Preprint
Review

Unraveling the Complexity: From Molecular Subtypes to Therapeutic Strategies in Heart Failure with Preserved Ejection Fraction and Atrial Fibrillation

Altmetrics

Downloads

203

Views

63

Comments

0

Submitted:

01 March 2024

Posted:

01 March 2024

You are already at the latest version

Alerts
Abstract
fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF). Join us on a journey that unravels the mysteries of molecular intricacies, delves into advanced imaging techniques, and sheds light on therapeutic pathways. Unveiling the role of cardiac amyloidosis, particularly sub-clinical isolated cardiac amyloidosis (ICA), the narrative unfolds the heightened risk of AF in the elderly. State-of-the-art imaging techniques like cardiac magnetic resonance (CMR) and molecular imaging step into the spotlight, unraveling diagnostic and prognostic nuances of AF and HFpEF. Embarking on the molecular voyage, the article navigates through next-generation sequencing and comprehensive genomic profiling, shedding light on genetic alterations shaping the AF-HFpEF landscape. This molecular compass lays the groundwork for personalized medicine, illuminating pathways to identify therapeutic bullseyes and biomarkers. In the realm of medical strategies, the discussion homes in on the promising notes struck by SGLT2 inhibitors, particularly dapagliflozin, orchestrating a reduction in AF burden. Characters like spironolactone and dronedarone make appearances, each weaving a distinct tale, revealing their potential roles in steering the ship for AF- HFpEF patients. The subplot involving obesity in HFpEF unfolds, with the LEGACY study portraying the benefits of weight reduction. The pivotal intervention of catheter ablation emerges as the hero, boasting positive outcomes in reducing hospitalization rates and overall mortality for AF-HFpEF patients. However, cautionary tales echo about its impact on left atrial function, adding layers of complexity that beckon careful consideration and monitoring. Amidst the narrative, critical discussions unfold about the limitations of current research, echoing the need to define acute heart failure, refine imaging techniques, and tailor management strategies. The narrative passionately advocates for a personalized touch in addressing AF-HFpEF, recognizing the unique blend of clinical and molecular personas. In essence, this review paints a vivid mural of AF-HFpEF, skillfully bridging the realms of molecular intricacies and the artistry of clinical management.
Keywords: 
Subject: Medicine and Pharmacology  -   Clinical Medicine

1. Introduction

The coexistence of atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF) presents a complex clinical challenge, with significant clinical and economic burdens. The prevalence of AF in HFpEF ranges from 32% to 43% in acute HF patients and is similar in chronic HF patients [1]. AF is associated with an increased risk of all-cause mortality in HFpEF, with a hazard ratio of 1.14 [2]. The intricate connection between AF and HFpEF follows pathways that intertwine through common risk factors and the renin-angiotensin-aldosterone system (RAAS) [3]. A glimmer of hope emerges as RAAS blockers, specifically angiotensin receptor blockers, demonstrate their effectiveness in lessening the impact of HF, cardiovascular events, and the recurrence of AF [4]. Over the past 20 years, we've se- en a striking rise in issues caused by concurrent heart failure and atrial fibrillation. However, amid these obstacles, a ray of light glows as disability ages descend in we- ll-off nations. This hints at a useful tactic to tackle the broad impact of these conditions [5].
Individual orientation in the complex terrain of cardiac disease with preserved ejection fraction (HFpEF) and atrial fibrillation (AF) requires careful consideration, with collaborative cardiac counseling, comprehensive imaging studies , including all- inclusive group counseling. oriented and perspective. This intricate journey often translates into heightened resource utilization, encompassing medications, device therapies, and the necessity for regular follow-ups [6]. Chronic conditions like HFpEF and AF can also impact workforce productivity due to illness, hospitalizations, and ongoing medical care [7]. To alleviate healthcare costs and improve resource allocation, early detection and intervention are crucial. Regular screenings and monitoring can lead to timely intervention and potentially prevent disease progression. Fostering a team approach in healthcare, where cardiologists, primary care physicians, and various healthcare providers collaborate seamlessly, has the potential to enhance the overall coordination of patient care. This collaborative effort not only promises better health outcomes but also aims to minimize hospital stays, ultimately alleviating the financial burden on individuals and the healthcare system [8,9]. ostering an active role in their treatment. By arming individuals with the necessary insights and tools, we not only promote their commitment to treatment plans but also inspire them to embrace positive lifestyle adjustments. This holistic approach contributes to minimizing complications, decreasing hospitalizations, and relieving the financial strain associated with healthcare [10].
Further research is needed to better understand the mechanisms and optimize management strategies for AF and HFpEF.
Embarking on a journey into the world where atrial fibrillation and HFpEF coexist, our aim is to uncover the daily realities and significance of navigating life with both conditions. We'll be your guides through the twists and turns of treating individuals managing this intricate duo, shedding light on the genuine challenges they face. Together, we'll delve into the intricacies that demand our attention, urging a deeper investigation into the mysterious workings beneath the surface. Beyond the clinical scope, we'll explore the personal and financial toll this tandem health challenge takes, pondering how truly understanding this relationship could be the key to brighter health outcomes and wiser use of resources. So, join us on this humanized exploration, as we strive to enrich lives and make sense of the intricate dance between atrial fibrillation and HFpEF.

Discussion

In This review critically examines the complex interplay between atrial fibrillation (AF) and heart disease and preserved ejection fraction (HFpEF), from small genes to innovative therapeutic strategies. Molecular profiling is now being recognized more and more as a promising tool for stratifying patients according to different genetic or molecular characteristics. Inspired by research into Alzheimer's disease and colon cancer, this methodology represents a shift toward individualized medicine and creates opportunities for individualized interventions and immunotherapies.
Given the intrinsic diversity of heart failure with preserved ejection fraction (HFpEF), the introduction of structural and clinical subtyping is advocated as a practical approach. The critique of solely relying on ejection fraction for patient classification has prompted a reevaluation of the criteria for classification, taking into consideration the patterns of structural remodeling and clinical subtleties. This approach enables the development of customized products tailored to specific patient subgroups to improve treatment efficacy.
The connection, between cardiac amyloidosis (ICA) and a higher chance of atrial fibrillation in elderly individuals underscores the significance of promptly identifying the disease for effective treatment. Cutting edge imaging methods like resonance (CMR) and molecular imaging are crucial in comprehending the intricate relationship between atrial fibrillation and heart failure with preserved ejection fraction (HFpEF) confirming the diagnosis and offering prognostic insights.
Advanced sequencing technologies and genetic analysis are now widely acknowledged as tools, in biology for fully understanding the complex molecular nature of atrial fibrillation (AF) and heart failure, with preserved ejection fraction (HFpEF). The decoding of gene expression changes, identification of mutations, and exploration of epigenetic alterations represent auspicious avenues for identifying therapeutic targets and biomarkers, thereby facilitating the advancement of personalized medicine tailored to individuals' unique molecular profiles. Regarding treatment, the study has paid more attention to the meaningful effect of SGLT2 inhibitors, especially dapagliflozin on reducing atrial fibrillation/flutter The examination of spironolactone, dronedarone, and catheter ablation as potential interventions reflects ongoing endeavors to optimize outcomes for individuals with AF-HFpEF.
The discourse examines the gaps in research and provides insight into future directions, emphasizing the necessity of defining acute heart failure (AHF), determining the most optimal imaging techniques, and identifying strategies for management.
As the disease progresses, a majority of HFpEF patients develop atrial fibrillation that is associated with poor prognosis This can be considered as a therapeutic option targeting at modifying the progression of AF-HFpEF where rhythm control has been deployed. It has been suggested that observational data may offer better prognostic information than rate control for this approach. Although there are no RCTs comparing catheter ablation to medical therapy for atrial fibrillation in HFpEF; one must validate its efficacy and safety in patients diagnosed with HFpEF across potential RCTs. It would thus be important to stratify them by the etiology of HFpEF as well as severity and duration of AF ablation which would provide a basis for appropriate treatment choice.
The effectiveness of ablation depends on factors, including the New York Heart Association (NYHA) functional classification, the level of ventricular scarring the extent of atrial fibrosis the duration of atrial fibrillation, age and any accompanying health conditions. Studies, like CASTLE AF have shown results in NYHA functional classes and in cases of heart failure with reduced ejection fraction (HFrEF) but there is limited data on the benefits of catheter ablation for heart failure with preserved ejection fraction (HFpEF). The complex relationship between HFpEF and atrial fibrillation involves functional changes in the atrium (LA) where atrial fibrillation contributes to LA enlargement and cardiomyopathy development.
The intricate connection between fibrillation and HFpEF becomes apparent as both conditions influence each others progression. Atrial fibrillation is linked to increased mortality in HFpEF while heart failure worsens the advancement of fibrillation. The interplay between HFpEF and atrial fibrillation involves a cause and effect relationship that often coexists due to shared risk factors and health issues. Individuals, with HFpEF exhibit reduced contractile reserve and thickening of the septum leading to an environment associated with atrial fibrosis.

Exploring Future Avenues of Research

Unveiling Personalized Insights through Advanced Biomarkers and Subtyping:
Embark on a journey into innovative biomarkers and molecular subtyping techniques, delving deep into the intricacies of patient stratification in heart failure with preserved ejection fraction (HFpEF) and atrial fibrillation (AF). The realm of omics technologies, particularly the groundbreaking single-cell sequencing, holds promises of revealing hitherto undiscovered molecular signatures. This opens avenues for finely-tuned subtyping and the crafting of personalized treatment approaches tailored to the unique genetic makeup of individuals.
Navigating the Dynamics: Longitudinal Studies for Structural and Clinical Subtypes:
Embark on long-term, prospective studies to unravel the dynamic nature of structural remodeling patterns and clinical characteristics in HFpEF and AF. Picture a canvas painted with repeated imaging assessments and clinical evaluations spanning extended periods. This captures the unfolding narrative of these subtypes, shedding light on their evolution and responses to treatments, offering a personalized touch to therapeutic interventions.
Charting New Territories: Early Diagnosis and Management of Cardiac Amyloidosis:
Delve into the intricate landscape of defining acute heart failure (AHF) in the context of cardiac amyloidosis. Navigate through uncharted waters to explore innovative imaging modalities for antemortem diagnosis and uncover optimal management strategies. The quest for early detection of cardiac amyloidosis becomes a cornerstone, where research efforts strive to carve standardized diagnostic protocols and effective therapeutic interventions.
Pioneering Imaging Frontiers: Advancements in Imaging Techniques:
Embark on a journey into the frontier of emerging technologies and refinements in imaging techniques, with a spotlight on cardiac magnetic resonance imaging (CMR) and molecular imaging. Integrate artificial intelligence seamlessly into the narrative, fostering a more nuanced analysis of imaging data. Imagine the potential enhancement of the prognostic value of left atrial (LA) function assessment in HFpEF patients harboring different types of AF.
Molecular Odyssey: Innovations in Biology
Continue the odyssey of advancing molecular biology techniques for tissue analysis in AF-HFpEF. Picture the application of cutting-edge methods like CRISPR technology, delicately manipulating cellular components to unveil the functional consequences of identified molecular alterations. Additionally, explore the potential of liquid biopsy techniques, introducing non-invasive dimensions to molecular profiling and revolutionizing our understanding of diseases.
Customized Healing: Therapeutic Strategies and Personalized Medicine
Delve into the realm of developing therapeutic strategies meticulously tailored based on identified molecular signatures in AF-HFpEF. Venture into the uncharted territories of emerging treatments, including gene therapies or RNA-based interventions. This is where the emphasis lies on crafting a symphony of personalized medicine approaches, orchestrating treatment modalities attuned to the unique molecular profiles of each patient.
Navigating the Complex Interplay: Impact of Comorbidities:
Embark on a journey through the intricate relationships between obesity and HFpEF. Uncover the underlying mechanisms and traverse the landscape of effective treatments. Picture interventions aiming at weight reduction, as demonstrated in the LEGACY study, consistently reducing atrial fibrillation burden and enhancing the quality of life for HFpEF patients.
Decoding Catheter Ablation: Outcomes and Impacts
Conduct further research, akin to exploring uncharted territories, on the impact of catheter ablation in AF-HFpEF, meticulously considering both short-term and long- term outcomes. Investigate the factors influencing the success of catheter ablation, potential effects on left atrial function, and the endurance of rhythm control in HFpEF patients. The comprehensive understanding of catheter ablation outcomes will contribute to refining therapeutic strategies for this unique patient population.
Limitations:
As we embark on these future research directions, it's essential to acknowledge the inherent limitations associated with the evolving nature of medical technologies, ethical considerations in longitudinal studies, and the intricate complexities of molecular biology investigations. Let's tread carefully, recognizing potential challenges in implementing cutting-edge techniques, ensuring the ethical conduct of studies involving human subjects, and considering the generalizability of findings across diverse patient populations.

Acknowledgments

Donot have any Found or Support.

References

  1. (2023). Prevalence and Prognostic Implication of Atrial Fibrillation in Heart Failure Subtypes: Systematic Review and Meta-Analysis. Heart Lung and Circulation. [CrossRef]
  2. Jose, A., Joglar. (2023). Atrial Fibrillation and Heart Failure: Is It the Chicken or the Egg?. American Journal of Cardiology. [CrossRef]
  3. (2023). Atrial fibrillation in heart failure patients: An update on renin–angiotensin– aldosterone system pathway blockade as a therapeutic and prevention target. Cardiology Journal. [CrossRef]
  4. (2023). Global, regional and national burden of heart failure associated with atrial fibrillation. [CrossRef]
  5. Giuseppe, Boriani., Jacopo, Francesco, Imberti., Marco, Vitolo. (2022). The burden of atrial fibrillation in patients with preserved or mildly reduced heart failure: a call to action for detecting atrial fibrillation and improving outcome. European Journal of Heart Failure. [CrossRef]
  6. Carline, J., van, den, Dries., Miriam, P., van, der, Meulen., Geert, Frederix., Arno, W., Hoes., Karel, G.M., Moons., Geert-Jan, Geersing. (2023). Managing the Increasing Burden of Atrial Fibrillation through Integrated Care in Primary Care: A Cost-Effectiveness Analysis. International Journal of Integrated Care. [CrossRef]
  7. Hector, P., Rodriguez., Karl, Rubio., Chris, Miller-Rosales., Andrew, Wood. (2023). U.S. Practice Adoption of Patient Engagement Strategies and Spending for Adults with Diabetes and Cardiovascular Disease. [CrossRef]
  8. Rachel, M, J, van, der, Velden., Maartje, J, M, Hereijgers., Frits, M.E., Franssen., Monika, Gawałko., Dominique, V, M, Verhaert., Z., Habibi., Kevin, Vernooy., Lukasz, Koltowski., Jeroen, M.L., Hendriks., Hein, Heidbuchel., Lien, Desteghe., Sami, O., Simons., Dominik, Linz. (2023). Implementation of a screening and management pathway for chronic obstructive pulmonary disease in patients with atrial fibrillation. Europace. [CrossRef]
  9. Sameer, Zaman., Yorissa, Padayachee., Moulesh, Shah., John, Samways., A., Auton., N., Quaife., Mark, Sweeney., James, P., Howard., I., Tenorio., Patrik, Bachtiger., T., Kamalati., Punam, A., Pabari., Nick, Linton., Jamil, Mayet., Nicholas, S., Peters., Carys, Barton., Graham, D., Cole., Carla, M., Plymen. (2023). Smartphone-Based Remote Monitoring in Heart Failure With Reduced Ejection Fraction: Retrospective Cohort Study of Secondary Care Use and Costs.. JMIR cardio. [CrossRef]
  10. Mark, A, Faghy., Ruth, E., Ashton., Lindsay, Skipper., Binita, Kane. (2023). Long COVID - integrated approaches to chronic disease management?. The American journal of medicine. [CrossRef]
  11. Aaron, D., Kaplan., Liron, Boyman., Christopher, W., Ward., W., J., Lederer., Maura, Greiser. (2023). Arrhythmogenic Ca2+ Signaling in a Metabolic Model of HFpEF. bioRxiv. [CrossRef]
  12. Shahid, R., Aziz. (2023). Characterizing Atrial Fibrillation substrate via molecular and electrical fingerprint. [CrossRef]
  13. Andrea, Saavedra-Alvarez., Katherin, V., Pereyra., Camilo, Toledo., Rodrigo, Iturriaga., Rodrigo, Del, Rio. (2022). Vascular dysfunction in HFpEF: Potential role in the development, maintenance, and progression of the disease. Frontiers in Cardiovascular Medicine. [CrossRef]
  14. Elena, Angeli., Alexander, L., Reese-Petersen., A, Gonzalez., Begoña, López., S., Ravassa., Federica, Genovese., Morten, A., Karsdal., J.A., Fernandez, Diaz. (2022). Type III collagen formation is significantly associated with risk of outcome in HFpEF patients but loses its significant association with underlying AF. European heart journal. [CrossRef]
  15. Ilona, Cuijpers., Ilona, Cuijpers., Steven, J., Simmonds., Marc, van, Bilsen., Elżbieta, Czarnowska., Arantxa, González, Miqueo., Arantxa, González, Miqueo., Stephane, Heymans., Stephane, Heymans., Annika, R., Kuhn., Paul, Mulder., Anna, Ratajska., Elizabeth, A., V., Jones., Elizabeth, A., V., Jones., Ebba, Brakenhielm. (2020). Microvascular and lymphatic dysfunction in HFpEF and its associated comorbidities. Basic Research in Cardiology. [CrossRef]
  16. Jure, Bosanac., Lara, Straus., Marko, Novaković., Daniel, Košuta., Mojca, Božič, Mijovski., Jerneja, Tasič., Borut, Jug. (2022). HFpEF and Atrial Fibrillation: The Enigmatic Interplay of Dysmetabolism, Biomarkers, and Vascular Endothelial Dysfunction. Disease Markers. [CrossRef]
  17. Julian, Friebel., Alice, Weithauser., Marco, Witkowski., Bernhard, H., Rauch., Konstantinos, Savvatis., Konstantinos, Savvatis., Andrea, Dörner., Termeh, Tabaraie., Mario, Kasner., Verena, Moos., Diana, Bösel., Michael, Gotthardt., Michael, H., Radke., Max, Wegner., Peter, Bobbert., Dirk, Lassner., Carsten, Tschöpe., Heinz-Peter, Schutheiss., Stephan, B., Felix., Ulf, Landmesser., Ursula, Rauch. (2019). Protease-activated receptor 2 deficiency mediates cardiac fibrosis and diastolic dysfunction. European Heart Journal. [CrossRef]
  18. (2023). The role of pro-inflammatory cytokines – tumor necrosis factor-alpha and interleukin 6 – in the evolution of diabetic nephropathy: A comparative study. National Journal of Physiology, Pharmacy and Pharmacology. [CrossRef]
  19. Yoshiko, Murakata., Fumi, Yamagami., Nobuyuki, Murakoshi., Dongzhu, Xu., Z, Song., Siqi, Li., Yuta, Okabe., Kazuhiro, Aonuma., Zixun, Yuan., Haruka, Mori., Kazutaka, Aonuma., Kazuko, Tajiri., Masaki, Ieda. (2023). Electrical, structural, and autonomic atrial remodeling underlies atrial fibrillation in inflammatory atrial cardiomyopathy. Frontiers in Cardiovascular Medicine. [CrossRef]
  20. Karuppu, Samy., Yogesh, Chandra, Porwal., Amita, Yadav. (2022). Evaluation of Interleukin 6(Il-6), Tumor Necrosis Factor Alpha (Tnf-α) and Paraoxonase 1(Pon 1) in Obese and Non-Obese Metabolic Syndrome. Journal of Association of Physicians of India.
  21. Priit, Pauklin., Mihkel, Zilmer., Jaan, Eha., Kaspar, Tootsi., Mart, Kals., Priit, Kampus. (2022). Markers of Inflammation, Oxidative Stress, and Fibrosis in Patients with Atrial Fibrillation. Oxidative Medicine and Cellular Longevity. [CrossRef]
  22. (2022). Evaluation of Interleukin 6(Il-6), Tumor Necrosis Factor Alpha (Tnf-α) and Paraoxonase 1(Pon 1) in Obese and Non-Obese Metabolic Syndrome.
  23. Deyamira, Matuz-Mares., Héctor, Vázquez-Meza., M., Magdalena, Vilchis- Landeros. (2022). NOX as a Therapeutic Target in Liver Disease. Antioxidants. [CrossRef]
  24. Luciano, Saso., Ahmad, Reza., Emily, Ng., Kim-Doan, Katrina, Nguyen., Sheng, Lin., Pangzhen, Zhang., Paolo, Fantozzi., Guliz, Armagan., Umberto, Romeo., Nicola, Cirillo. (2022). A Comprehensive Analysis of the Role of Oxidative Stress in the Pathogenesis and Chemoprevention of Oral Submucous Fibrosis. Antioxidants. [CrossRef]
  25. A., Mohamed., Ayman, M., Mahmoud., Wafaa, R., Mohamed., T., Mohamed. (2022). Femtosecond laser attenuates oxidative stress, inflammation, and liver fibrosis in rats: Possible role of PPARγ and Nrf2/HO-1 signaling.. Life sciences. [CrossRef]
  26. Linshen, Xie., Qiaolan, Wang., Jingxuan, Ma., Ye, Zeng. (2023). Hypoxia-induced reactive oxygen species in organ and tissue fibrosis. Biocell. [CrossRef]
  27. Sonsoles, Piera-Velazquez., Sergio, A., Jimenez. (2021). Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target.. Journal of Clinical Medicine. [CrossRef]
  28. Kush, K, Patel., Habiba, Abdelhalim., Saman, Zeeshan., Yuichiro, Arima., Suvi, Linna-Kuosmanen., Zeeshan, Ahmed. (2023). Genomic approaches to identify and investigate genes associated with atrial fibrillation and heart failure susceptibility. Human Genomics. [CrossRef]
  29. Changshuai, Wei., Changshuai, Wei., Ming, Li., Zihuai, He., Olga, A., Vsevolozhskaya., Daniel, J., Schaid., Qing, Lu. (2014). A Weighted U-Statistic for Genetic Association Analyses of Sequencing Data. Genetic Epidemiology. [CrossRef]
  30. Batoul, Baz., Mohamed, Abouelhoda., Mohamed, Abouelhoda., Tarek, Owaidah., Majed, Dasouki., Dorota, Monies., Nada, Al, Tassan. (2021). Molecular classification of blood and bleeding disorder genes. npj Genomic Medicine. [CrossRef]
  31. Jinkai, Wang., Chun, John, Ma., Amanda, K., Mennie., Janette, M., Pettus., Yang, Xu., Lan, Lin., Matthew, G., Traxler., Jessica, Jakoubek., Santosh, S., Atanur., Timothy, J., Aitman., Yi, Xing., Anne, E., Kwitek. (2017). Systems Biology with High-Throughput Sequencing Reveals Genetic Mechanisms Underlying the Metabolic Syndrome in the Lyon Hypertensive Rat. [CrossRef]
  32. Iraklis, Pozios., Apostolos-Ilias, Vouliotis., Polychronis, Dilaveris., Constantinos, Tsioufis. (2023). Electro-Mechanical Alterations in Atrial Fibrillation: Structural, Electrical, and Functional Correlates. Journal of Cardiovascular Development and Disease. [CrossRef]
  33. Attila, Roka., Isaac, Burright. (2023). Remodeling in Persistent Atrial Fibrillation: Pathophysiology and Therapeutic Targets—A Systematic Review. Physiologia. [CrossRef]
  34. Pedro, P., Cunha., Sérgio, Laranjo., Jordi, Heijman., Mário, Oliveira. (2022). The Atrium in Atrial Fibrillation – A Clinical Review on How to Manage Atrial Fibrotic Substrates. Frontiers in Cardiovascular Medicine. [CrossRef]
  35. Sanket, Gavankar., Ameer, Odeh., Mushabbar, A., Syed., Debra, Hoppensteadt., Fakiha, Siddiqui., Atul, Laddu., Jawed, Fareed. (2022). Collagen Remodeling Proteins, Inflammatory Biomarkers and FABP Regulation in Understanding the Pathogenesis of Atrial Fibrillation. The FASEB Journal. [CrossRef]
  36. Takanori, Yamaguchi., Toyokazu, Otsubo., Yuya, Takahashi., Kana, Nakashima., Akira, Fukui., Kei, Hirota., Yumi, Ishii., K, Shinzato., Ryosuke, Osako., Mai, Tahara., Yuki, Kawano., Atsushi, Kawaguchi., Shinichi, Aishima., Naohiko, Takahashi., Koichi, Node. (2022). Atrial Structural Remodeling in Patients With Atrial Fibrillation Is a Diffuse Fibrotic Process: Evidence From High-Density Voltage Mapping and Atrial Biopsy. Journal of the American Heart Association. [CrossRef]
  37. Shiro, Hoshida. (2023). Discovering HFpEF in symptomatic and asymptomatic elderly outpatients to prevent hospital admission.. European Journal of Clinical Investigation. [CrossRef]
  38. Sila, Algül., Maike, Schuldt., Emmy, Manders., Valentijn, Jansen., Saskia, Schlossarek., Richard, de, Goeij-de, Haas., Alex, A., Henneman., Sander, R., Piersma., Connie, R., Jimenez., Michelle, Michels., Lucie, Carrier., Michiel, Helmes., Jolanda, van, der, Velden., Diederik, W., D., Kuster. (2023). EGFR/IGF1R Signaling Modulates Relaxation in Hypertrophic Cardiomyopathy.. Circulation Research. [CrossRef]
  39. Giorgia, Serino., Annalisa, Caputo., Domenico, Filomena., Giovanna, Manzi., Matteo, Neccia., Michela, Boromei., Giovanni, Rubino., Silvia, Papa., Carmine, Dario, Vizza., Roberto, Badagliacca. (2022). 1143 impact of non-cardiac comorbidities on diastolic properties in hfref and hfmref patients. European Heart Journal Supplements. [CrossRef]
  40. Craig, Paterson., S., J., Higgins., Merilin, Sikk., Keeron, J, Stone., Simon, Fryer., Lee, Stoner. (2023). Reply to Liu et al.. American Journal of Physiology-heart and Circulatory Physiology. [CrossRef]
  41. Jordan, Elliott., Luca, Mainardi., Jose, Felix, Rodriguez, Matas. (2022). Cellular heterogeneity and repolarisation across the atria: an in silico study. Medical & Biological Engineering & Computing. [CrossRef]
  42. Ann-Kathrin, Rahm., Ann-Kathrin, Rahm., Dominik, Gramlich., Dominik, Gramlich., Teresa, Wieder., Mara, Elena, Müller., Mara, Elena, Müller., Axel, Schoeffel., Fadwa, A., El, Tahry., Patrick, Most., Tanja, Heimberger., Tanja, Heimberger., Steffi, Sandke., Steffi, Sandke., Tanja, Weis., Tanja, Weis., Nina, D., Ullrich., Thomas, Korff., Patrick, Lugenbiel., Patrick, Lugenbiel., Hugo, A., Katus., Hugo, A., Katus., Dierk, Thomas., Dierk, Thomas. (2021). Trigger-Specific Remodeling of K Ca 2 Potassium Channels in Models of Atrial Fibrillation. Pharmacogenomics and Personalized Medicine. [CrossRef]
  43. W., Lim., Melissa, Neo, Shivshankar, Thanigaimani., Pawel, Kuklik., Anand, N., Ganesan., Anand, N., Ganesan., Dennis, H., Lau., Tatiana, Tsoutsman., Jonathan, M., Kalman., Christopher, Semsarian., David, A., Saint., Prashanthan, Sanders. (2021). Electrophysiological and Structural Remodeling of the Atria in a Mouse Model of Troponin-I Mutation Linked Hypertrophic Cardiomyopathy: Implications for Atrial Fibrillation. International Journal of Molecular Sciences. [CrossRef]
  44. Vrishti, M., Phadumdeo., Thomas, J., Hund., Seth, M., Weinberg. (2023). Long- term changes in heart rate and electrical remodeling contribute to alternans formation in heart failure: a patient-specific in silico study.. American Journal of Physiology-heart and Circulatory Physiology. [CrossRef]
  45. T, A, Sakhnova., S, V, Dobrovolskaya., Elena, V., Blinova., T, M, Uskach., M, A, Saidova. (2023). Relationship between parameters of myocardial electrical remodeling and parameters of contractile function, deformation and myocardium work in patients with chronic heart failure with low left ventricular ejection fraction and atrial fibrillation.. Kardiologiia. [CrossRef]
  46. (2023). Correction to: Cryoballoon Ablation for the Treatment of Atrial Fibrillation in Patients with Concomitant Heart Failure and either Reduced or Preserved Left Ventricular Ejection Fraction: Results from the Cryo AF Global Registry. Journal of the American Heart Association. [CrossRef]
  47. Rosie, Barrows., Marina, Strocchi., Christoph, M., Augustin., Matthias, A., F., Gsell., Caroline, H., Roney., Jose, Alonso, Solis-Lemus., Hao, Xu., Karli, Gillette., Ronak, Rajani., John, Whitaker., Edward, J., Vigmond., Martin, J., Bishop., Gernot, Plank., Steven, A., Niederer. (2022). The Effect of Heart Rate and Atrial Contraction on Left Ventricular Function. [CrossRef]
  48. (2022). An integrative and translational assessment of altered atrial electrophysiology, calcium handling and contractility in patients with atrial fibrillation. [CrossRef]
  49. Sang, Hee, Ha., Soo-Mi, Jeong., So-Young, Yang., Myung, Jin, Cha., Min, Soo, Cho., Ji, Sung, Lee., Min, Ju, Kim., Jun, Young, Chang., Dong-Wha, Kang., Sun, U., Kwon., Bum, Joon, Kim. (2023). Association between Rapid Ventricular Response and Stroke Outcomes in Atrial Fibrillation-Related Cardiac Embolic Stroke.. Cerebrovascular Diseases. [CrossRef]
  50. Adrian, D., Elliott., C., Verdicchio., Celine, Gallagher., Dominik, Linz., Rajiv, Mahajan., R., Mishima., Kadhim, Kadhim., Mehrdad, Emami., Melissa, E., Middeldorp., Jeroen, M.L., Hendriks., Dennis, H., Lau., Prashanthan, Sanders. (2021). Factors Contributing to Exercise Intolerance in Patients With Atrial Fibrillation. Heart Lung and Circulation. [CrossRef]
  51. Danila, Vella., Alessandra, Monteleone., Giulio, Musotto., Giorgia, M., Bosi., Gaetano, Burriesci. (2021). Effect of the Alterations in Contractility and Morphology Produced by Atrial Fibrillation on the Thrombosis Potential of the Left Atrial Appendage.. Frontiers in Bioengineering and Biotechnology. [CrossRef]
  52. (2023). Sex-specific impairment of cardiac functional reserve in HFpEF: insights from the HFpEF-Stress trial. European journal of echocardiography. [CrossRef]
  53. Shiro, Hoshida. (2023). Discovering HFpEF in symptomatic and asymptomatic elderly outpatients to prevent hospital admission.. European Journal of Clinical Investigation. [CrossRef]
  54. Alexander, Schulz., Torben, Lange., Ruben, Evertz., Johannes, T., Kowallick., Gerd, Hasenfuss., Sören, J., Backhaus., Andreas, Schuster. (2023). Sex-Specific Impairment of Cardiac Functional Reserve in HFpEF. JACC. [CrossRef]
  55. O., E., Vilkova., N, Yu, Grigoryeva., Dariya, Vladimirovna, Solovyova. (2023). The HFA-PEFF diagnostic algorithm for diagnosing heart failure with preserved ejection fraction in hypertensive patients. Arterial’naya Gipertenziya. [CrossRef]
  56. Joseph, Mannozzi., Kamel, Aoun., Mohamed, Al-Hassan., Alberto, Alvarez., Beruk, Lessanework., Charles, S., Chung., Donal, S., O'Leary. (2023). Sympathetic Activity and Diastolic Dysfunction in HFrEF: Muscle metaboreflex induced changes in left ventricle passive filling pressure. Physiology. [CrossRef]
  57. Danish, Ali., Patrick, Tran., Stuart, Ennis., Richard, J., Powell., Scott, McGuire., Gordon, Mcgregor., Peter, K., Kimani., Martin, O., Weickert., Michelle, A., Miller., Francesco, P., Cappuccio., Prithwish, Banerjee. (2023). Rising arterial stiffness with accumulating comorbidities associates with heart failure with preserved ejection fraction.. Esc Heart Failure. [CrossRef]
  58. Andrea, Carolina, Morales-Lara., Wiaam, Elkhatib., Oludamilola, W., Oluleye., Rashid, Alhusain., Amjad, Saad., Najiyah, Salwa., Habeeba, Siddiqui., Mikolaj, Wieczorek., Jordan, Ray., Pragnesh, Parikh., Charles, D., Burger., Brian, P., Shapiro., Fred, Kusumoto., Dilip, Pillai., Demilade, Adedinsewo. (2023). Impact of Pulmonary Hypertension Hemodynamic Phenotype on Incident Atrial Fibrillation.. The Cardiology. [CrossRef]
  59. 9A., Beale., Fernando, Telles., Frank, E., Silvestry., Thomas, C., Hanff., Scott, L., Hummel., Sheldon, E., Litwin., Mark, C., Petrie., Barry, A., Borlaug., Daniel, Burkhoff., Jan, Komtebedde., David, M., Kaye., Shane, Nanayakkara. (2023). Left atrial enlargement is associated with pulmonary vascular disease in heart failure with preserved ejection fraction. European Journal of Heart Failure. [CrossRef]
  60. Na, Li., Yunlong, Zhu., Yong, Chen., Xin, Peng., Mingxing, Wu., Haobo, Huang., Bing, Zhang., Min, Liao., Shan, Xiao., Hui, hong, Zhang., Yuying, Zhou., Sihao, Chen., Zhican, Liu., Liqing, Yi., Yiqun, Peng., Jie, Fan., Jianping, Zeng. (2023). Impact of atrial fibrillation on cerebro-cardiovascular outcome of heart failure with mildly-reduced ejection fraction.. Esc Heart Failure. [CrossRef]
  61. Adeseye, A, Akintunde., O, Akinlade. (2023). Atrial Fibrillation in Heart Failure: Epidemiology, Quality of Life and Clinical Characteristics in the Iron Deficiency and ANaemia in Heart Failure (IDAN-HF) Study in Ogbomoso, Nigeria. Ethiopian journal of health sciences. [CrossRef]
  62. G., Lee., J.-J., Chen., S.-N., Chang., Fu-Chun, Chiu., Pang-Shuo, Huang., Eric, Y., Chuang., Chia, Ti, Tsai. (2023). Identification of two new genetic loci associated with atrial fibrillation in the Taiwanese population- implication of metabolism and fibrosis in atrial fibrillation mechanism. medRxiv. [CrossRef]
  63. Jialin, Zheng., Shi-qi, Zhao., Qishi, Yang., Yantao, Wei., Jianmei, Li., Tao, Guo. (2023). Sympathetic Activation Promotes Cardiomyocyte Apoptosis in a Rabbit Susceptibility Model of Hyperthyroidism-Induced Atrial Fibrillation via the p38 MAPK Signaling Pathway.. Critical Reviews in Eukaryotic Gene Expression. [CrossRef]
  64. Edoardo, Gronda., Veronica, Dusi., Emilia, D'Elia., Massimo, Iacoviello., Emanuele, Benvenuto., Emilio, Vanoli. (2022). Sympathetic activation in heart failure. European Heart Journal Supplements. [CrossRef]
  65. Yasuhiro, H., Matsuda., Masaharu, Masuda., Mitsutoshi, Asai., Osamu, Iida., Shin, Okamoto., T., Ichihara., Kiyonori, Nanto., Takuya, Tsujimura., Yosuke, Hata., Hiroyuki, Uematsu., Naoko, Higashino., Taku, Toyoshima., Toshiaki, Mano. (2023). Low atrial natriuretic peptide to brain natriuretic peptide ratio is associated with left atrial remodeling. Journal of Cardiovascular Medicine. [CrossRef]
  66. Yuki, Hasegawa., Shinsuke, Okada., Akiko, Sanada., Asako, Tomii., Hiroaki, Sugiura., Kotaro, Higuchi., Masaomi, Chinushi., Takayuki, Inomata. (2023). The Atrial Natriuretic Peptide-to-brain Natriuretic Peptide Ratio Predicts Left Atrial Reverse Remodeling after Rhythm Control Therapy in Patients with Persistent Atrial Fibrillation.. Internal medicine. [CrossRef]
  67. Suraj, M., Yusuf., Gavin, R., Norton., Vernice, R., Peterson., Nico, Malan., Monica, Gomes., Nonhlanhla, Hlengiwe, Mthembu., Carlos, D., Libhaber., Grace, Tade., Hamza, Bello., Adamu, J., Bamaiyi., Keneilwe, N., Mmopi., Ferande, Peters., Pinhas, Sareli., Patrick, H, Dessein., Angela, J., Woodiwiss. (2022). Attenuated Relationships Between Indexes of Volume Overload and Atrial Natriuretic Peptide in Uncontrolled, Sustained Volume-Dependent Primary Hypertension. Артериальная гипертензия. [CrossRef]
  68. (2023). Attenuated Relationships Between Indexes of Volume Overload and Atrial Natriuretic Peptide in Uncontrolled, Sustained Volume-Dependent Primary Hypertension. Hypertension. [CrossRef]
  69. Raul, A, Dulce., Rosemeire, M., Kanashiro-Takeuchi., Lauro, M, Takeuchi., Alessandro, G., Salerno., Amarylis, C., B., A., Wanschel., Shathiyah, Kulandavelu., Wayne, Balkan., Marilia, Zuttion., Renzhi, Cai., Andrew, V., Schally., Joshua, M., Hare. (2022). Synthetic growth hormone-releasing hormone agonist ameliorates the myocardial pathophysiology characteristic of HFpEF.. Cardiovascular Research. [CrossRef]
  70. Saiaravind, Sompalle., Catherine, N., Domingo., Parker, Kim., Karlina, Kegecik., Thomas, Pucci., Lindsay, Shockling., Liya, Yin., F., Dong., William, M., Chilian., Vahgan, Ohanyan. (2022). Is HFpEF Caused by Coronary Microvascular Disease?. The FASEB Journal. [CrossRef]
  71. Nakashima, Ryosuke., Keisuke, Shinohara., Shota, Ikeda., Sho, Matsumoto., Daisuke, Yoshida., Yoshiyasu, Ono., Hiroyuki, Tsutsui. (2023). Ps-b10-4: afferent renal nervous signals contribute to the development of hfpef with sympathoexcitation in dahl salt-sensitive hypertensive rats. Journal of Hypertension. [CrossRef]
  72. Andrea, Saavedra-Alvarez., Katherin, V., Pereyra., Camilo, Toledo., Rodrigo, Iturriaga., Rodrigo, Del, Rio. (2022). Vascular dysfunction in HFpEF: Potential role in the development, maintenance, and progression of the disease. Frontiers in Cardiovascular Medicine. [CrossRef]
  73. Giovanna, Castoldi., Raffaella, Carletti., S., Ippolito., Massimiliano, Colzani., Gianluca, Perseghin., Gianpaolo, Zerbini., Giovanni, Zatti., Cira, RT, di, Gioia. (2023). Myocardial reduction of sympathetic activity is involved in the antifibrotic and antihypertrophic effects of sglt2 inhibition in angiotensin ii-dependent hypertension. Journal of Hypertension. [CrossRef]
  74. Réka, Urbancsek., Zoltán, Csanádi., Ildikó, Noémi, Forgács., Tímea, Bianka, Papp., Judit, Boczán., Judit, Barta., Csaba, Jenei., Laszlo, Nagy., László, Rudas. (2021). Sympathetic activation in heart failure with reduced and mildly reduced ejection fraction: the role of aetiology.. Esc Heart Failure. [CrossRef]
  75. Ioannis, H., Styliadis., Nikolaos, I, Gouzoumas., Haralambos, Karvounis., Christodoulos, Papadopoulos., Georgios, K., Efthimiadis., Mihail, Karamouzis., Georgios, E., Parharidis., Georgios, E., Louridas. (2005). Effects of variation of atrioventricular interval on left ventricular diastolic filling dynamics and atrial natriuretic peptide levels in patients with DDD pacing for complete heart block.. Europace. [CrossRef]
  76. Konstam MA. Natriuretic Peptides and Cardiovascular Events: More Than a Stretch. JAMA. 2007;297(2):212–214. [CrossRef]
  77. Christian, Mueller., Kenneth, McDonald., Rudolf, A., de, Boer., Alan, S., Maisel., John, G.F., Cleland., Nikola, Kozhuharov., Andrew, J.S., Coats., Andrew, J.S., Coats., Marco, Metra., Alexandre, Mebazaa., Frank, Ruschitzka., Mitja, Lainscak., Gerasimos, Filippatos., Gerasimos, Filippatos., Petar, M., Seferovic., Wouter, C., Meijers., Antoni, Bayes-Genis., Thomas, Mueller., Mark, Richards., Mark, Richards., James, L., Januzzi. (2019). Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. European Journal of Heart Failure, 21(6):715-731. [CrossRef]
  78. Daniel, Broschmann., Anja, Sandek., Rolf, Wachter., Frank, Edelmann., Christoph, Herrmann-Lingen. (2023). Longitudinal association between N-terminal B-type natriuretic peptide, anxiety and social support in patients with HFpEF: results from the multicentre randomized controlled Aldo-DHF trial. BMC Cardiovascular Disorders. [CrossRef]
  79. Elisa, Dal, Canto., Mariëlle, Scheffer., Kirsten, A., Kortekaas., Annet, Driessen- Waaijer., Walter, Paulus., Loek, van, Heerebeek. (2023). Natriuretic Peptide Levels and Stages of Left Ventricular Dysfunction in Heart Failure with Preserved Ejection Fraction. Advances in Cardiovascular Diseases. [CrossRef]
  80. Hawani, Sasmaya, Prameswari., Iwan, Cahyo, Santosa, Putra., William, Kamarullah., Raymond, Pranata., Mohammad, Iqbal., Giky, Karwiky., Miftah, Pramudyo., Nuraini, Yasmin, Kusumawardhani., Chaerul, Achmad., Januar, Wibawa, Martha., Mohammad, Rizki, Akbar. (2023). Role of N-terminal pro-B type natriuretic peptide as a predictor of poor outcomes in patients with HFrEF receiving primary prevention implantable cardioverter-defibrillator therapy: a systematic review and dose–response meta-analysis. Open heart. [CrossRef]
  81. Vincenzo, Castiglione., Francesco, Gentile., Nicolò, Ghionzoli., Maria, Chiriaco., G., Panichella., Alberto, Aimo., Giuseppe, Vergaro., Alberto, Giannoni., Claudio, Passino., Michele, Emdin. (2023). Pathophysiological Rationale and Clinical Evidence for Neurohormonal Modulation in Heart Failure with Preserved Ejection Fraction. Cardiac failure review. [CrossRef]
  82. Shun-Guang, Wei., Yiling, Cao., Yang, Yu. (2023). The synergistic effects of proinflammatory cytokines on cardiovascular function and sympathetic outflow in rat. Journal of Hypertension. [CrossRef]
  83. Xiaoyan, Liu., Lu, Ren., Shandong, Yu., Gang, Li., Pengkang, He., Xiaohong, Wei., Phung, N., Thai., Lin, Wu., Yong, Huo. (2023). Late sodium current in synergism with Ca2+/calmodulin-dependent protein kinase II contributes to β- adrenergic activation-induced atrial fibrillation. Philosophical Transactions of the Royal Society B. [CrossRef]
  84. Maria, R., Bonsignore., Maria, Teresa, La, Rovere. (2023). Sympathetic activation in patients with heart failure and central sleep apnoea: is it friend or foe?. European Respiratory Journal. [CrossRef]
  85. B., Tijms., Ellen, M., Vromen., Olav, Mjaavatten., Henne, Holstege., Lianne, M., Reus., S., J., van, der, Lee., Kirsten, E., J., Wesenhagen., Luigi, Lorenzini., Lisa, Vermunt., Vikram, Venkatraghavan., Niccolò, Tesi., Jori, Tomassen., Anouk, den, Braber., Julie, Goossens., Eugeen, Vanmechelen., Frederik, Barkhof., Yolande, A.L., Pijnenburg., W., M., van, der, Flier., C.E., Teunissen., Frode, S., Berven., Pieter, Jelle, Visser. (2023). Large-scale cerebrospinal fluid proteomic analysis in Alzheimer's disease patients reveals five molecular subtypes with distinct genetic risk profiles.. medRxiv. [CrossRef]
  86. Weiqiang, You., Du, Cai., Minyi, Lv., Pei-Shan, Hu., Feng, Gao., Xiaojian, Wu. (2023). IDDF2023-ABS-0285 Immunological profiling of human colorectal cancer defines four distinct molecular subtypes. [CrossRef]
  87. Andrea, Sacconi., Paola, Muti., Claudio, Pulito., Raul, Pellini., Sabrina, Strano., Paolo, Bossi., Giovanni, Blandino. (2022). Molecular profiling in HNSCC patients targets potential responsiveness to ICIs. bioRxiv. [CrossRef]
  88. Maxim, Görke. (2023). Data from Distinct Subtypes of Gastric Cancer Defined by Molecular Characterization Include Novel Mutational Signatures with Prognostic Capability. [CrossRef]
  89. Jean-François, Boisson. (2023). Data from Distinct Subtypes of Gastric Cancer Defined by Molecular Characterization Include Novel Mutational Signatures with Prognostic Capability. [CrossRef]
  90. Yongqing, Wu., Huihui, Wang., Zhi, Li., Jinfang, Cheng., Ruiling, Fang., Hongyan, Cao., Yuehua, Cui. (2021). Subtypes identification on heart failure with preserved ejection fraction via network enhancement fusion using multi-omics data.. Computational and structural biotechnology journal. [CrossRef]
  91. Alberto, Palazzuoli., Matteo, Beltrami. (2021). Are HFpEF and HFmrEF So Different? The Need to Understand Distinct Phenotypes.. Frontiers in Cardiovascular Medicine. [CrossRef]
  92. Peixin, Li., Hengli, Zhao., Jianyu, Zhang., Yunshan, Ning., Yan, Tu., Dingli, Xu., Qingchun, Zeng. (2021). Similarities and Differences Between HFmrEF and HFpEF.. Frontiers in Cardiovascular Medicine. [CrossRef]
  93. 3Liangying, Yin., Y., Lin., Simon, S.Y., Lui., Hon-Cheong, So. (2023). Incorporating clinical, genomic profiles and polygenic risk scores for the subtyping of depressive disorders. medRxiv. [CrossRef]
  94. Darshan, Krishnappa., Darshan, Krishnappa., Richard, Dykoski., Ilknur, Can., Mackenzie, Mbai., Mackenzie, Mbai., Inder, S., Anand., Inder, S., Anand., Viorel, G., Florea., Viorel, G., Florea., Y., S., Chandrashekar., Y., S., Chandrashekar., Jian-Ming, Li., Jian-Ming, Li., Venkatakrishna, N., Tholakanahalli., Venkatakrishna, N., Tholakanahalli. (2019). Atrial Fibrillation in the Elderly: The Role of Sub-Clinical Isolated Cardiac Amyloidosis.. Scientific Reports. [CrossRef]
  95. Jennaire, Lewars., Hersh, Wazir., Brandon, Gordon., Uyi, Faluyi., Yousry, Girgis. (2021). Noninvasive Diagnostic Modalities in an Isolated Case of Cardiac Amyloidosis.. Cureus. [CrossRef]
  96. Maarten, P., van, den, Berg., Bart, A., Mulder., Sebastiaan, H, C, Klaassen., Alexander, H., Maass., Dirk, J., van, Veldhuisen., Peter, van, der, Meer., Hans, L, A, Nienhuis., Bouke, P., C., Hazenberg., Michiel, Rienstra. (2019). Heart failure with preserved ejection fraction, atrial fibrillation, and the role of senile amyloidosis.. European Heart Journal. [CrossRef]
  97. Ejo, John., Hossein, Akhondi. (2016). Isolated cardiac amyloidosis. [CrossRef]
  98. Giuseppe, Vergaro., Alberto, Aimo., Claudio, Rapezzi., Vincenzo, Castiglione., Iacopo, Fabiani., Angela, Pucci., Gabriele, Buda., Claudio, Passino., Josep, Lupón., Antoni, Bayes-Genis., Michele, Emdin., Eugene, Braunwald. (2022). Atrial amyloidosis: mechanisms and clinical manifestations. European Journal of Heart Failure. [CrossRef]
  99. M, Lobeek., Thomas, M., Gorter., Vanessa, P., M., van, Empel., Olivier, C., Manintveld., Robert, G., Tieleman., Alexander, H., Maass., Kevin, Vernooy., B., Daan, Westenbrink., I., C., Van, Gelder., Dirk, J., van, Veldhuisen., Michiel, Rienstra. (2023). Obesity, epicardial adipose tissue and left atrial cardiomyopathy in patients with heart failure with preserved ejection fraction: a cardiac MRI based study. Europace. [CrossRef]
  100. Jin, Wen., Xin, Zhang., Shuhao, Li., Xincao, Tao., Qimin, Fang., Shuli, Zhou., Liming, Xia., Lianggeng, Gong. (2023). Identification of heart failure with preserved ejection fraction in patients with hypertension: a left atrial myocardial strain cardiac magnetic resonance study. Quantitative imaging in medicine and surgery. [CrossRef]
  101. Daniel, J, Lim., Vinithra, Varadarajan., Thiago, Quinaglia., Théo, Pezel., C., Wu., Chikara, Noda., S., Heckbert., D., C., Bluemke., Bharath, Ambale-Venkatesh., Joao, A.C., Lima. (2022). Change in left atrial function and volume predicts heartfailure with preserved and reduced ejection fraction: the multi-ethnic study of atherosclerosis. European heart journal. [CrossRef]
  102. .Alberico, Del, Torto., Andrea, Igoren, Guaricci., Francesca, Pomarico., Marco, Guglielmo., Laura, Fusini., Francesco, Monitillo., Daniela, Santoro., Monica, Vannini., Alexia, Rossi., Giuseppe, Muscogiuri., Andrea, Baggiano., Gianluca, Pontone. (2022). Advances in Multimodality Cardiovascular Imaging in the Diagnosis of Heart Failure With Preserved Ejection Fraction. Frontiers in Cardiovascular Medicine. [CrossRef]
  103. Prasad, Rm., Salazar, Am., Yavari, M., Pandrangi, P., Baloch, Zq., Ip, J. (2022). Correlation between Atrial Fibrillation and Heart Failure with Preserved Ejection Fraction: A Review. Austin journal of cerebrovascular disease & stroke. [CrossRef]
  104. Annika, Hess., Tobias, Borchert., Tobias, L., Ross., Frank, M., Bengel., James, T., Thackeray. (2022). Characterizing the transition from immune response to tissue repair after myocardial infarction by multiparametric imaging. Basic Research in Cardiology. [CrossRef]
  105. David, F., Malyuk. (2022). Molecular imaging. Lučevaâ diagnostika i terapiâ. [CrossRef]
  106. Begona, Lavin, Plaza., Iakovos, Theodoulou., Imran, Rashid., Reza, Hajhosseiny., Alkystis, Phinikaridou., René, M., Botnar., René, M., Botnar. (2019). Molecular Imaging in Ischemic Heart Disease. Current Cardiovascular Imaging Reports. [CrossRef]
  107. Viktoria, Balogh., Mark, G., MacAskill., Patrick, W., F., Hadoke., Gillian, A., Gray., Adriana, Tavares. (2021). Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis: Potential for Non-invasive Imaging of Hypertensive Heart Failure. Frontiers in Cardiovascular Medicine. [CrossRef]
  108. Rudolf, A., Werner., Annika, Hess., Tobias, Koenig., Johanna, Diekmann., Thorsten, Derlin., Anette, Melk., James, T., Thackeray., Johann, Bauersachs., Frank, M., Bengel. (2021). Molecular imaging of inflammation crosstalk along the cardio-renal axis following acute myocardial infarction.. Theranostics. [CrossRef]
  109. Guofeng, Zhou., Shaoyan, Sun., Qiuyue, Yuan., Run, Zhang., Ping, Jiang., Guangyu, Li., Yong, Wang., Xiao, Li. (2021). Multiple-Tissue and Multilevel Analysis on Differentially Expressed Genes and Differentially Correlated Gene Pairs for HFpEF. Frontiers in Genetics. [CrossRef]
  110. Paolo, Severino., Andrea, D'Amato., Silvia, Prosperi., Francesca, Fanisio., Lucia, Ilaria, Birtolo., Bettina, Costi., Lucrezia, Netti., Cristina, Chimenti., Carlo, Lavalle., Viviana, Maestrini., Massimo, Mancone., Francesco, Fedele. (2021). Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: FromHistopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. International Journal of Molecular Sciences. [CrossRef]
  111. Isobel, Ronai. (2023). How molecular techniques are developed from natural systems. Genetics. [CrossRef]
  112. (2023). Moleküler Genetik Tanı Yöntemleri. [CrossRef]
  113. Molecular World Today and Tomorrow: Recent Trends in Biological Sciences. (2023, February 22). Molecular World Today and Tomorrow: Recent Trends in Biological Sciences.
  114. Allison, B, Chambliss., Mark, A., Marzinke. (2020). Applications of molecular techniques in the clinical laboratory. [CrossRef]
  115. Application of Molecular Genetics. (2022, October 22). Application of Molecular Genetics. Genetics Fundamentals Notes. [CrossRef]
  116. S.D. Anker, J. Butler, G. Filippatos, J.P. Ferreira, E. Bocchi, M. Bohm, ̈ H.- P. Brunner-La Rocca, D.-J. Choi, V. Chopra, E. Chuquiure-Valenzuela, et al., Empagliflozin in heart failure with a preserved ejection fraction, N. Engl. J. Med. 385 (2021) 1451–1461. [CrossRef]
  117. M.E. Nassif, S.L. Windsor, B.A. Borlaug, D.W. Kitzman, S.J. Shah, F. Tang, Y. Khariton, A.O. Malik, T. Khumri, G. Umpierrez, et al., The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial, Nat. Med. 27 (2021) 1954–1960. [CrossRef]
  118. .T. Sato, Y. Aizawa, S. Yuasa, S. Kishi, K. Fuse, S. Fujita, Y. Ikeda, H. Kitazawa, M. Takahashi, M. Sato, et al., The effect of dapagliflozin treatment on epicardial adipose tissue volume, Cardiovasc. Diabetol. 17 (2018) 6. [CrossRef]
  119. An, Qi, Li., Feng, Zhang. (2023). Impact of Dapagliflozin on insulin secretory function and serum adipokine expression levels in patients with primary diagnosis of type 2 diabetes mellitus. Contemporary clinical trials communications. [CrossRef]
  120. Zelniker TA, Bonaca MP, Furtado RHM, Mosenzon O, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Budaj A, Kiss RG, Padilla F, Gause-Nilsson I, Langkilde AM, Raz I, Sabatine MS, Wiviott SD. Effect of Dapagliflozin on Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus: Insights From the DECLARE-TIMI 58 Trial. Circulation. 2020 Apr 14;141(15):1227-1234. [CrossRef] [PubMed]
  121. L. Myhre, M. Vaduganathan, B.L. Claggett, Z.M. Miao, P.S. Jhund, R.A. de Boer, A.F. Hernandez, S.E. Inzucchi, M.N. Kosiborod, C.S.P. Lam, et al., Influence of NTproBNP on efficacy of Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction, JACC Heart Fail. 10 (2022) 902–913. [CrossRef]
  122. Shahid, Y. Sun, J. Deeks, M. Calvert, J.P. Fisher, P. Kirchhof, P. S. Gill, G.Y.H. Lip, Spironolactone in atrial fibrillation with preserved cardiac fraction: the IMPRESS-AF trial, J. Am. Heart Assoc. 9 (2020), e016239. [CrossRef]
  123. D. Kotecha, K.V. Bunting, S.K. Gill, S. Mehta, M. Stanbury, J.C. Jones, S. Haynes, M.J. Calvert, J.J. Deeks, R.P. Steeds, et al., Effect of digoxin vs Bisoprolol for heart rate control in atrial fibrillation on patient-reported quality of life: the RATE- AF randomized clinical trial, JAMA. 324 (2020) 2497–2508. [CrossRef]
  124. Igor, Diemberger., A, Spadotto., Giulia, Massaro., Martina, Amadori., Liviu, Damaschin., Cristian, Martignani., Matteo, Ziacchi., Mauro, Biffi., Nazzareno, Galiè., Giuseppe, Boriani. (2022). Use of Diltiazem in Chronic Rate Control for Atrial Fibrillation: A Prospective Case-Control Study. Biology. [CrossRef]
  125. Pathak RK, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, Wong CX, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol. (2015) 65:2159–69. [CrossRef]
  126. Xiao, Liu., Yuan, Jiang., Zhengyu, Cao., Mao-Xiong, Wu., Zhi-Teng, Chen., Runlu, Sun., Peng, Yu., Jianyong, Ma., Wengen, Zhu., Yangxin, Chen., Guifu, Wu., Yuling, Zhang., Jingfeng, Wang. (2023). Association of Body Mass Index and Abdominal Obesity with Incidence of Atrial Fibrillation in Heart Failure with Preserved Ejection Fraction.. Current medicinal chemistry. [CrossRef]
  127. Anil, K., Gehi., Emily, C., O'Brien., Rajeev, K., Pathak., Prashanthan, Sanders., Kevin, F., Kennedy., Salim, S., Virani., Frederick, A., Masoudi., Thomas, M., Maddox. (2017). Implications of the LEGACY trial on US Atrial Fibrillation Patients An NCDR Research to Practice (R2P) Project. American Journal of Cardiology. [CrossRef]
  128. Giuseppe, Boriani., Jacopo, Francesco, Imberti., Marco, Vitolo. (2022). Dronedarone for the treatment of atrial fibrillation with concomitant heart failure and preserved or mildly reduced ejection fraction: closer to Ithaca after a long odyssey?. European Journal of Heart Failure. [CrossRef]
  129. Muthiah, Vaduganathan., Jonathan, P., Piccini., A., John, Camm., Harry, J.G.M., Crijns., Stefan, D., Anker., Javed, Butler., John, Stewart., R., Braceras., Alessandro, P.A., Albuquerque., Mattias, Wieloch., Stefan, H., Hohnloser. (2022). Dronedarone for the treatment of atrial fibrillation with concomitant heart failure with preserved and mildly reduced ejection fraction: a post-hoc analysis of the ATHENA trial. European Journal of Heart Failure. [CrossRef]
  130. Carina, Blomström-Lundqvist., Gerald, V., Naccarelli., David, S., McKindley., G., Bigot., Mattias, Wieloch., Stefan, H., Hohnloser. (2022). Effect of dronedarone vs. placebo on atrial fibrillation progression: a post hoc analysis from ATHENA trial. Europace. [CrossRef]
  131. Elkaryoni A, Al Badarin F, Spertus JA, et al. Comparison of the effect of catheter ablation for atrial fibrillation on all-cause hospitalization in patients with versus without heart failure (from the Nationwide Readmission Database). Am JCardiol 2020;125:392–8. [CrossRef]
  132. Rattka M, Pott A, Kühberger A, et al. Restoration of sinus rhythm by pulmonary vein isolation improves heart failure with preserved ejection fraction in atrial fibrillation patients. Europace 2020;22:1328–36. [CrossRef]
  133. Sugumar H, Nanayakkara S, Vizi D, et al. A prospective STudy using invAsive haemodynamic measurements foLLowing catheter ablation for AF and early HFpEF: STALL AF-HFpEF. Eur J Heart Fail 2021;23:785–96. [CrossRef]
  134. Yamauchi R, Morishima I, Okumura K, et al. Catheter ablation for non- paroxysmal atrial fibrillation accompanied by heart failure with preserved ejection fraction: feasibility and benefits in functions and B-type natriuretic peptide. Europace 2021;23:1252–61. [CrossRef]
  135. .Fukui A, Tanino T, Yamaguchi T, et al. Catheter ablation of atrial fibrillation reduces heart failure rehospitalization in patients with heart failure with preserved ejection fraction. J Cardiovasc Electrophysiol 2020;31:682–8. [CrossRef]
  136. Arora S, Jaswaney R, Jani C, et al. Catheter ablation for atrial fibrillation in patients with concurrent heart failure. Am J Cardiol 2020;137:45–54. [CrossRef]
  137. Packer DL, Piccini JP, Monahan KH, et al. Ablation versus drug therapy for atrial fibrillation in heart failure: results from the CABANA trial. Circulation 2021;143:1377–90. [CrossRef]
  138. Sørensen SK, Johannessen A, Worck R, Hansen ML, Hansen J. Radiofrequency Versus Cryoballoon Catheter Ablation for Paroxysmal Atrial Fibrillation: Durability of Pulmonary Vein Isolation and Effect on Atrial Fibrillation Burden: The RACE-AF Randomized Controlled Trial. Circ Arrhythm Electrophysiol. 2021 May;14(5):e009573. [CrossRef]
  139. Rienstra M, Hobbelt AH, Alings M, et al. Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: results of the RACE 3 trial. Eur Heart J 2018;39:2987–96. [CrossRef]
  140. Kirchhof P, Camm AJ, Goette A, et al. Early Rhythm-Control therapy in patients with atrial fibrillation. N Engl J Med 2020;383:1305–16. [CrossRef]
  141. Kelly JP, DeVore AD, Wu J, et al. Rhythm control versus rate control in patients with atrial fibrillation and heart failure with preserved ejection fraction: insights from get with the guidelines—heart failure. J Am Heart Assoc 2019;8:e011560. [CrossRef]
  142. Zhang P, Chamberlain AM, Hodge DO, et al. Outcomes of incident atrial fibrillation in heart failure with preserved or reduced ejection fraction: a community- based study. J Cardiovasc Electrophysiol 2020;31:2275–83. [CrossRef]
  143. Machino-Ohtsuka T, Seo Y, Ishizu T, et al. Relationships between maintenance of sinus rhythm and clinical outcomes in patients with heart failure with preserved ejection fraction and atrial fibrillation. J Cardiol 2019;74:235–44. [CrossRef]
  144. Siddiqui MU, Junarta J, Riley JM, Ahmed A, Pasha AK, Limbrick K, Alvarez RJ, Frisch DR. Catheter ablation in patients with atrial fibrillation and heart failure with preserved ejection fraction: A systematic review and meta-analysis. J Arrhythm. 2022 Oct 29;38(6):981-990. [CrossRef]
  145. Wylie JV Jr, Peters DC, Essebag V, Manning WJ, Josephson ME, Hauser TH. Left atrial function and scar after catheter ablation of atrial fibrillation. Heart Rhythm. 2008 May;5(5):656-62. [CrossRef] [PubMed]
  146. Witt CM, Fenstad ER, Cha YM, Kane GC, Kushwaha SS, Hodge DO, Asirvatham SJ, Oh JK, Packer DL, Powell BD. Increase in pulmonary arterial pressure after atrial fibrillation ablation: incidence and associated findings. J Interv Card Electrophysiol. 2014 Jun;40(1):47-52. [CrossRef] [PubMed]
  147. Zylla MM, Leiner J, Rahm AK, Hoffmann T, Lugenbiel P, Schweizer P, Scholz E, Mereles D, Kronsteiner D, Kieser M, Katus HA, Frey N, Thomas D. Catheter Ablation of Atrial Fibrillation in Patients With Heart Failure and Preserved Ejection Fraction. Circ Heart Fail. 2022 Sep;15(9):e009281. [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated