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Abstract: This research addresses the formidable challenge of achieving precise trajectory tracking
for autonomous vehicle formations in uncertain environments. It introduces an adaptive control
system tailored for autonomous vehicles, with a primary focus on ensuring prescribed performance
in trajectory tracking within a leader-follower formation paradigm. The system incorporates a
guidance law that allows the leader vehicle to dynamically adjust desired yaw angles and speeds
for follower vehicles based on the established reference trajectory, enhancing tracking accuracy and
responsiveness to environmental changes. To address practical external disturbances, the study
utilizes Radial Basis Function Neural Networks (RBFNN) in conjunction with second-order filters for
error approximation. This approach is further strengthened by a carefully formulated adaptive law.
The innovative integration of a barrier Lyapunov function with the backstepping method significantly
enhances the system’s adaptability and robustness, ensuring trajectory tracking performance meets
predetermined standards. Simulation results illustrate the control system’s adept handling of various
external disturbances, consistently maintaining trajectory tracking errors within predefined limits.
This underscores the system’s potential to markedly enhance the operational reliability and efficiency
of autonomous vehicle formations in unpredictable environmental conditions.

Keywords: autonomous vehicle; trajectory tracking; formation control; prescribed performance

1. Introduction

The coordination of multi-autonomous vehicles has become a significant area of research, with a
focus on diverse formation control strategies, including behavior-based control [1], virtual structure [2],
and decentralized control [3]. Behavior-based formation control emphasizes local interactions among
vehicles to form desired patterns, while virtual structure formation control guides the vehicles to
maintain their relative positions within an invisible geometric framework. In decentralized control,
individual vehicles make decisions based on local information and communication with neighbors.
Despite the advantages of these approaches, this paper will investigate leader-follower formation
control for multi-autonomous vehicles. This method has been selected due to its simplicity, ease of
implementation, and the potential for achieving robust performance under specific conditions [4-6].

There has been a significant amount of research conducted on the subject, and a considerable
portion of it is of high quality. Yang and Gu et al. [7] realized a non-linear formation keeping and
mooring control of multiple autonomous underwater vehicles by combining Lyapunov’s direct method
with a smooth feedback control law. A leader-follower framework is utilized to develop a guided
formation control scheme through a modular design procedure, drawing inspiration from integrator
backstepping and cascade theory concepts [8]. In order to mitigate the negative effects caused by
communication delays, a control system that can effectively manage inter-vehicle communication
issues is designed [9], which can be particularly challenging in underwater environments. Also, Yan
et al. [10] present coordinated control protocols, both with and without time delay, to address the

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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coordination control problem of multiple Autonomous Underwater Vehicles (AUVs) under switching
communication topologies using discrete information.

To design stable controllers, many methods are used, among which the sliding mode control
(SMC) method is quite popular. SMC is a robust control method that can effectively suppress the
effects of external disturbances and modeling uncertainties, making it well-suited for applications with
non-linear and uncertain dynamics [11-14]. Wu et al. [12] combine SMC and backstepping techniques
to design a closed-loop control system to deal with uncertainty in formation control and demonstrate
the effectiveness of the method. Wang et al. [13] proposed a new method to deal with the uncertainties.
The approach involves utilizing sliding mode control, multilayer neural networks, and adaptive robust
techniques to design an effective formation controller for underwater vehicles. Also, Su et al. [15] built
an adaptive fixed time integral sliding mode disturbance observer to accurately estimate compound
disturbance. Nevertheless, the use of sliding mode control (SMC) comes with a notable disadvantage
known as chattering [16]. To address this issue and enhance the system’s robustness, various methods
have been introduced. Backstepping method is one of them. Backstepping control offers a systematic
and recursive approach to designing control laws for complex nonlinear systems, ensuring stability
and providing flexibility in handling uncertainties and disturbances, making it an advantageous choice
compared to sliding mode control [17-19]. The Lyapunov-based backstepping approach is developed
and proved to be able to work effectively [17,18]. Also, Wang et al. [20] built a graphtheory-based
backstepping controller to deal with the disturbance. Zaidi et al. [21] developed a combined approach
of chatter-free sliding mode control and backstepping technique in their design. Yang et al. [22]
presented a controller that combines backstepping and sliding mode control techniques to effectively
address external disturbances. Also, neural networks have gained popularity in recent years for
handling uncertainty disturbances [23-25]. Neural networks possess the property of universal function
approximation, enabling them to approximate any continuously differentiable function. Using RBFNN
to deal with the uncertainties is proved very efficient [26,27]. Using RBFNN and combining LKFs
and backstepping techniques, Zhao et al. [28] proposed a control scheme. Besides, guidance laws
are widely utilized in trajectory tracking problems. They can effectively improve the robustness and
adaptive performance of the system [29-31]. Incorporating guidance laws into formation control is a
beneficial approach to consider.

However, achieving a stable performance of the system is challenging, despite the inherent
difficulty in maintaining stable system performance, a breakthrough was first made with the
development of the prescribed performance control (PPC) method. The core concept of achieving
predefined transient and steady-state performance of output tracking error is captured by an innovative
PPC approach introduced in [32], employing a transformation function that strictly increases or
decreases the tracking error. Recently, more PPC methods have been developed [22,33-35]. They
have achieved good results, but the challenge for formation control remains [36]. Mehdifar et al. [37]
presented a graph-based formation control approach for leader-follower multiagent systems in a
distributed manner using a prescribed performance strategy, yielding favorable outcomes. However,
the method does not account for external disturbances. Dai et al. [36] incorporates barrier Lyapunov
functions and an adaptive backstepping procedure to ensure the boundedness of the closed-loop
systems while guaranteeing transient performance. However, their method heavily relies on the
accuracy of dynamic modeling, which implies that its robustness and adaptive may be limited.
Jiang et al. [35] suggests a prescribed-time formation control approach for second-order nonlinear
multi-agent systems with a directed graph. However, there is room for further optimization of
the system responsiveness of this approach. In a word, the formation members have limited
communication capabilities, and complex algorithms may hinder the controller’s performance.
Additionally, accurately approximating disturbances is challenging, which can impact the system'’s
robustness and adaptability [6,38,39].

In this paper, a controller is proposed for autonomous vehicle formation control, combining the
leader-follower method and backstepping technique. The leader’s predefined trajectory and desired
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formation shape guide the generation of desired yaw angles and velocities for the followers using a
graph-based guidance law. Nonlinear error handling is achieved through a second-order filter and
RBENN, complemented by an adaptive law. Furthermore, a barrier Lyapunov function is employed
to achieve prescribed performance control. In comparison with previously mentioned methods,
our main contributions can be summarized as follows: (1) This work combines these approaches,
enabling precise trajectory tracking and formation maintenance in autonomous vehicle formation
control. (2) The graph-based guidance law generates desired yaw angles and velocities based on
the formation members’ graph relationship, ensuring accurate formation control and alignment with
the leader’s trajectory. (3) The use of second-order filters and RBFNN effectively handles nonlinear
errors, improving control performance by mitigating non-linearities, enhancing stability, and tracking
accuracy. The adaptive law further enhances adaptability to changing dynamics.

The rest of this paper is structured as follows: In Section 2, we introduce the vehicle’s kinetic
and dynamic model. Section 3 describes the design of the proposed controller, where we employ a
Lyapunov function to demonstrate stability. Section 4 presents the simulation results for formation
trajectory tracking control in the presence of external disturbances. Finally, Section 5 conclues this
work.

2. Kinematics and Dynamics Models

Referring to Figure 1, the kinematics and dynamics of the vehicle is

X = v; cos (0;)

Yi = v;sin (6;)

6, = (fi’lvi tan (6;) + foi(6:) + do,i
0 = Fi + fo,i(vi) +dy,i

1)

where the constant ¢; > 0 is the length of each vehicle. Here, (x;, ;) is the reference point of the vehicle
withi € {1,...,n} and is placed at the midpoint of the rear axle, with x; € R being the longitudinal
position and y; € (—a,a) being the lateral position of the vehicle in an inertial frame with Cartesian
coordinates (X,Y); v; is the speed of the vehicle at the point (x;,y;),6; € (—%,%) is the angular
orientation of the vehicle with respect to the X axis, J; is the steering angle of the front wheels relative
to the orientation 6; of the vehicle, and F; is the acceleration of the vehicle. fp;(6;) and f,;(v;) are

unknown nonlinear functions. dg;(t) and d,,;(¢) denote unknown and bounded external disturbances.

Y
A

.
>

x X

Figure 1. Vehicle Model
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Lemma 1. Nonlinear function g(x) can be approximated by an RBENN under given accuracy &€ > 0. That is,
g(x) can be written as
() = Wlg(x) +e(x),

where W € R is the ideal constant weight vector, €(x) is the approximation error satisfying |e(x )|

&
(1(x), 92(x), ..., 1(x))T denotes the Gaussian basis function vector with ¢j(x) = exp ( 2(5 ) j=
1,2,...,1, where ¢ and ¢ are the center and width of Gaussian basis function @;(x), respectively. x =

(x1,x2, . ..,xq)T. Then we have || (x) || < |lg(%)|2, where £ = (x1,xa,...,%,)" ,r <q.
Lemma 2. ForVa,b > 0,and p,q > 0, satisfying 1/p +1/q = 1, the inequality holds as ab < % + %.

3. Controller Design

In this section, we propose a formation tracking controller for the vehicle formation members.
Figures 2 and 3 illustrate the setup, where member i follows leader j as its follower. The whole system
is designed with the help of backstepping technique. The leader’s desired trajectory is given, and
based on the leader’s kinematics and dynamics, its desired velocity and steering angle are designed
and fed into the guidance law. Subsequently, we calculate the desired yaw angle 6, ; and velocity
vy for the followers, which are then used as inputs to their respective steering angle and velocity
controllers. To ensure high robustness against unknown disturbances, we employ a second-order filter
to estimate the error and use a Radial Basis Function Neural Network (RBENN) to approximate the
unknown non-linear function. For this purpose, we design an adaptive law. Additionally, we consider
a nominal function in the system and introduce another adaptive law to handle it. Finally, we compute
the final desired steering angle and velocity to guide the followers effectively.

" steeringangle
controller

+>/second-order filter -0

] wheji
—> RBFNN

Adaptive law

Leader's
kine emlhcl d
dyna

Followers i's Kinematic

Guidance law. and Dynamic

Vo

' Velocity controller
|—> second-order itter:

———>  RBFNN

Figure 2. Formation controller diagram



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 February 2024 d0i:10.20944/preprints202402.1744.v1

50f 20

Vo

Leader
Ay 6i
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Figure 3. formation control geometric relationship
3.1. Guidance Law Design

The guidance law is specifically designed to enhance the system’s flexibility and adaptability. In
this context, the formation’s desired shape is predefined, while the initial positions of the formation
members are randomized. To illustrate, let’s consider the scenario involving a leader (denoted as j)
and one of its followers (7). The current position of follower i is represented as p;, while p; ; signifies
its desired position. The desired position vector p; s = [x;4,y;4]" = [x;, yi]T + [Ax, Ay]T.

Based on Figure 3, our objective is to control member i effectively, which involves ensuring that
p; converges to the desired position. We define an error term to achieve this and aim to drive it to
convergence. This error is described as (2).

) T
Xei | _ c9s Oijp —sinbi;, (Pi —p, d) o)
Ye,i sinb;;, cosb;;, ’

where 6; ; , = atan 2 (y(t) + Ay/(t), x; + Ax') € [=7, 7], ., is the shortest distance between the real
position p; of the vehicle i and the moving line of the desired position p; 4, x,; is the distance along the
moving line between the real position p; of the vehicle i and the moving line of the desired position
Pid-

To minimize the error and approach zero, it is essential to calculate the error precisely. We can
easily obtain the derivative of y,; as follows:

ye,i = 0 sin (91' — Gp,i) . (3)

The barrier Lyapunov function is employed in the design of the governing law to restrict the error and
ensure the controlled member maintains a stable state during motion. Moreover, separate Lyapunov
candidates are designed for y, ; and x, ; to significantly reduce interference between different errors. A
Lyapunov function for y, ; is presented as follows:

b2, 2
_ i TTYe,i
Vi= p tan( TR ), 4)
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where by,i is the upper boundary of v, ;.
By taking the derivative of Eq. (4), one can prove the stability of V; as follows:

Vi — YeiYe,i T 2by,iby,i tan e, _ by, Yei” (5)
! 2 [ Y T 202, by,i o [ TTYe,i? .
cos? | 5.3 yi cos? | 5.3
7 Vi

Based on the vector field guidance law, the desired yaw angle 6 ; is designed as follows:

kyb? . 2. b .
. Y=y, . , ,

04, = 0, + arcsin(— 201'75/ lei sin( bze'l) + vizyliye’i)' (6)
’ Yl ’

where ky, > 0 is the guidance law parameter, which is used to represent the strength of the vector field.

by,

by,;

Vl _ Ye,ile,i + Zby,iby,i tan nye,iz . by,ic ]/e,z'2
cos? e i Zbﬁxi by cos? e
2b2 2b2

i yi

. i 2

Yeile,i _ (by/if Ye,i* + 2kbbyfi tan e
2

2 [ Wei® by,i 2 [ Wei® T 20,

cos < 2, ) cos® 5 2

) ; 2
Ye,i0; SIN (91‘ — 9;,’1‘) 7 (by,ic> ye,iz 2kbby,i
2
cos? <7;ZZ’" > cos?
i

kgb?, my?, ;
Yl o3 el i
i — - Sin + 75 Ye,i i 2
< e ( 27 S0 b ) s - (bﬁ) Yei” Zkpby,i tan (71‘/6'"2>
cos?

Defining k; = sup

, according to Egs. (3) and (6), Eq. (5) can be rewritten as follows:

IN

b2, 7TYe 2
S — (kd — Zkb) Y tan Z

s
By choosing k; > 2k;, the following inequality holds:
Vl S —C V1 , (8)

where ¢; = k; — 2ky,.
From Figure 3, the derivative of x,; can be obtained as follows:

xe,i = ’0]‘ — 0;j COS ,Bi- (9)

A Lyapunov function is given as:

b2, 2
Vo = 1 tan (7;262"1 ) . (10)
x,i

Also, according to the guidance law, the desired velocity is designed as follows:

1 kob?,  mx’
(— sin( b;'z) — ﬁxe,i +9j), (11)

X,i

Vi =
9 cos B 27X, ;

7
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where B; =0, , — 0.
Upon differentiating the equation provided in Eq. (10), the resulting expression for V5 is given by:

- . 2 / 2

V o Xe,iXe,i 2bx,ibx,i TTXe i bx,ic Xe,i
2= N ™\ ) T\ ) T T
cos? (mce” ) xi ¥ ) cos? (nx"’i )

202 . 203,

|
o)
o]
@
N =
—2
=
)
S
~__
VR
S| S
KRR
~_—
)
o
@
(N}
/\mk,\;
5 |2
)
~__
N
3
Al s
)
-
QO
/
NS
3%NRN
~__—

TTX i X ’
zbi,' 2h925,i (12)
Xei (vj —vicospi) <bﬂ> X i 2kcb? (nxél>
- mx2, by; 2, 20>
cos? ( 2b§;> /) cos? ( 2b§:i> X,i
2 2
X
< — (kp — 2k.) £ tan ol
=2k R 5
Bx i
where k. = sup ‘bm'
By selecting k, > 2k., we can additionally derive:
Vz S *Csz, (13)

where ¢; = k; — 2k.

3.2. Orientation Angle Controller Design

Now, with the guidance law supplying the desired yaw angle and velocity, it is imperative to
devise controllers for these parameters. The controllers are developed independently, providing
various practical advantages, including modularity, specialization, simplicity, robustness, and
scalability. For formation member i, defining the angle error as

egi =0; —04; (14)

7

the computations of the derivatives of 6, ; are extremely intricate. To mitigate this complexity, we
introduce a second-order filter expressed as:

{¢10 = Oy (15)

bag = —200wno®20 — Wy (P10 — bai)
Here, the damping rate {p and frequency wj are predetermined constants, 0, ; represents the input,

@y is the output and an estimation of 6, ;, and @, can be interpreted as the derivative of 0, ;, denoted
as 9,1,1-. The estimated error of this second-order filter is defined as follows:

e 2

0a,i=0a,; — 04, (16)
Consider a Lyapunov candidate
1
Vo = 565, (17)
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and refer to Egs. (1) and (16). The derivative of V with respect to time can be expressed as:
Vo = eq,ice,i
= eq,i (0; — 04) (18)

=ep; <0flvi tan (6;) + fo,i +do,;i — 04 — 9d,i> :

RBENN stands for Radial Basis Function Neural Network, which is a type of artificial neural network
that is commonly used for function approximation and pattern recognition tasks. It comprises three
layers: an input layer, a hidden layer featuring radial basis functions, and an output layer. In this study,
we employ an RBFNN to approximate unknown nonlinear functions. Consequently,

Vo = ep, (O'iilvi tan (6;) + Wy, + €9 + do;i — 0a; — éd,i) 19)
=eg,; (U'i_lvi tan (6;) + Wo,ipo, — 04, + d~9,z‘) ,

where cfg,i =¢€9;+dg;i— éd,i represents total disturbances. It is evident that ngi is bounded, adhering
to d~9,i < d_(;,j. Furthermore, ngi = WG,i — Wg,i and We,i < Wg,l‘.
To deal with the unknown nonlinear functions, the adaptive law is designed as follows:

Wa,i = k0 (9o, — ka0 Wa,) (20)

with positive parameters k1 g, and kg ;.
To deal with nominal disturbance, another adaptive law is designed as follows:

do; = ks, (69,1‘ - k4,9,idA9,i> (21)

with positive parameters k39, and kq 9 ;.
For the adaptive tracking controller, the intended steering angle of the front wheels can be
formulated as follows:

04 = arctan (Uf Lo;(—ks g0, — do; — W, ipe, + 9d,z‘)) . (22)

Consider a Lyapunov candidate given by:

1

Vs ==
572

1 1
2 -1 -1
€t 5k30:6, + 5k10,

1

W2, 23)

1

where d = d — d, and combine Egs. (20), (32), and (35). We can express the time derivative of V3 as
follows:

Vs =ep,i€p,i + dAglidAg,i + Wf),i WG,Z'
—ep; <‘7i_1vi tan (51,) + W@,i(PG,i — éd,i + Jg[,’) + Eig,i (69[{ — k4,6,ije,i) - We,iwe,i
=ep <_k5,9,i€9,i — dg,i — Wa,ipe,i + Wo,ipoi + d~9/l‘) + doi <e9fi B k‘*""ije'i)

— Wi (pa,icoi — ka0, Wa,i)
< — ks 0,i¢,; — ka5 ; + egidg,i + ko0, W iWo,i
< —ksp,i€g; — kaoidy; + eoidei + kapi ||[Woil| || We,il|
—ksg,ie5; — kaoidg; + egidi + ko |[Wail (Woi — | Wayl|)

(24)

IN

where ||W9,iH < Wg/i.
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Utilizing Lemma 2, we can derive the following inequalities:
~ - ~ 1 ~ 2 ]. o)
[[Wojil| (Wo,i — [[Wo,il|) < =5 [[Wal|” + 5 Wa, (25)
and . .
eoido; < 5 leail® + 545 (26)
2 27
Then, combining these inequalities, we obtain:
. 1 o2 1 1 1= 2
Vs < —ksgied; — kagid3; — =Ko il|[Wal|” + 5 lleal|* + ~dg i+ kois|| W,
’ 2 2 2 2 27)

2

1 1 <2 1 1, -
< —(ksg,i — E)eé,i — kg — Ekz,e,ine,i} + Ed%,i + kz,e,zEHWe,i

From this, we can conclude that V3 < —03V3 + {7 where 03 = min{ks; — %, kygi kopit > 0and
2
G = 35+ ka3 [Woi]| ™ > 0.
3.3. Velocity Controller Design

For formation members, the velocity error is defined as:
€y = Vi — Vg (28)

The computations of the derivatives of v,; are extremely intricate. Therefore, a second-order filter
is introduced to solve this problem as

{d)ao = Dy (29)

b9 = —200wnoPag — w3 (P10 — 0v4;)

where damp rate {p and frequency w; are designed constants, v, ; is the input, ®3y is the output and
the estimation of v, ;, @49 can be taken as the derivative of v;; which is denoted as 7 ;.
The estimate error of this second-order filter is defined as

04i=04; — Vi (30)
Differentiating the velocity error,

€y =U; — g

. . (31)
= Fi + fo,i(0i) + do,i — 04, — Da
In this paper, an RBENN is employed to approximate unknown nonlinear functions. Then,
éo,i = Fi + Wi @o,i + €0 + doi — 04 — D 32)

=F+Wyi@ui+dy; — 0a; +dy;

where d,; = €, + d,; — Uy, is total disturbances. Apparently, d,,; is bounded, satisfying d,,; < d, ;.
Wv,i = Wyi— Wv,i and Wv,i < Wv,i .
To deal with the unknown nonlinear functions, the adaptive law is designed as

A ~

Wo,i = k1,01 (90,i€0,i — k2,0iWoi) (33)

with positive parameters k ,,; and ky , ;.
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To deal with nominal disturbance, another adaptive law is designed as

dAv,i = k3,v,i (ev,i - k4,v,ijv,i) (34)

with positive parameters k3 ,,; and ky ,, ;. The adaptive tracking controller for the desired velocity can
be formulated as follows:
Fai = —ksy,iepi — dyi — Woiui + 0 . (35)

Consider a Lyapunov candidate

Vy = Loy k— a2, + k— W2, (36)

2 vz 3,0,i"0,i 10,1

Then, by combining Egs. (31), (34), and (33), we can describe the differential of V; as follows:

Vi =ey,ibyi +dyidyi + Wy Wy

A

=€y,i (Fi + Wv,i Pov,i — Z),'\d,i + Jv,i) + d\v,i (ev,i - k4,v,idAv,i> - Wv,iwv,i

=ey,i (_kS,v,iev,i — doi — Wo,ipui + Wi, + d~v,i> +dy (ev,z' - k4,v,ijv,i)
— Wa,i (¢v,i€0i — ko0,iWo,i) (57)
< - k5vle k4mdw+evldm—i—kszlem
k5vle k4mdm+evldm+k2m
k5vle k4mdm+evldm+k2m

Ui vi}

Ul|| vl_HWv,iH)

where [[W, | < W,;.
Utilizing Lemma 2, we can derive the following inequalities:

- _ - 1, ~ 2 1-
[ B 1) < =21+ 22, @9
and 1
evzdvszHeZH” +2 01 (39)
Combining these inequalities, we obtain:
n 1 oo L 72
V4 <- k5vle k4v, id vi EkZ,v,i Wv,i| + E”ev, + zdm
=12
+ k2,v,i§ H Wv,i H
1 1 2 40
<- (k5vi - E)e%i - k4vid?i - §k2,v,i Wv,z
+ Zd_%” +k2012HszH .
The conclusion can be given that Vy < —04Vy + 0o with
) 1
0y = min{ks,; — 5/ Kkapi kppi} >0 (41)
and
1
0= +kopiz ||wvl|| > 0. (42)

27}1
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3.4. Stability Analysis
Consider the Lyapunov candidate represented as:
V=Vi+W+V+V,
b2 X, 2 b2, Y, 2 1 1 1 -
: ; 2 Ye, 2 -1 72 -1 142
=—tan ( | o S | 5%t 5Kaede; 5KV, (43)
x,i yi
Lo  Liap 1140
t 56t ksl + 5k, Wo,
It concludes that V < —¢V +  in which
. 1 1
o =min § kg — 2kp, ky — 2ke, ks g, — Erk4,9,irk2,9,i/ ks,o,i — Erk4,v,irk2,v,i >0 (44)
and
1 15 12 1 1, 12
= Ed?,,z- +kapi5 || Wo,il|” + Ed%'i +kopi5 [ Wel” > 0. (45)

Choosing parameters such that k; > 2k;, ky > 2k, ksg; > %, and ks, ; > %, and integrating Eq. (43),
we can derive the inequality V < (V (0) — g) e+ g The conclusion can be drawn that V is

b2 2 b2, 2
bounded. Moreover, —* tan (Zz%’l > <V < (V (0) — g) et + g and % tan (7%%’1 ) <V <

(V (0) — g) e 7t + g imply the following constraints hold:

2b2 .
X2 < %tanfl (I;; ((V(O) — f_) e 7+ g)) < b%; (46)
x,i
and
2 Zbii -1 0\ ot , € 2
]/e,i S 7tan bT 1% (O) — } e + E < by,i (47)
yi

Therefore, the conclusion can be drawn that x, ; and y, ; are bounded as |x,;| < |by,;| and |y, ;| <
|by,i |. Finally, theses terms can be eliminated to a small neighborhood around zero.

4. Simulation Result

In this Section, the simulation results of the formation control with different disturbances are
shown. In our simulation, Vehicle 1 serves as the leader, with Vehicles 2, 3, and 4 acting as followers.
The leader’s desired trajectory, denoted as (x1(t),y1(t)), follows the equations x1 (t) = 0.5 4 5¢~%%
and y1(t) = 0.5+ 502, The vehicles are configured in a quadrilateral formation, with each diagonal
measuring 20 meters. Initially, Vehicle 2 is positioned at (—5.5, —9.9), Vehicle 3 at (—6.5,10), and
Vehicle 4 at (—18.5,0.1). All vehicles maintain a constant velocity of 1 m/s throughout the simulation.
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Table 1. Main parameters of the controller.

Parameter Value Parameter Value
ky 1.01 kg, 1.01
ko 11 ks p,i 2
ky,0,i 0.5 k3,,i 1
ka0,i 8 ka,p,i 1
k1,0,i 5 ks i 0.2
kp i 18 lo 0.8
k30,i 5 Wio 20

Figure 5 depicts the trajectory of the formation, which maintains its predefined shape effectively
even in the presence of various disturbances. The simulation results in Figure 4 and 6 provide a
comprehensive analysis of the formation control algorithm’s capability to minimize trajectory tracking
errors for the followers.

6
—e—vehicle #2
——vehicle #3

a4k " vehicle #4
---- error constraints

Tracking error of X-Axis(m)
N o

I
0 5 10 15 20 25 30 35 40 45 50

time/s
(@)
6
| —e—vehicle #2
\ ——vehicle #3
4 vehicle #4
. ---- error constraints
£
g 20 4
N
X
5
g
£
o
j=2]
£
s2 1
o
=
4 -
5 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
time/s

Figure 4. Trajectory tracking error of x-axis with different disturbances:(a) Without disturb, (b) dp ;(t),
dyi(t) = 0.5sin {5
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Figure 5. Trajectory of formation with different disturbances:(a) Without disturb and (b) dg ;(t), d,(t)
= 0.5sin ﬁ

Initially, at the beginning of the simulation, the position errors along the x and y axes for the
followers are approximately 1m, which can be attributed to random initial conditions. However, as the
simulation progresses, the formation control algorithm effectively guides the followers towards their
target positions, leading to a rapid convergence of position errors. Within a short period, the errors
decreased significantly, demonstrating the high precision and effectiveness achieved by the control
strategy.

The figures also showcase the error constraints, which define the acceptable range of position
errors during operation (0.5m). The trajectory tracking error consistently stays well within the specified
constraints throughout the simulation, affirming the robustness and effectiveness of the proposed
formation control algorithm in managing the agents” motion while adhering to predefined error
boundaries.
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Figure 6. Trajectory tracking error of y-axis with different disturbances:(a) Without disturb, and (b)
d@,i(t)r dv,i(t) = 0.5sin %

As depicted in Figure 7, the leader’s angular change exhibits a smooth transition, aligning well
with real-world applications. In the initial startup phase (approximately the first 2 seconds), the three
followers swiftly adjust their angles within a range of 55 to 140 degrees. Subsequently, they converge
to a narrower variation range of 90 to 100 degrees. Around the 5-second mark, Vehicle 4’s angle
closely aligns with the leader’s angle, maintaining this alignment throughout the simulation. Similarly,
Vehicles 2 and 3 achieve alignment with the leader around the 12-second mark, displaying no visible
deviation for the remainder of the simulation. This highlights the efficacy of the formation control
algorithm in synchronizing the followers” angular changes with the leader’s smooth trajectory.
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Figure 7. Steering angle error of formation with different disturbances: (a) Without disturb and (b)

dﬁ,i(t)r dv,i(t) = 0.5sin %

The velocity progression of the formation members is illustrated in Figure 8. Within the initial 3
seconds, Vehicles 2, 3, and 4 rapidly converge their speeds to a range of 1.8 — 2.5 m/s and subsequently
maintain a speed almost consistent with that of Vehicle 1. Notably, the convergence speed of Vehicles 2
and 3 is significantly faster than that of Vehicle 4. This difference can be attributed to the varying initial
positions of the vehicles. The observed behavior indirectly underscores that the proposed method in
this study enables the vehicles to swiftly identify their positions and uphold the desired formation

alongside the rest of the fleet.
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Figure 8. Vehicle velocity with different disturbances:
0.5sin %

(a) Without disturb and (b) dg;(t), dy,;(t) =

Figures 9-fig:controlinput3 depict the control inputs applied to the followers under various
disturbances. The inputs rapidly converge, demonstrating the stability of our approach.
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Figure 9. Control inputs of followerl with different disturbances:(a) Without disturb, (b) dg ;(t), d,,;(t)

_ o
= 0.5sin
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Figure 11. Control inputs of follower3 with different disturbances:(a) Without disturb, (b) dg ;(t), d,,(t)
= 0.5sin ﬁ

To provide a more detailed depiction of the results, we present the mean and maximum position

errors of the followers in Tables 2-3. The tabulated outcomes clearly demonstrate the outstanding
performance of the controller, consistent with our expectations.

Table 2. The mean and maximal position error of follower 1

Disturbances Mean position error (m) Maximal position error (m)
dg(t), dy1(t) =0 0.1751 2.6776
dg1(t), dya(t) = 0.5sin {5 0.2542 2.6838

Table 3. The mean and maximal position error of follower 2

Disturbances Mean position error (m) Maximal position error (m)
doo(t), dyp(t) =0 0.1129 1.5380
doo(t), dyp(t) = 0.5sin Tto 0.1960 1.5377

Table 4. The mean and maximal position error of follower 3

Disturbances Mean position error (m) Maximal position error (m)
dgs(t), dy3(t) =0 0.0408 0.9130
dg3(t), dy3(t) = 0.5sin Tto 0.1323 0.9096

5. Conclusion

This paper introduces an adaptive leader-follower formation controller with prescribed
performance. The guidance law computes the desired velocity and steering angle based on the
leader’s trajectory and a predefined formation pattern. To address challenges posed by unknown
functions and external disturbances, a second-order filter and an RBFNN, alongside an adaptive law,
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are employed. Notably, the entire controller adheres to a backstepping method, incorporating distinct
velocity and corner controllers to enhance system robustness. Furthermore, the inclusion of a barrier
to the Lyapunov function contributes to achieving the prescribed performance. Simulation results
illustrate that our proposed controller consistently attains superior performance within the specified
limits, even in the presence of various disturbances.
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