Altmetrics
Downloads
94
Views
34
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
29 February 2024
Posted:
29 February 2024
You are already at the latest version
(1) | |
(2) |
(3) | |
(4) |
(5) |
(6) | |
(7) | |
(8) |
(9) | |
(10) |
(11) |
(12) | |
(13) |
Type | Primary index | Secondary index | Unit |
Innovation input index | Talent factor | Full-time equivalent of R&D personnel | Person-year |
Capital factor | Internal expenditure of R&D funds | 10000 yuan | |
Financial expenditure on science and technology | Billion yuan | ||
Technology factor | Expenditure on purchasing domestic and foreign advanced technology | 10000 yuan | |
Data factor | Number of mobile phone subscribers | 10000 households | |
Innovation output index | Technological outcomes | Patent authorization | Piece |
Economic benefits | Amount of technology market contracts | Billion yuan | |
Sales volume of new products | 10000 yuan | ||
Non-expected output | Production of solid hazardous waste | 10000 tons | |
Discharge of sulfur dioxide in wastewater | 10000 tons | ||
Chemical oxygen demand in wastewater discharge | 10000 tons |
Province | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Mean |
Inner Mongolia | 0.218 | 0.125 | 0.054 | 0.056 | 0.051 | 0.108 | 0.140 | 0.153 | 0.148 | 0.263 | 0.132 |
Liaoning | 0.396 | 0.336 | 0.353 | 0.454 | 0.501 | 0.562 | 0.680 | 0.664 | 0.597 | 1.001 | 0.555 |
Jilin | 1.042 | 0.155 | 0.279 | 0.195 | 1.002 | 1.049 | 1.054 | 1.132 | 1.026 | 1.036 | 0.797 |
Heilongjiang | 0.153 | 0.191 | 0.150 | 0.139 | 0.175 | 0.250 | 0.358 | 0.394 | 0.477 | 0.539 | 0.283 |
Shanghai | 1.008 | 1.017 | 1.008 | 1.029 | 1.050 | 1.020 | 1.016 | 1.059 | 1.056 | 1.079 | 1.034 |
Zhejiang | 0.743 | 1.036 | 1.004 | 1.001 | 1.019 | 1.011 | 1.008 | 1.059 | 0.744 | 1.140 | 0.977 |
Fujian | 1.122 | 0.560 | 0.372 | 0.298 | 0.170 | 0.201 | 0.223 | 0.275 | 0.308 | 0.357 | 0.389 |
Guangdong | 0.371 | 1.005 | 0.473 | 0.635 | 0.659 | 1.020 | 0.883 | 1.037 | 1.024 | 1.037 | 0.814 |
Guangxi | 0.037 | 0.126 | 0.074 | 0.128 | 1.037 | 1.028 | 0.567 | 0.342 | 1.025 | 1.063 | 0.543 |
Hainan | 0.125 | 0.343 | 1.005 | 0.105 | 1.000 | 1.016 | 0.740 | 1.000 | 0.094 | 1.017 | 0.645 |
Chongqing | 0.479 | 0.337 | 1.016 | 1.015 | 1.034 | 1.174 | 0.354 | 0.371 | 0.478 | 1.008 | 0.727 |
Yunnan | 0.232 | 0.183 | 0.180 | 0.189 | 0.216 | 0.255 | 0.247 | 0.208 | 0.159 | 0.237 | 0.211 |
Shanxi | 0.408 | 1.071 | 0.374 | 0.602 | 1.014 | 0.543 | 0.743 | 1.083 | 1.250 | 1.205 | 0.829 |
Gansu | 0.401 | 0.365 | 0.407 | 0.338 | 0.282 | 0.346 | 0.493 | 1.000 | 1.054 | 1.008 | 0.569 |
Qinghai | 0.086 | 0.151 | 0.253 | 0.387 | 0.193 | 0.744 | 1.206 | 0.189 | 1.041 | 1.057 | 0.531 |
Ningxia | 0.103 | 0.118 | 0.092 | 1.036 | 0.084 | 0.105 | 0.174 | 1.099 | 1.000 | 1.005 | 0.482 |
Xinjiang | 0.080 | 0.037 | 0.038 | 0.039 | 0.044 | 0.069 | 0.041 | 1.010 | 0.362 | 0.127 | 0.185 |
Mean | 0.412 | 0.421 | 0.420 | 0.450 | 0.561 | 0.618 | 0.584 | 0.710 | 0.697 | 0.834 | 0.571 |
Value of efficiency | Region |
>1 | Shanghai |
0.8-1 | Zhejiang, Shanxi, Guangdong |
0.6-0.8 | Jilin, Chongqing, Hainan |
0.4-0.6 | Gansu, Liaoning, Guangxi, Qinghai, Ningxia |
0.2-0.4 | Fujian, Heilongjiang, Yunnan |
0-0.2 | Xinjiang, Inner Mongolia |
Year | EFFCH | TECH | PECH | SECH | TFP |
2012-2013 | 0.986 | 1.131 | 0.985 | 1.000 | 1.122 |
2013-2014 | 1.018 | 0.938 | 1.007 | 1.000 | 0.946 |
2014-2015 | 1.020 | 1.327 | 0.997 | 1.020 | 1.488 |
2015-2016 | 1.049 | 1.238 | 1.029 | 1.017 | 1.292 |
2016-2017 | 1.049 | 1.272 | 1.018 | 1.026 | 1.310 |
2017-2018 | 1.029 | 1.112 | 1.020 | 1.008 | 1.137 |
2018-2019 | 1.037 | 1.022 | 1.019 | 1.017 | 1.058 |
2019-2020 | 0.986 | 1.054 | 1.013 | 0.972 | 1.042 |
2020-2021 | 1.059 | 1.020 | 1.006 | 1.051 | 1.090 |
Mean | 1.026 | 1.124 | 1.010 | 1.012 | 1.165 |
Province | EFFCH | TECH | PECH | SECH | TFP |
Inner Mongolia | 1.112 | 1.024 | 1.065 | 1.021 | 1.126 |
Liaoning | 1.000 | 1.042 | 1.000 | 1.000 | 1.042 |
Jilin | 1.024 | 1.020 | 1.000 | 1.023 | 1.043 |
Heilongjiang | 1.098 | 1.076 | 1.081 | 1.009 | 1.166 |
Shanghai | 1.000 | 1.232 | 1.000 | 1.000 | 1.232 |
Zhejiang | 1.000 | 1.167 | 1.000 | 1.000 | 1.167 |
Fujian | 1.013 | 0.946 | 1.011 | 1.000 | 0.944 |
Guangdong | 1.000 | 1.095 | 1.000 | 1.000 | 1.095 |
Guangxi | 1.001 | 1.103 | 1.001 | 1.000 | 1.108 |
Hainan | 1.045 | 1.070 | 1.000 | 1.045 | 1.148 |
Chongqing | 1.000 | 1.193 | 1.000 | 1.000 | 1.193 |
Yunnan | 1.023 | 1.094 | 1.017 | 1.002 | 1.107 |
Shanxi | 1.000 | 1.191 | 1.000 | 1.000 | 1.191 |
Gansu | 1.000 | 1.155 | 1.000 | 1.000 | 1.155 |
Qinghai | 1.000 | 1.448 | 1.000 | 1.000 | 1.448 |
Ningxia | 1.106 | 1.238 | 1.000 | 1.106 | 1.628 |
Xinjiang | 1.018 | 1.013 | 1.003 | 1.004 | 1.011 |
Mean | 1.026 | 1.124 | 1.010 | 1.012 | 1.165 |
Year | Global Moran's I | Z-value | P-value |
2012 | 0.582 | 2.263 | 0.012 |
2013 | 0.699 | 2.532 | 0.006 |
2014 | 0.836 | 3.053 | 0.001 |
2015 | 0.609 | 2.236 | 0.013 |
2016 | 0.493 | 1.834 | 0.033 |
2017 | 0.197 | 0.841 | 0.200 |
2018 | 0.640 | 2.358 | 0.009 |
2019 | 0.286 | 1.142 | 0.127 |
2020 | 0.040 | 0.075 | 0.470 |
2021 | 0.367 | 1.694 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated