicum transmission on Bohol island, the Philippines. Parasitol Int, 2006. 55(1): p. 23-9. [CrossRef]
- Remais, J., Modelling environmentally-mediated infectious diseases of humans: transmission dynamics of schistosomiasis in China. Adv Exp Med Biol, 2010. 673: p. 79-98. [CrossRef]
- Sokolow, S.H., et al., To Reduce the Global Burden of Human Schistosomiasis, Use 'Old Fashioned' Snail Control. Trends Parasitol, 2018. 34(1): p. 23-40. [CrossRef]
- Hollingsworth, T.D., et al., Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasit Vectors, 2015. 8: p. 630. [CrossRef]
- Coura, J.R., Control of schistosomiasis in Brazil: perspectives and proposals. Mem Inst Oswaldo Cruz, 1995. 90(2): p. 257-60. [CrossRef]
- Lo, N.C., et al., Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc Natl Acad Sci U S A, 2018. 115(4): p. E584-E591. [CrossRef]
- Webster, J.P., et al., The contribution of mass drug administration to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci, 2014. 369(1645): p. 20130434. [CrossRef]
- Macdonald, G., Dynamic models in tropical hygiene. Proc R Soc Med, 1968. 61(5): p. 456. [CrossRef]
- Rosenfield, P.L., R.A. Smith, and M.G. Wolman, Development and verification of a schistosomiasis transmission model. Am J Trop Med Hyg, 1977. 26(3): p. 505-16. [CrossRef]
- Rudge, J.W., et al., Identifying host species driving transmission of schistosomiasis japonica, a multihost parasite system, in China. Proc Natl Acad Sci U S A, 2013. 110(28): p. 11457-62. [CrossRef]
- Chen, Z., et al., Mathematical modelling and control of schistosomiasis in Hubei Province, China. Acta Trop, 2010. 115(1-2): p. 119-25. [CrossRef]
- Williams, G.M., et al., Mathematical modelling of schistosomiasis japonica: comparison of control strategies in the People's Republic of China. Acta Trop, 2002. 82(2): p. 253-62. [CrossRef]
- Da'dara, A.A., et al., DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo. Vaccine, 2008. 26(29-30): p. 3617-25. [CrossRef]
- Gray, D.J., et al., A multi-component integrated approach for the elimination of schistosomiasis in the People's Republic of China: design and baseline results of a 4-year cluster-randomised intervention trial. Int J Parasitol, 2014. 44(9): p. 659-68. [CrossRef]
- Williams, G.M., et al., Field Testing Integrated Interventions for Schistosomiasis Elimination in the People's Republic of China: Outcomes of a Multifactorial Cluster-Randomized Controlled Trial. Front Immunol, 2019. 10: p. 645. [CrossRef]
- McManus, D.P., et al., Schistosomiasis in the People's Republic of China: the era of the Three Gorges Dam. Clin Microbiol Rev, 2010. 23(2): p. 442-66. [CrossRef]
- Li, Y., et al., A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Math Biosci Eng, 2017. 14(5-6): p. 1279-1299. [CrossRef]
- Zhou, Y.B., et al., An integrated strategy for transmission control of Schistosoma japonicum in a marshland area of China: findings from a five-year longitudinal survey and mathematical modeling. Am J Trop Med Hyg, 2011. 85(1): p. 83-8. [CrossRef]
- Hisakane, N., et al., The evaluation of control measures against Schistosoma mekongi in Cambodia by a mathematical model. Parasitol Int, 2008. 57(3): p. 379-85. [CrossRef]
- El Ridi, R. and H. Tallima, Why the radiation-attenuated cercarial immunization studies failed to guide the road for an effective schistosomiasis vaccine: A review. J Adv Res, 2015. 6(3): p. 255-67. [CrossRef]
- Hewitson, J.P., P.A. Hamblin, and A.P. Mountford, Immunity induced by the radiation-attenuated schistosome vaccine. Parasite Immunol, 2005. 27(7-8): p. 271-80. [CrossRef]
- McManus, D.P., The Search for a Schistosomiasis Vaccine: Australia's Contribution. Vaccines (Basel), 2021. 9(8). [CrossRef]
- Nash, S., et al., The impact of prenatal exposure to parasitic infections and to anthelminthic treatment on antibody responses to routine immunisations given in infancy: Secondary analysis of a randomised controlled trial. PLoS Negl Trop Dis, 2017. 11(2): p. e0005213. [CrossRef]
- Kura, K., et al., Determining the optimal strategies to achieve elimination of transmission for Schistosoma mansoni. Parasit Vectors, 2022. 15(1): p. 55. [CrossRef]
- Hotez, P.J. and M.E. Bottazzi, Human Schistosomiasis Vaccines as Next Generation Control Tools. Trop Med Infect Dis, 2023. 8(3). [CrossRef]
- de Oliveira Lopes, D., et al., Identification of a vaccine against schistosomiasis using bioinformatics and molecular modeling tools. Infect Genet Evol, 2013. 20: p. 83-95. [CrossRef]
- Tebeje, B.M., et al., Schistosomiasis vaccines: where do we stand? Parasit Vectors, 2016. 9(1): p. 528. [CrossRef]
- Anisuzzaman and N. Tsuji, Schistosomiasis and hookworm infection in humans: Disease burden, pathobiology and anthelmintic vaccines. Parasitol Int, 2020. 75: p. 102051. [CrossRef]
- Merrifield, M., et al., Advancing a vaccine to prevent human schistosomiasis. Vaccine, 2016. 34(26): p. 2988-2991. [CrossRef]
- Moser, D., et al., A 14-kDa Schistosoma mansoni polypeptide is homologous to a gene family of fatty acid binding proteins. J Biol Chem, 1991. 266(13): p. 8447-54. [CrossRef]
- Becker, M.M., et al., Gene cloning, overproduction and purification of a functionally active cytoplasmic fatty acid-binding protein (Sj-FABPC) from the human blood fluke Schistosoma japonicum. Gene, 1994. 148(2): p. 321-5. [CrossRef]
- Esteves, A., et al., Remarks on the phylogeny and structure of fatty acid binding proteins from parasitic platyhelminths. Int J Parasitol, 1997. 27(9): p. 1013-23. [CrossRef]
- Tendler, M., et al., A Schistosoma mansoni fatty acid-binding protein, Sm14, is the potential basis of a dual-purpose anti-helminth vaccine. Proc Natl Acad Sci U S A, 1996. 93(1): p. 269-73. [CrossRef]
- Vilar, M.M., et al., An experimental bivalent peptide vaccine against schistosomiasis and fascioliasis. Vaccine, 2003. 22(1): p. 137-44. [CrossRef]
- Charrin, S., et al., Tetraspanins at a glance. J Cell Sci, 2014. 127(Pt 17): p. 3641-8. [CrossRef]
- Tran, M.H., et al., Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat Med, 2006. 12(7): p. 835-40. [CrossRef]
- Zhang, W., et al., Inconsistent protective efficacy and marked polymorphism limits the value of Schistosoma japonicum tetraspanin-2 as a vaccine target. PLoS Negl Trop Dis, 2011. 5(5): p. e1166. [CrossRef]
- Cupit, P.M., et al., Polymorphism associated with the Schistosoma mansoni tetraspanin-2 gene. Int J Parasitol, 2011. 41(12): p. 1249-52. [CrossRef]
- Jia, X., et al., Solution structure, membrane interactions, and protein binding partners of the tetraspanin Sm-TSP-2, a vaccine antigen from the human blood fluke Schistosoma mansoni. J Biol Chem, 2014. 289(10): p. 7151-63. [CrossRef]
- Croall, D.E. and K. Ersfeld, The calpains: modular designs and functional diversity. Genome Biol, 2007. 8(6): p. 218. [CrossRef]
- Karcz, S.R., et al., Molecular cloning and sequence analysis of a calcium-activated neutral protease (calpain) from Schistosoma mansoni. Mol Biochem Parasitol, 1991. 49(2): p. 333-6. [CrossRef]
- Zhang, R., et al., Cloning and molecular characterization of calpain, a calcium-activated neutral proteinase, from different strains of Schistosoma japonicum. Parasitol Int, 2000. 48(3): p. 232-42. [CrossRef]
- Johnson, K.A., et al., Crystal structure of the 28 kDa glutathione S-transferase from Schistosoma haematobium. Biochemistry, 2003. 42(34): p. 10084-94. [CrossRef]
- Trottein, F., et al., Inter-species variation of schistosome 28-kDa glutathione S-transferases. Mol Biochem Parasitol, 1992. 54(1): p. 63-72. [CrossRef]
- Dumont, M., et al., Influence of pattern of exposure, parasite genetic diversity and sex on the degree of protection against reinfection with Schistosoma mansoni. Parasitol Res, 2007. 101(2): p. 247-52. [CrossRef]
- Leonardo, L., et al., From country control programmes to translational research. Adv Parasitol, 2019. 105: p. 69-93. [CrossRef]
- Scherer, A. and A. McLean, Mathematical models of vaccination. Br Med Bull, 2002. 62: p. 187-99. [CrossRef]
- Gao, S.J., et al., The basic reproductive ratio of Barbour's two-host schistosomiasis model with seasonal fluctuations. Parasit Vectors, 2017. 10(1): p. 42. [CrossRef]
- Barbour, A.D., Macdonald's model and the transmission of bilharzia. Trans R Soc Trop Med Hyg, 1978. 72(1): p. 6-15. [CrossRef]
- Bichara, D.M., et al., State and parameter estimation for a class of schistosomiasis models. Math Biosci, 2019. 315: p. 108226. [CrossRef]
- Goddard, M.J., On Macdonald's model for schistosomiasis. Trans R Soc Trop Med Hyg, 1978. 72(2): p. 123-31. [CrossRef]
- Nasell, I., On transmission and control of schistosomiasis, with comments on Macdonald's model. Theor Popul Biol, 1977. 12(3): p. 335-65. [CrossRef]
- Mari, L., et al., Heterogeneity in schistosomiasis transmission dynamics. J Theor Biol, 2017. 432: p. 87-99. [CrossRef]
- Gao, S.J., et al., Field transmission intensity of Schistosoma japonicum measured by basic reproduction ratio from modified Barbour's model. Parasit Vectors, 2013. 6: p. 141. [CrossRef]
- Qi, L.X., Y. Tang, and S.J. Tian, Parameter estimation of modeling schistosomiasis transmission for four provinces in China. Math Biosci Eng, 2019. 16(2): p. 1005-1020. [CrossRef]
- Barbour, A.D., Modeling the transmission of schistosomiasis: an introductory view. Am J Trop Med Hyg, 1996. 55(5 Suppl): p. 135-43. [CrossRef]
- Barbour, A.D. and M. Kafetzaki, A host-parasite model yielding heterogeneous parasite loads. J Math Biol, 1993. 31(2): p. 157-76. [CrossRef]
- Gandon, S., et al., Forecasting Epidemiological and Evolutionary Dynamics of Infectious Diseases. Trends Ecol Evol, 2016. 31(10): p. 776-788. [CrossRef]
- Grassly, N.C. and C. Fraser, Mathematical models of infectious disease transmission. Nat Rev Microbiol, 2008. 6(6): p. 477-87. [CrossRef]
- Wallinga, J., Modelling the impact of vaccination strategies. Neth J Med, 2002. 60(7 Suppl): p. 67-75; discussion 76-7.
- Spear, R.C. and A. Hubbard, Parameter estimation and site-specific calibration of disease transmission models. Adv Exp Med Biol, 2010. 673: p. 99-111. [CrossRef]
- Castillo-Chavez, C., Z. Feng, and D. Xu, A schistosomiasis model with mating structure and time delay. Math Biosci, 2008. 211(2): p. 333-41. [CrossRef]
- Gurarie, D. and E.Y. Seto, Connectivity sustains disease transmission in environments with low potential for endemicity: modelling schistosomiasis with hydrologic and social connectivities. J R Soc Interface, 2009. 6(35): p. 495-508. [CrossRef]
- Turner, H.C., et al., Neglected tools for neglected diseases: mathematical models in economic evaluations. Trends Parasitol, 2014. 30(12): p. 562-70. [CrossRef]
- Bailey, N.T., The case for mathematical modelling of schistosomiasis. Parasitol Today, 1986. 2(6): p. 158-63. [CrossRef]
- Gurarie, D., et al., The human-snail transmission environment shapes long term schistosomiasis control outcomes: Implications for improving the accuracy of predictive modeling. PLoS Negl Trop Dis, 2018. 12(5): p. e0006514. [CrossRef]
- Medicine/ClinicalTrials.gov, U.S.N.L.o. Safety and Immunogenicity Evaluation of the Vaccine Candidate Sm14 Against Schistosomiasis in Senegalese School Children Healthy or Infected With S. Mansoni and/or S. Haematobium. A Comparative, Randomized, Controlled, Open-label Trial [NCT03799510]. 2018; Available from: https://clinicaltrials.gov/ct2/show/NCT03799510?term=Sm14&cond=Schistosomiasis&rank=2. Last accessed on 25.12.2023.
- Medicine/ClinicalTrials.gov, U.S.N.L.o. Efficacy and Safety Evaluation of the Therapeutic Vaccine Candidate Sh28GST in Association With Praziquantel (PZQ) for Prevention of Clinical and Parasitological Recurrences of S. Haematobium Infection in Children [NCT00870649]. 2012; Available from: https://clinicaltrials.gov/ct2/show/NCT00870649?term=sh28GST&cond=Schistosomiasis&draw=2&rank=1. Last accessed on 25.12.2023.
- Riveau, G., et al., Safety and efficacy of the rSh28GST urinary schistosomiasis vaccine: A phase 3 randomized, controlled trial in Senegalese children. PLoS Negl Trop Dis, 2018. 12(12): p. e0006968. [CrossRef]
- Woolhouse, M.E., On the application of mathematical models of schistosome transmission dynamics. I. Natural transmission. Acta Trop, 1991. 49(4): p. 241-70. [CrossRef]
- Woolhouse, M.E., On the application of mathematical models of schistosome transmission dynamics. II. Control. Acta Trop, 1992. 50(3): p. 189-204. [CrossRef]
- Chan, M.S., et al., The development and validation of an age-structured model for the evaluation of disease control strategies for intestinal helminths. Parasitology, 1994. 109 (Pt 3): p. 389-96. [CrossRef]
- Lloyd-Smith, J.O., et al., Epidemic dynamics at the human-animal interface. Science, 2009. 326(5958): p. 1362-7. [CrossRef]
- Woolhouse, M.E., Mathematical models of transmission dynamics and control of schistosomiasis. Am J Trop Med Hyg, 1996. 55(5 Suppl): p. 144-8. [CrossRef]
- Seto, E.Y. and E.J. Carlton, Disease transmission models for public health decision-making: designing intervention strategies for Schistosoma japonicum. Adv Exp Med Biol, 2010. 673: p. 172-83. [CrossRef]
- Truscott, J.E., et al., A comparison of two mathematical models of the impact of mass drug administration on the transmission and control of schistosomiasis. Epidemics, 2017. 18: p. 29-37. [CrossRef]
- Kura, K., et al., Policy implications of the potential use of a novel vaccine to prevent infection with Schistosoma mansoni with or without mass drug administration. Vaccine, 2020. 38(28): p. 4379-4386. [CrossRef]
- Basanez, M.G., et al., A research agenda for helminth diseases of humans: modelling for control and elimination. PLoS Negl Trop Dis, 2012. 6(4): p. e1548. [CrossRef]
- Woolhouse, M.E., Human schistosomiasis: potential consequences of vaccination. Vaccine, 1995. 13(12): p. 1045-50. [CrossRef]
- Woolhouse, M.E., A theoretical framework for the immunoepidemiology of helminth infection. Parasite Immunol, 1992. 14(6): p. 563-78. [CrossRef]
- Woolhouse, M.E., A theoretical framework for immune responses and predisposition to helminth infection. Parasite Immunol, 1993. 15(10): p. 583-94. [CrossRef]
- Chan, M.S., et al., Dynamic aspects of morbidity and acquired immunity in schistosomiasis control. Acta Trop, 1996. 62(2): p. 105-17. [CrossRef]
- Anderson, R.M. and R.M. May, Herd immunity to helminth infection and implications for parasite control. Nature, 1985. 315(6019): p. 493-6. [CrossRef]
- Woolhouse, M.E., Immunoepidemiology of human schistosomes: taking the theory into the field. Parasitol Today, 1994. 10(5): p. 196-202. [CrossRef]
- Chan, M.S.H., B.F.; Bundy, D.A.P., Modelling of potential schistosomiasis vaccination programmes. Parasitology, 1996. 12(12): p. 4.
- Chan, M.S., et al., Dynamic models of schistosomiasis morbidity. Am J Trop Med Hyg, 1996. 55(1): p. 52-62. [CrossRef]
- Liang, S., et al., A multi-group model of Schistosoma japonicum transmission dynamics and control: model calibration and control prediction. Trop Med Int Health, 2005. 10(3): p. 263-78. [CrossRef]
- Chan, M.S., M.E. Woolhouse, and D.A. Bundy, Human schistosomiasis: potential long-term consequences of vaccination programmes. Vaccine, 1997. 15(14): p. 1545-50. [CrossRef]
- Chan, M.S., et al., The development of an age structured model for schistosomiasis transmission dynamics and control and its validation for Schistosoma mansoni. Epidemiol Infect, 1995. 115(2): p. 325-44. [CrossRef]
- Yang, H.M., Comparison between schistosomiasis transmission modelings considering acquired immunity and age-structured contact pattern with infested water. Math Biosci, 2003. 184(1): p. 1-26. [CrossRef]
- Yang, H.M., F.A. Coutinho, and E. Massad, Acquired immunity on a schistosomiasis transmission model - fitting the data. J Theor Biol, 1997. 188(4): p. 495-506. [CrossRef]
- Liu, X., Y. Takeuchi, and S. Iwami, SVIR epidemic models with vaccination strategies. J Theor Biol, 2008. 253(1): p. 1-11. [CrossRef]
- Yang, H.M. and A.C. Yang, The stabilizing effects of the acquired immunity on the schistosomiasis transmission modeling--the sensitivity analysis. Mem Inst Oswaldo Cruz, 1998. 93 Suppl 1: p. 63-73. [CrossRef]
- Gurarie, D., C.H. King, and X. Wang, A new approach to modelling schistosomiasis transmission based on stratified worm burden. Parasitology, 2010. 137(13): p. 1951-65. [CrossRef]
- Gurarie, D. and C.H. King, Population biology of Schistosoma mating, aggregation, and transmission breakpoints: more reliable model analysis for the end-game in communities at risk. PLoS One, 2014. 9(12): p. e115875. [CrossRef]
- Luchsinger, C.J., Stochastic models of a parasitic infection, exhibiting three basic reproduction ratios. J Math Biol, 2001. 42(6): p. 532-54. [CrossRef]
- Anderson, R.M. and R.M. May, Helminth infections of humans: mathematical models, population dynamics, and control. Adv Parasitol, 1985. 24: p. 1-101. [CrossRef]
- Anderson, R.M. and R.M. May, Population dynamics of human helminth infections: control by chemotherapy. Nature, 1982. 297(5867): p. 557-63. [CrossRef]
- McManus, D.P., et al., Recombinant paramyosin (rec-Sj-97) tested for immunogenicity and vaccine efficacy against Schistosoma japonicum in mice and water buffaloes. Vaccine, 2001. 20(5-6): p. 870-8. [CrossRef]
- Alsallaq, R.A., et al., Quantitative assessment of the impact of partially protective anti-schistosomiasis vaccines. PLoS Negl Trop Dis, 2017. 11(4): p. e0005544. [CrossRef]
- Bradley, D.J. and R.M. May, Consequences of helminth aggregation for the dynamics of schistosomiasis. Trans R Soc Trop Med Hyg, 1978. 72(3): p. 262-73. [CrossRef]
- Collyer, B.S., et al., Vaccination or mass drug administration against schistosomiasis: a hypothetical cost-effectiveness modelling comparison. Parasit Vectors, 2019. 12(1): p. 499. [CrossRef]
- Graham, M., et al., SCHISTOX: An individual based model for the epidemiology and control of schistosomiasis. Infect Dis Model, 2021. 6: p. 438-447. [CrossRef]
- Farrell, S.H., J.E. Truscott, and R.M. Anderson, The importance of patient compliance in repeated rounds of mass drug administration (MDA) for the elimination of intestinal helminth transmission. Parasit Vectors, 2017. 10(1): p. 291. [CrossRef]
- Anderson, R.M., et al., What is required in terms of mass drug administration to interrupt the transmission of schistosome parasites in regions of endemic infection? Parasit Vectors, 2015. 8: p. 553. [CrossRef]
- Gurarie, D., et al., Modelling control of Schistosoma haematobium infection: predictions of the long-term impact of mass drug administration in Africa. Parasit Vectors, 2015. 8: p. 529. [CrossRef]
- French, M.D., et al., Observed reductions in Schistosoma mansoni transmission from large-scale administration of praziquantel in Uganda: a mathematical modelling study. PLoS Negl Trop Dis, 2010. 4(11): p. e897. [CrossRef]
- Toor, J., et al., The design of schistosomiasis monitoring and evaluation programmes: The importance of collecting adult data to inform treatment strategies for Schistosoma mansoni. PLoS Negl Trop Dis, 2018. 12(10): p. e0006717. [CrossRef]
- Turner, H.C., et al., Evaluating the variation in the projected benefit of community-wide mass treatment for schistosomiasis: Implications for future economic evaluations. Parasit Vectors, 2017. 10(1): p. 213. [CrossRef]
- Group, N.T.D.M.C.S., Insights from quantitative and mathematical modelling on the proposed WHO 2030 goal for schistosomiasis. Gates Open Res, 2019. 3: p. 1517. [CrossRef]
- Chan, M.S. and D.A. Bundy, Modelling the dynamic effects of community chemotherapy on patterns of morbidity due to Schistosoma mansoni. Trans R Soc Trop Med Hyg, 1997. 91(2): p. 216-20. [CrossRef]
- Keitel, W.A., et al., A phase 1 study of the safety, reactogenicity, and immunogenicity of a Schistosoma mansoni vaccine with or without glucopyranosyl lipid A aqueous formulation (GLA-AF) in healthy adults from a non-endemic area. Vaccine, 2019. 37(43): p. 6500-6509. [CrossRef]
- Medicine/ClinicalTrials.gov, U.S.N.L.o. A Phase I Study of the Safety, Reactogenicity, and Immunogenicity of Sm-TSP-2/Alhydrogel® With or Without GLA-AF for Intestinal Schistosomiasis in Healthy Adults [NCT02337855]. 2017; Available from: https://clinicaltrials.gov/ct2/show/NCT02337855?term=TSP&cond=Schistosomiasis&rank=1. Last accessed on 25.12.2023.
- (NIAID), N.I.o.A.a.I.D., A Phase Ib Study of the Safety, Reactogenicity, and Immunogenicity of Sm-TSP-2/Alhydrogel)(R) With or Without AP 10-701 for Intestinal Schistosomiasis in Healthy Exposed Adults (ClinicalTrials.gov Identifier: NCT03110757). 2017-2019. Last accessed on 25.12.2023.
- Medicine/ClinicalTrials.gov, U.S.N.L.o. Sm-TSP-2 Schistosomiasis Vaccine in Healthy Ugandan Adults [NCT03910972]. 2019; Available from: https://clinicaltrials.gov/ct2/show/NCT03910972?term=TSP&cond=Schistosomiasis&rank=2. Last accessed on 25.12.2023.
- Medicine/ClinicalTrials.gov, U.S.N.L.o. Phase 1 study to evaluate the safety of the vaccine prepared sm14 against schistosomiasis [NCT01154049]. 2014; Available from: https://clinicaltrials.gov/ct2/show/NCT01154049?term=Sm14&cond=Schistosomiasis&rank=1. Last accessed on 25.12.2023.
- Santini-Oliveira, M., et al., Schistosomiasis vaccine candidate Sm14/GLA-SE: Phase 1 safety and immunogenicity clinical trial in healthy, male adults. Vaccine, 2016. 34(4): p. 586-594. [CrossRef]
- Medicine/ClinicalTrials.gov, U.S.N.L.o. Safety and Immunogenicity Evaluation of the Vaccine Candidate Sm14 in Combination With the Adjuvant Glucopyranosyl Lipid A (GLA-SE) in Adults Living in Endemic Regions for S. Mansoni and S. Haematobium in Senegal. A Comparative, Randomized, Open-label Trial [NCT03041766]. 2016; Available from: https://clinicaltrials.gov/ct2/show/NCT03041766?term=Sm14&cond=Schistosomiasis&rank=3. Last accessed on 25.12.2023.
- Riveau, G., et al., Safety and immunogenicity of rSh28GST antigen in humans: phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis. PLoS Negl Trop Dis, 2012. 6(7): p. e1704. [CrossRef]
- Medicine/Clinical/Trial.gov, U.S.N.L.o. Phase 1 Study Evaluating Safety and Immunological Criteria of Efficacy of the Recombinant Vaccine Candidate Bilhvax Against Schistosomiasis [NCT01512277]. 1999; Available from: https://clinicaltrials.gov/ct2/show/NCT01512277?term=rsh28GST&cond=Schistosomiasis&draw=2&rank=1. Last accessed on 25.12.2023.
- Danso-Appiah, A., et al., Drugs for treating Schistosoma mansoni infection. Cochrane Database Syst Rev, 2013(2): p. CD000528. [CrossRef]
- Sousa-Figueiredo, J.C., et al., Performance and safety of praziquantel for treatment of intestinal schistosomiasis in infants and preschool children. PLoS Negl Trop Dis, 2012. 6(10): p. e1864. [CrossRef]
- Zwang, J. and P. Olliaro, Efficacy and safety of praziquantel 40 mg/kg in preschool-aged and school-aged children: a meta-analysis. Parasit Vectors, 2017. 10(1): p. 47. [CrossRef]
- Oettle, R.C. and S. Wilson, The Interdependence between Schistosome Transmission and Protective Immunity. Trop Med Infect Dis, 2017. 2(3). [CrossRef]
- Yang, H.M. and F.A. Coutinho, Acquired immunity of a schistosomiasis transmission model--analysis of the stabilizing effects. J Theor Biol, 1999. 196(4): p. 473-82. [CrossRef]
- Spencer, S.A., et al., Impact of a Novel, Low-Cost and Sustainable Health Education Program on the Knowledge, Attitudes, and Practices Related to Intestinal Schistosomiasis in School Children in a Hard-to-Reach District of Madagascar. Am J Trop Med Hyg, 2022. 106(2): p. 685-694. [CrossRef]
- Southgate, V.R., Schistosomiasis in the Senegal River Basin: before and after the construction of the dams at Diama, Senegal and Manantali, Mali and future prospects. J Helminthol, 1997. 71(2): p. 125-32. [CrossRef]
- Kloos, H., Water resources development and schistosomiasis ecology in the Awash Valley, Ethiopia. Soc Sci Med, 1985. 20(6): p. 609-25. [CrossRef]
- Tchuem Tchuente, L.A., et al., The evolution of schistosomiasis at Loum, Cameroon: replacement of Schistosoma intercalatum by S. haematobium through introgressive hybridization. Trans R Soc Trop Med Hyg, 1997. 91(6): p. 664-5. [CrossRef]
- Sene-Wade, M., et al., Urogenital schistosomiasis and hybridization between Schistosoma haematobium and Schistosoma bovis in adults living in Richard-Toll, Senegal. Parasitology, 2018. 145(13): p. 1723-1726. [CrossRef]
- Webster, B.L., et al., Introgressive hybridization of Schistosoma haematobium group species in Senegal: species barrier break down between ruminant and human schistosomes. PLoS Negl Trop Dis, 2013. 7(4): p. e2110. [CrossRef]
- Van den Broeck, F., et al., Reconstructing Colonization Dynamics of the Human Parasite Schistosoma mansoni following Anthropogenic Environmental Changes in Northwest Senegal. PLoS Negl Trop Dis, 2015. 9(8): p. e0003998. [CrossRef]
- King, K.C., et al., Hybridization in Parasites: Consequences for Adaptive Evolution, Pathogenesis, and Public Health in a Changing World. PLoS Pathog, 2015. 11(9): p. e1005098. [CrossRef]
- World Health Organization. Schistosomiasis. 2018 22/11/2018]; Available from: http://www.who.int/schistosomiasis/en/. Last accessed on 25.12.2023.
- King, C.H., L.J. Sutherland, and D. Bertsch, Systematic Review and Meta-analysis of the Impact of Chemical-Based Mollusciciding for Control of Schistosoma mansoni and S. haematobium Transmission. PLoS Negl Trop Dis, 2015. 9(12): p. e0004290. [CrossRef]
- Sokolow, S.H., et al., Global Assessment of Schistosomiasis Control Over the Past Century Shows Targeting the Snail Intermediate Host Works Best. PLoS Negl Trop Dis, 2016. 10(7): p. e0004794. [CrossRef]
- Kariuki, H.C., et al., Long term study on the effect of mollusciciding with niclosamide in stream habitats on the transmission of schistosomiasis mansoni after community-based chemotherapy in Makueni District, Kenya. Parasit Vectors, 2013. 6: p. 107. [CrossRef]
- Allan, F., et al., Snail-Related Contributions from the Schistosomiasis Consortium for Operational Research and Evaluation Program Including Xenomonitoring, Focal Mollusciciding, Biological Control, and Modeling. Am J Trop Med Hyg, 2020. 103(1_Suppl): p. 66-79. [CrossRef]
- Picquet, M., et al., Royal Society of Tropical Medicine and Hygiene meeting at Manson House, London, 18 May 1995. The epidemiology of human schistosomiasis in the Senegal river basin. Trans R Soc Trop Med Hyg, 1996. 90(4): p. 340-6. 18 May. [CrossRef]
- Oleaga, A., et al., Epidemiological surveillance of schistosomiasis outbreak in Corsica (France): Are animal reservoir hosts implicated in local transmission? PLoS Negl Trop Dis, 2019. 13(6): p. e0007543. [CrossRef]
- Gautret, P., et al., Local and International Implications of Schistosomiasis Acquired in Corsica, France. Emerg Infect Dis, 2015. 21(10): p. 1865-8. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).