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Abstract: Microwave radiation diagnosis technology can detect thermal changes in skin tissue earlier than
anatomical changes, but its detection accuracy is limited by non-target radiation interference in the
measurement environment, additional measurement errors of system units, and energy scattering and
transmission between skin tissues. This paper aims to address the scientific challenges of analyzing the forward
and inversion modelling detection mechanism of layered accurate temperature measurement of human skin
tissue based on multi-band. The study focuses on the construction of a pencil beam antenna optimization
system, the optimization strategy of high-sensitivity correlated radiometer architecture, and the high-precision
multi-band forward and inversion modelling detection algorithm. The key technologies include: (1) A new
method of integrated modeling and multi-index optimization of antenna with high directivity and small
aperture is proposed, and a priori knowledge-guided neural network of pencil beam distribution is constructed
to realize the inversion model of antenna structural parameters; (2) The influence mechanism of high sensitivity
correlated radiometer architecture error is analyzed, and a periodic phase shift error correction algorithm based
on uniform polar circle is designed; (3) Combining deep learning theory and hyper-parameter optimization
framework, an iterative model is established, and the objective function modified by the penalty factor is
defined to realize a new detection method combining forward and inversion. This paper presents a theoretical
foundation for the industrialization of microwave radiation diagnostic technology.

Keywords: microwave radiation diagnosis; accurate temperature measurement; pencil beam;
correlated radiometer architecture; combining forward and inversion

1. Introduction

According to the latest statistics released by the World Health Organization in 2022,
approximately 18.1 million people are diagnosed with skin cancer annually [1]. Early detection of
skin lesions is crucial for effective treatment and improved patient prognosis, as demonstrated by
relevant studies. Pathological changes in skin tissue can be categorized into epidermal, dermal, and
subcutaneous tissue lesions based on their levels [2]. Currently, the primary methods for diagnosing
skin lesions include X-ray photography, CT scans, MRI scans, and ultrasonic imaging. These methods
each have their own advantages and limitations. However, due to the size and cost of the equipment,
the harmful effects of ionizing radiation on the human body, and the poor ability to detect early
stages, they are not suitable for large-scale early detection. Microwave radiation diagnostic
technology is a promising direction to overcome these shortcomings.

The pathological area of skin tissue exhibits distinct characteristics compared to the surrounding
normal tissue. Specifically, it has a higher temperature, higher water content, and larger dielectric
constant and conductivity. These properties make it more sensitive to microwave radiation, allowing
for the detection of even minor temperature changes in the affected area. The single-band multi-angle
method traditionally used for temperature inversion can only detect the temperature of a certain
tissue layer, assuming that the temperature of other tissue layers is known. This results in only one
real temperature parameter. Therefore, it is necessary to research the non-linear joint inversion
mechanism under near-field scattering based on the multi-band method, with an aim to address the
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issue of accurately detecting the temperature change or distribution of skin tissues at different depths.
The main principle is that microwave signals at various frequency bands can convey temperature
information from skin tissues at different depths and emit it externally. To obtain the weight of the
temperature contribution of each layer of skin tissue, the interaction between near-field scattering
and system unit deviation is characterized. The actual temperature value of each layer of tissue
detection area is then obtained by combining inversion. Since the temperature of human skin tissue
is directly proportional to its microcirculation, this relationship can assist doctors in evaluating skin
lesions by analyzing the temperature distribution and comparing it to an existing database to form a
diagnosis. Early intervention and treatment can be facilitated through this process.

However, the practical application of microwave radiation diagnosis technology is currently
limited due to its lack of accuracy in temperature measurement, which falls short of the clinical
application standard. The analysis of the microwave radiation diagnosis system and its working
principle, as shown in Figure 1, reveals the main factors that lead to the bottleneck of temperature
measurement accuracy. Firstly, if the radiation power received by the temperature measuring
antenna contains non-target radiation interference, the detection result of the temperature inversion
algorithm will deteriorate or even fail to converge, since the radiation process between human skin
tissues is nonlinear. So, it is necessary to solve the problem of balance between small aperture and
high directivity of the temperature measuring antenna. Secondly, the working state drift and working
environment change of microwave radiation meter will lead to poor temperature measurement
accuracy, so it is insufficient to merely adopt an internal calibration mechanism. Therefore, it is
necessary to design a temperature-varying blackbody calibration source that considers both electro-
thermal characteristics and quantifies the transfer brightness temperature uncertainty of the

calibration link.
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Figure 1. The principle and system composition block diagram of microwave radiation diagnosis
technology.

This paper presents a systematic study of the multi-band closed-loop forward and inversion
modeling precise detection mechanism of skin tissue temperature. A series of in-depth theoretical
studies are carried out on the key technologies, and carries out a series of in-depth theoretical studies
on the key technologies. The main research includes three aspects. Firstly, improving the power
transmission efficiency and pointing performance of the temperature measuring antenna, and
revealing the mechanism for suppressing non-target radiation interference in the measurement
environment. Secondly, proposing a high-sensitivity correlated radiometer architecture and a high-
precision calibration method to reduce the influence of additional measurement error factors of
system units. Thirdly, researching the microwave radiation transmission model of human tissue and
designing an efficient temperature inversion algorithm to solve the energy scattering transmission
problem between skin tissues.

2. Current Situation and Development

2.1. Optimization of Near-Field Radiation Characteristics of Temperature Measurement Antenna and
Antenna Structure Parameter Inversion Technology for Pencil-Shaped Beam Distribution
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The microwave radiation diagnosis system receives radiation from sources other than the
thermal radiation received by the antenna major lobe. Research conducted by Duke University,
Southeast University, and our team indicates that the sensitivity and accuracy of the microwave
radiation diagnosis system depend on the power transmission efficiency and main beam radiation
efficiency of the antenna. When an antenna operates in the near-field and the major lobe beam is less
than 15, the spatial resolution of the radiometer is approximately the size of the antenna aperture.
Therefore, designing an extremely narrow pencil beam antenna for contact or non-contact
measurement of human body temperature is an effective means of improving temperature
measurement performance [3-6]. However, the traditional method of manually adjusting parameters
is mainly based on empirical equations and parameter scanning. This method requires repeated
adjustments of antenna structural parameters to take into account multiple antenna performance
indicators related to beam distribution. It is not only limited but also time-consuming and labor-
intensive.

Currently, researchers both domestically and internationally have utilized neural networks or
deep learning to aid in antenna design [7-13]. In 2019, Budhu J. et al. from UCLA employed full-wave
simulation in conjunction with particle swarm optimization and physical optics to design an
inhomogeneous medium lens, which optimized the directivity of the lens antenna [7]. In 2020, Wu Q.
from Southeast University utilized a Gaussian process regression model to predict the parameters
and gain of a microstrip antenna. They established single-output, symmetric, and asymmetric multi-
output Gaussian process regression models to achieve single-frequency band, broadband, and multi-
band microstrip antennas [8]. In 2020, Yuan L. and colleagues from the University of Electronic
Science and Technology of China connected reverse and forward neural networks in series to predict
the structural parameters of super-surface elements with specific transmission amplitude. They used
transfer function technology to fit the discrete electromagnetic response in this network, but this
introduced additional errors [9]. Subsequently, the team used a multi-branch reverse neural network
to optimize the pattern. To address the non-uniqueness of electromagnetic problems, they employed
data classification technology to classify the training samples [10]. However, for pencil beam
distribution antennas, it is necessary to consider multiple performance indicators simultaneously.
Therefore, the machine learning method for achieving multi-objectives has also gained widespread
attention. In 2018, Xiao L.Y. and colleagues from Xiamen University developed three parallel and
independent forward neural networks to predict the electromagnetic parameters of Fabry-Perot
Resonant Cave Antenna. They established the mapping relationship between multiple support vector
machine models and the order of transfer function, which preliminarily proved its feasibility [11]. In
2021, the team utilized a reverse neural network to predict the structural parameters of a multimode
resonant antenna that meets specific performance indicators. The network comprises of three reverse
networks. It was found that the multi-objective evaluation by the extreme learning machine may not
yield the optimal result [12]. In 2021, Naseri P. from the University of Toronto, Canada, used a
forward neural network to learn the mapping relationship between the structure, phase, and
amplitude of multi-layer super-surface elements. To address the challenge of representing high-
dimensional structural data, a variational autoencoder was employed to fit the data to a specific
distribution. The resulting distribution was then fed into a forward neural network to effectively
restore the structural parameters by decoding it [13].

In summary, this research proposes a solution to the issues of excessive data demand and
difficulty in describing the optimization target when solving complex electromagnetic problems. The
approach involves using a reverse neural network as the main component, along with multiple
forward neural networks to provide prior knowledge related to beam distribution. Additionally,
equations or related parameters are defined to simplify the electromagnetic response of the
optimization target, enabling the realization of the all-dielectric lens antenna multi-index
optimization algorithm and antenna structure parameter inversion when the pencil beam is
distributed.

2.2. Quantification of Uncertainties in Architectural Performance Bottlenecks of Microwave Radiometers and
Dual-Electro-Thermal Blackbody Calibration Sources
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The sensitivity of microwave radiation method is affected by the state fluctuation and additional
error of each unit in the system, which in turn affects the accuracy of temperature measurement.
Research on the structure of microwave radiation meters has been ongoing since 1974, with scholars
both domestically and internationally contributing. Relevant research indicates that the temperature
measurement performance of full-power and Dick-type radiometers has encountered bottlenecks
[14,15]. In recent years, our team and other scholars have begun to research related radiometer
architecture [16-19]. The architecture’s sensitivity can be disregarded when in equilibrium. However,
the correlation radiometer remains susceptible to gain fluctuations during actual use, which can
degrade its sensitivity. Additionally, the zero-drift issue can also impact the radiometer’s
measurement accuracy. In 2023, Hu A.Y. and colleagues from Beihang University proposed a
coherent radiometer structure. The structure is based on the principle of circumferential uniform
polyphase modulation. This structure eliminates the influence of zero drift and reduces the impact
of gain fluctuation on sensitivity [19].

The accurate diagnosis of early skin lesions requires precise temperature measurements.
However, the internal calibration scheme that the system uses, which only involves cold/hot noise
sources, is inadequate. Therefore, it is necessary to research a blackbody calibration source with high
emissivity and temperature uniformity for external calibration correction. Currently, blackbody
calibration sources mainly come in two structural forms: coated cone array type and coated cavity
type. Coated cone array calibration sources have gained popularity due to their compact structure.
Researchers from the National Institute of Standards and Technology in the United States and the
University of Berne in Switzerland have found that the brightness temperature of a calibration source
radiation is determined by the temperature and emissivity performance of its coating. The calibration
accuracy cannot be greatly improved due to the lack of established benchmarks and transmission
standards for microwave brightness temperature. It is impossible to accurately trace the uncertainty
of transmitting the brightness temperature actually measured by the radiometer [20,21]. In recent
years, scholars, including our team, have been actively studying and constructing quantitative
modeling methods, including complex radiation targets and near-field receiving antennas [22-25]. In
2017, Schoder and colleagues from the University of Bern used far-field reciprocity to calculate the
local absorption rate and overall reflectivity of the radiator in an inverse scattering model. They
combined this with thermal analysis to calculate the temperature distribution of the radiator and
proposed a directional radiation brightness temperature model for analyzing it [22]. The report
suggests that researchers have analyzed and optimized radiators by considering overall radiation
brightness temperature, rather than just emissivity and temperature separately. It also highlights
important development trends. In 2021, Virone et al. from the Italian Institute of Electronic
Information and Telecommunications modelled the radiation brightness temperature of the cone
array calibration source and the transmission brightness temperature to the antenna from the
perspective of circuit equivalence [23]. This report presents a method for weighting the directional
radiation brightness temperature of a calibration source based on the antenna far-field pattern. It also
includes the contribution of ambient brightness temperature based on specular reflection and diffuse
reflection coefficients, and obtains the equivalent noise temperature of the antenna port. In 2022, Jin
M. and colleagues from Beijing University of Chemical Technology proposed a cone array calibration
source structure to optimize the inner cone curve with a method of thinning the top coating and
thickening the bottom coating, which can improve the broadband temperature gradient and
absorption performance. The overall directional radiation brightness temperature showed a
comprehensive balance between emissivity and temperature gradient [24].

In summary, evaluating the mechanism and numerical value of the influence on calibration
source radiation brightness temperature in the transmission process is difficult due to factors such as
radiation source distribution, environmental impact, antenna efficiency, and mirror loss. This
research aims to establish a scattering model of a calibration source using forward and backward
modeling theory combined with the finite element method. The study will explore the boundary of
the ability to take into account the electrical-thermal characteristics of the calibration source from the
perspective of overall radiation brightness temperature. Additionally, the investigation will focus on
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the influence of different antenna beams on the transmission effect of brightness temperature and
trace back the uncertainty of transmission brightness temperature. Finally, the study will aim to
achieve high-precision calibration source and calibration link design.

2.3. Near-Field Temperature Contribution Weight Function Measurement of Skin Tissue and the Core
Difficulty of Temperature Inversion Technology

When microwave radiation method is used to measure the temperature of human tissues
(organs) in near-field, the radiation brightness temperature received by antenna is the average
brightness temperature weighted by the weight function W at the entrance of antenna in volume V.
When measuring the layered temperature of human skin tissue, it is necessary to know that the
number of brightness temperature is more than the number of tissue temperatures, that is, the target
parameters are overdetermined, so a multi-band microwave radiation meter can be used, and the
antenna temperature measured at this time can be equivalent to the matrix form of weight function
W and layer temperature vector T. Because the energy transmission between skin tissues is nonlinear,
and the weight function is related to the dielectric characteristics of skin tissue and the radiation
characteristics of temperature measuring antenna near-field, so it is difficult to measure the weight
function directly. Therefore, it is necessary to use inversion algorithm to solve the matrix in order to
obtain the layer temperature vector T [26-30]. In 2015, He F. and colleagues of Huazhong University
of Science and Technology measured water with temperature gradient by using Dicke radiometer in
C-band. In order to invert the water temperature of each layer by using the measured value of single
frequency band, multiple measuring angles were used as auxiliary parameters to simulate multi-
band temperature measurement [28]. In 2019, Qian P.C. and colleagues of Westmead Hospital in
Australia simplified the solution of temperature distribution and weighted function inversion to the
solution of overdetermined linear equations, and then added the numerical simulation in the
anatomically realistic baby head model to quickly obtain the temperature distribution in the brain
from the measured values obtained by multi-band microwave radiation meter. The algorithm can
also be used for error analysis of microwave radiation measurement technology, which provides a
basis for non-invasive body temperature monitoring [29]. Subsequently, the research teams from the
University of Colorado, Tromso University and Huazhong University of Science and Technology
adopted the least square method, model fitting method, Monte Carlo method and other inversion
algorithms [30-32], but the results were quite different. Our team also put forward a neural network
detection model optimized by evolutionary algorithm, but the result of inversion is still
unsatisfactory [31].

The research above indicates that the accuracy of weight function calculation is closely linked to
the near-field radiation pattern, size, measuring distance, and angle of the temperature measuring
antenna when measuring skin tissue temperature under near-field conditions. Additionally, changes
in the dielectric characteristics of human tissue can also affect the weight function, leading to further
deterioration in inversion accuracy [33-35]. Furthermore, the total radiation power received by the
antenna is determined by the combined radiation power of the environment, clothing, and skin
tissues. The variation parameters are numerous, which greatly limits the accuracy of inverting the
internal temperature of the human body [36,37]. In summary, the accuracy of temperature
measurement using the microwave radiation method is closely linked to the near-field radiation
characteristics of the antenna, the uncertainty of calibration link brightness temperature, and the
temperature contribution weight of the inversion algorithm [38—40]. Currently, there is no mature or
perfect scheme available, particularly as the human tissue model and inversion method require
further study. Given the industry’s increasing focus on the application and theoretical research of
microwave radiation diagnosis technology, it is crucial to urgently investigate a layered, accurate
temperature measurement mechanism based on the multi-band method.

3. Research Content and Key Technologies



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2024 i:10. reprints202403.0167.v2

3.1. A priori Knowledge Neural Network Optimization Model Combining Multi-Node Matching with Q-
Value Constraints and Multi-Objective Function Constraints

a) Analyze the reasons why the voltage standing wave ratio (VSWR) is limited for each structural
segment of a temperature measuring antenna under octave conditions; improve the power
transmission efficiency of the antenna by optimizing VSWR parameters; propose a Q-constrained
multi-branch broadband matching method based on both Chebyshev and multi-branch matching
theory.

According to Chebyshev’s waveguide matching theory, the matching node order N can be
obtained by the following equation:

_ R-1%  p
N = arcosh[ - (p—1)2] 1)

Where R is the impedance ratio of the input and output ports of the waveguide, p is the
maximum VSWR of the waveguide. According to Equation (1), if N = 3, the maximum VSWR p of
the waveguide is less than 1.1 theoretically. According to Chebyshev impedance transformation
theory:

1
2

1

= 2, A%\]2
7 —{R[B+(B +?)] }
Z_Z = Z_l/A,Z_3 == AZRZ_12
Zy = Z_1Zo'Zz = Z_ZZO'Z3 = Z_3Zo

)

Where Z;, Z, and Z; are the characteristic impedance of each matched branch, Z, is the
characteristic impedance at the waveguide input port and R is the impedance ratio of the waveguide
input and output port. A and B are the polynomial related to the fractional bandwidth parameter.

According to the equivalent principle of tuning loop, the fractional bandwidth B, of multi-
branch matching loop is:

1 1

T b, sinh[ 2 in(E)+ C221n (2

B, ) 3)

Where I' is the reflection coefficient, Q is the quality factor. a,, and b, are the tuning loop
coefficient.

b) Explore the limitations of manual tuning antenna optimization; adopt the optimization
algorithm of swarm intelligence fused with neural networks; optimize the major lobe beam, side lobe,
S;,and transition zone simultaneously as objectives; define the constraint range of multiple sub-
objective functions; reallocate weights to improve the pointing performance of the temperature
measurement antenna.

By assigning different weights to each optimization objective function, the proportion of
optimization objectives is set, and the main indicators and secondary indicators are defined. The
definition of the objective function is shown in Equation (4):

F=F1'(1)1+F2'(U2+F3'w3+F4'(U4 (4)

Where F is the total fitness function value of the optimization objective. Fy, F,, F;, F, are
the fitness function values of the major lobe beam, transition zone, side lobe and S1; respectively.
wy, W, w3, w, arethe weights of the optimization objectives.

The expressions defined by F, F,, F3, F, are shown in Equation (5) as follows:

(main lobe: F; = R |E(05) = Eri(@p)| + S i o Egi (@) — Evi(@i)|(@)

tranisition region: F, = Yo /7e 799 — 93| 4+ |19° — 93| (b)

i=min freq (5)
l SLL goal: Fy = 3720 (SLL,; — SLLy;) (c)
Sll goal: F4- = Z:z(:l(i{lrfefeq(sri - Sgi) (d)
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Where g is the target value, 7" is the actual value, and i is the ith frequency point. For the
major lobe beam, the optimization goal is to obtain a pencil beam distribution within the desired
range. For the transition zone, T5;°, Te;® and Tg;?, TS represent the angles corresponding to 90%
and 30% of the maximum electromagnetic response on the E-plane and H-plane, respectively. The
smaller the difference between the angles, the narrower the transition zone. For the side lobes, the
goal is to minimize the difference between the optimized target SLL; and SLL, actual value. For the
parameters, the optimization goal is to ensure that all S1; maximum values within the operating
frequency band are less than the target value.

o) To address the issue of the antenna structure’s inverse requiring excessive data, a neural
network model based on prior knowledge is studied. As shown in Figure 2, multiple sub-forward
neural networks (forward neural networks, FNN) are taken as the structural parameter of antenna
with prior knowledge inversion and multi-indexes, and finally a multi-index optimization system
with extremely narrow pencil beam temperature measuring antenna is constructed.

Structure Parameters
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Main Lobe Beam Tramisition Reglon H
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\
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Figure 2. Neural network model based on prior knowledge in this research.

The input of INN is electromagnetic response: R; =
[ri,rd, v3, 75, T2, 12,78, 1, 78,15, 13, 1y, 11, 15, 14, -+, ¢ |, where 7,1 represents the major lobe
beam, 17 represents the transition zone, and 77 represents the side lobes, r;; represents the [Sy,].
[U,V,W,X] are the number of discrete points. The output is structural parameters written as P; =
[p1, D2, D3, Py, where N is the number of structural parameters. The input of FNN is structural
parameters, and the output is electromagnetic response. There are three hidden layers in total. The
FNN corresponding to each optimization objective has two hidden layers. The output layer’s
activation function is Tanh, while the hidden layer’s activation function is Relu. The inputs of the
three sub-FNN are all the same set of structural parameters P; = [py, p;,Ps, -+, pn]T- The inputs R; =
[ry, 75,73, -+, Ty ]TOf the three sub-FNNss are the same set of structural parameters. The outputs of the
three sub-FNNs are different, namely the major lobe beam, transition zone, side lobe and |S;4]. The
loss function uses the MSE function to train the FNN to make the predicted electromagnetic response
approach the real electromagnetic response.

3.2. Channel Phase Shifting Correction Algorithm and Calibration Link Uncertainty Calibration for
Measuring Radiation Brightness Temperature Errors
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a) Construct an error model of microwave radiation meter architecture with key indicators such
as sensitivity and accuracy; analyze the expression of the influence mechanism of phase, amplitude,
offset and other errors on radiometer output data; design a periodic phase-shifting error correction
algorithm based on uniform polar circle in combination with phase modulation circuit to correct the
detected output data.

To calculate the sensitivity of a phase modulation correlation radiometer, it is necessary to
determine the output RMSF and the change in output mean value caused by the temperature
variation of the target being measured. When SNR equals to 1, the sensitivity expression is:

AT = \/Tszys(1+a§) + 1é¢cé(a+paof) ©)
Bt N

Where , a = %Z?’:lsin“ 0;0 + cos* 0,y » B = %Z?’:l cos? 0y sin®0;, , B is the equivalent
bandwidth of the RF front end, 7 is the integration time of the system, ¢ and of are the root mean
square of the gain and phase fluctuations, respectively. Equation (6) reveals that the sensitivity is
affected by the gain fluctuations of the amplifier, the phase errors of the phase modulator, and the
temperature difference between the target under test and the reference load. When the correlation
radiometer operates in equilibrium, thatis, T, = 0, the sensitivity expression is the same as that of an
ideal correlation radiometer. When the radiometer operates in a non-equilibrium state, that is, Ty #
0, the gain fluctuations of the amplifier have a significant impact on the sensitivity. In the case of
relatively A9 small phase modulation errors, when a + g4 =~ a, the impact of phase modulation
errors on this radiometer is not significant.

To determine the phase error of the radiometer, the demodulated output data is corrected using
a periodic phase modulation method. The radiometer 8r input end is modulated by a phase shift in
steps. At each phase point, the sampled data of the N group output channels are collected and the
average is calculated through digital integration. After obtaining the original sampled data of the
output channels, the quadrant in which they belong is determined based on the sign of their symbols.
First, the sum of squares of the sampled data of the output channels is calculated, then the square
root is taken to obtain the demodulated voltage amplitude. Finally, under a fixed phase shift, the
radiometer demodulated voltage amplitude is calculated, collecting the voltage amplitude and the
corresponding phase difference values. The ideal radiometer I/Q channel output data is calculated
based on the ideal situation data, and the measured output data of the I/Q channels are linearly fitted
separately with the ideal situation data as reference. By the linear fitting method, the intercept and
slope parameters are obtained, and the correction equations for the I/Q channel data can be derived
as follows:

Vi = A" (cos8  coSPerror — SING * SiNPerror) (7)
Vo = A (Sinb - cosPerror + €0SO - SiNPerror) (8)

Where V/ andV;, are the corrected output voltage values of the I/Q channels, 6 is the phase
modulation step size, A is the amplitude coefficient, i is the phase scanning times, and @, is the
actual mean phase error of the radiometer, as shown in Equation (9).

N -1 V;i
Y0 cos -6;
2 12
VIiitVai
Perror = N (9)

b) A finite element method based on forward and backward modeling theory is proposed to
calibrate the scattering model of the calibration source, the control strategy of the electro-thermal
performance of the calibration source is studied, the structure of the calibration source is improved,
the influence of antenna beam on the transmission effect of the brightness temperature is analyzed
from the perspective of the overall directional radiation temperature, the uncertainty of the
calibration link is traced back, and the error of the transmission brightness temperature is corrected.

Among them, the radiation brightness temperature of the coated array calibration source can be
obtained by calculating the directional radiation brightness temperature model, which is based on
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reciprocity under the condition of far-field, and can calculate the radiation brightness temperature
perpendicular to the front direction of the calibration source. Usually, the calculation of directional
brightness temperature is the cross integration along the three-dimensional direction, as shown in
Equation (10). However, for the coating array type calibration source, the temperature distribution
and local absorption distribution inside the cone coating mainly vary along the direction. Therefore,
the process of directional brightness temperature calculation can be simplified to one-dimensional
integration, as shown in Equation (11).

BT = -=1)[, [, [, Pars(x,3,2) T(x,y,2)dxdydz + rT; (10)
BT = (1 =1) [ Paps(2) T(2)dz + 1T, (11)

Where, BT is the radiation brightness temperature perpendicular to the array surface, r is the
total reflectance of the cone array, P,,s(z) is the normalized absorption ratio inside the cone coating
at height, T(z) is the average temperature inside the cone coating at height z, T, is the ambient
temperature, and Tj4,, is the set reference temperature of the cone calibration source. Explore the
boundary of the electro-thermal dual consideration characteristics of the calibration source, that is,
approaching Tpgse- It can be seen from Equation (11) that the radiation brightness temperature is
obtained by coupling the results of electromagnetic analysis and temperature analysis through
integration. The scene of directional radiation brightness temperature calculation for the calibration
source is shown in Figure 3.
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Figure 3. Schematic diagram of the calculation of the brightness temperature of the coating array
calibration source directional radiation scene.

As shown in the above figure, when the finite cone array calibration source is operating in an
open scene, assuming that the total power passing through the closed surface Asurrounding the
entire integration area is averaged as:

15 12 a0 Thepa .
- éq ERe[E (TA)X H (rA)] *dd = Piye — Pocq — Preak (12)

Where, E 7)), F‘)(?A) are the electromagnetic field distribution on the closed surface A
irradiated by the antenna (single-mode excitation), @ is the normal vector pointing outward of the
closed surface, Py, isthe incident power on the antenna port cross-section, P, is the backscattered
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power on the antenna port cross-section, Py, is the total leakage to the surrounding space in the
open scene, including antenna leakage and leakage after scattering by the calibration source.

When the antenna is excited by a single mode, the absorbed power P,,s(7,) inthe target coating
is:

Sy 1 NN
Pops (i) = ZaIEJ|E§,(rm)| a' €x,y,z (13)

Where, E;C, (fiy) is the polarized absorption electric field in the volume element of the m-th
calibration source coating when the antenna dv is excited by a’ single mode. According to Equation
(13), the key to obtaining the transfer brightness temperature is to calculate the local absorption
power Pg,s(7y,) within each volume element of the calibration source coating.

The expression for the transfer brightness temperature received by the near-field antenna is

_ Pinc=Psca—Plear , 1 =Y Sr
BT = o Pape(F)av P Ym TEn)Paps(p)dv me 1-- M (14)

Where T(#,) is the local temperature within the volume element, P, is the Sunit mode field
power passing through the antenna port cross section under single-mode transmission. According to
Equation (14), the transfer brightness temperature at the antenna port in the near-field calibration
scenario is: the absorption power in the calibration source coating integrated after being weighted by
the temperature distribution at the corresponding local position.

3.3. Incoherent Skin Tissue Radiation Forward Model and Objective Function Constrained Deep Learning
Combined Inversion Method

a) Clarify the relationship between human skin tissue radiation brightness temperature and
weight function; research the temperature distribution of human epidermis, dermis, subcutaneous
tissue and muscle layer by using C, X and Ku frequency bands; obtain the mathematical
representation of skin tissue heat transfer based on incoherent method; derive the estimation
equation of apparent brightness temperature when human body transmissivity is 0.

The radiation brightness temperature Tp of skin tissue is a weighted contribution of the
temperatures of each layer, which can be expressed as:

Ty = fVW(z, T(z)dz (15)

Where, T(z) and W(r, f) are the physical temperature and weighting function of each layer of
tissue, and z is the depth at which the measured tissue is located below the surface.
In the absence of scattering, the weighting function W (z) can be expressed as:
ar z'=d
W(z) = - = a(z)secH - exp (— Sy

, sec0-a(z') dz’) (16)

Where T is the transmissivity, a is the absorption coefficient, and 6 is the angle of incidence.

It can be seen from Equations (15) and (16) that brightness temperature Ty is the sum of the
vertical antenna aperture weighted skin tissue temperatures, and the weighting function directly
affects the Tz observation results. Therefore, in order to accurately describe the relationship between
brightness temperature and the physical temperatures of various layers of skin tissue, it is necessary
to establish a radiative transfer forward model to numerically calculate the weighting function.

Considering the scattering, the forward model of radiation transmission of incoherent skin tissue
is established, as shown in Figure 4.
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Figure 4. (a) Incoherent model of microwave thermal radiation between human skin tissues; (b)
microwave thermal radiation model of human body surface wearing clothes.

As shown in Figure 4(a), the microwave thermal radiation model between skin tissues includes
epidermis layer, dermis layer, subcutaneous tissue layer and muscle layer. Considering the multiple
reflections in the radiation transmission process of human tissues, the brightness temperature
contribution of human tissues is divided into two parts: upward and downward. It is assumed that
the brightness temperature emitted upward by the epidermis layer is Ty,,, the brightness temperature
emitted downward by the epidermis layer is T4, the brightness temperature emitted upward by the
dermis layer is T, the brightness temperature emitted downward by the dermis layer is T4, the
brightness temperature emitted upward by the subcutaneous tissue layer is Ts,, the brightness
temperature emitted downward by the subcutaneous tissue layer is T34, and the brightness
temperature emitted upward by the muscle layer is T,,. Therefore, the total emitted brightness
temperature Typ of the skin surface layer can be expressed as:

Tup = Tiy +Tig + Toy + Toq + T3y + T3 + Ty (17)

Assume that the brightness temperatures emitted by the epidermis layer, dermis layer,
subcutaneous tissue layer, and muscle layer are T;, T,, T; and T, respectively; the tissue loss factors
of each layer are Ly, L,, L3 and L,; the reflectivity at the boundaries of each tissue layer are I3, I
and I3 respectively. Therefore, the upward and downward emitted brightness temperatures of each
tissue layer can be expressed as:

Tiy = 1;—11"}2de kq, Tepi(2) sec 6, e~ Jo kaysec61d€ g, (18)

1_ O
)
L1

_ L 1-n cdy _(% g d
Tiq _L_ll_mfo ka, Tepi(2) sec 0y ez Karseco1 ¥z (19)
Lf

1 1-Ih 1-I, fd1+d2 k
1.1 L1z _T2l3Jg
L11-—52 1524

1 2

Tyy = a,Taer(2) sec O, e la, kaz sec02d8 3, (20)

_ I3 1 1-Iy 1-I; dy+d; — [tz o cecg,d
2d = P —Tarsda. KayTaer(Z) secOye™ )z Kaasecb288 gy (01)
Ly Lyq 1=t 1= "

1 L3

_ 1 1-ny 1-I, 1-I3 rdi+da+ds fd +d, kazsec8zdé

T3, = Tila1 F1F21 r2r31 1"31"4 fd1+d kq Tsub(z) secfz-e “ditdz dz (22)
%] L2 12

_ Ly 1 1-Iy 1-[ 1-I3 dy+dy+ds fd1+d2+d3 kg. dE

T3¢ = Islils1 iz r2r31 r3r4 fd1+d kq Tsub(z) secOz-e 3%dz (23)
i L3 L3
1 1-Iy 1-Ip, 1-I3 1-Ty di+dy+ds+d _(?

Ty = T T T Tala s Tl dardgras  KaaTus(2) - € Jarazias Kes¥dz (24)

Til2 . Ta2l'3 . Talg. Tal
LiLaL3 1 izl 223934 45

dq+da+ds
2 2
L% L% %]

Where, kg, is the absorption coefficient of each layer of organization. It can be represented as
a; by the attenuation constant k,, = 2a;. Tepi, Taer, Tsup, Tmus are the physical temperatures of the
epidermis, dermis, subcutaneous tissue layer, and muscle layer, respectively. The specific values can
be calculated using the Pennes bioheat transfer equation:
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pe S = V2T + @ypycy(Ty = T) + et (25)
Where, p, ¢, k are the skin tissue density, specific heat capacity, and thermal conductivity, @,
Py, ¢p are the blood perfusion rate, density, and specific heat capacity, T, is the blood arterial
temperature, T is the skin tissue layer temperature, and ., is the tissue metabolic heat.
As shown in Figure 4(b), the apparent brightness temperature when the human body
transmissivity equals 0 can be expressed as:

TAPHS = [ghTh + Ts’ph]tc + gCTC + chs = [ehTh + (Tstc + SCTC + chh)ph]tc + gCTC + chs (26)

Where, T pys is the skin brightness temperature of the human body, &, is the emissivity of the
human body, t, is the transmissivity of the clothing, p. is the reflectance of the clothing, T} is the
physical temperature of the human body, T, is the physical temperature of the clothing, T; is the
ambient temperature, and T is the equivalent ambient temperature.

b) Analyze the factors that affect the accuracy of temperature measurement under near-field
condition; analyze the microwave radiation forward model of human skin tissue; calculate the
constraint range of temperature difference between adjacent skin tissues in different areas of an
individual driven by solving the contribution weight of brightness temperature of each layer of
tissue; define the objective function of the penalty function correction algorithm.

When the microwave temperature measurement system is affected by the random disturbance
of environment and equipment, the inversion result exceeds the reasonable distribution range of skin
tissue temperature difference, so the limit value constraint objective function of temperature
distribution is adopted. Assuming that for the jth sample, the temperature difference between the
ith and (i+1)th layer of tissue is AY}U), it should satisfy ATTSi)n < A7}(i) < AT,S?W which ATTSi)n and
AT,g()lxare the minimum temperature difference and maximum temperature difference between the
ith and (i+1)th layer of tissue. The predicted temperature difference between the ith and (i+1)th layer
of tissue is A/T‘j(i). When it exceeds the [AT,Si)n, AT,S,)M] range, the inversion algorithm is corrected by
defining an appropriate penalty function to distribute the inversion prediction values within a
reasonable temperature range. If the definition AT}-(D does not exceed the temperature difference
distribution range, the value of the penalty function is zero; if AT}(O exceeds the temperature
difference range, the value of the penalty function becomes non-zero, and with the increase of the
deviation degree, the value of the penalty function increases according to the square trend. According
to the relationship between the zero point of the quadratic function and the solution of the equation,
the penalty function is defined as follows:

0' AT}(” € [ATminrATmax]

P(AT®) = 27)

k ((8T)" = (ATyin + MTyuax)AT® + AT, AT,y ) other

Where k is the penalty function coefficient whose value ranges less than 1.

Equation (27) describes the predicted temperature difference penalty function between the i
and (i+1)th layers. For the prediction of multi-layer structures, the penalty function should be the
superposition of the predicted temperature difference losses of adjacent layers, namely:

PO T LT = S PQTY) (28)

Where, 'T}(i)(i =1,2,...,1) are the predicted temperatures of the ith layer of tissue and [ is the
number of layers of tissue.

¢) In order to optimize the accuracy, generalization and robustness of the inversion algorithm, a
closed-loop high-precision forward and inversion modeling detection method for human tissue
temperature measurement is proposed, as shown in Figure 5. Firstly, the human tissue temperature
data set and constraint conditions are constructed by the forward model, then the human simulated
tissue fluid, skin tissue and other samples are tested, and the clinical data are collected to verify the
inversion algorithm. Finally, the clinical experiment is guided by the test results and evaluation
indicators, and the mathematical and physical relationship of the forward model is improved by
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comparing the clinical data with the simulation data, which further enhances the scientific nature of
the method.

Build Dataset

+ Temperature + Differential data

Transfer * Brightness
* Electromagnetic temperature data
Transfer * Disturbance data
» Weighting * Constraint data

Function
» Disturbance

Improve Model Improve Algorithm
Clinical Inversion
Data Algorithm
*Temperature + Tissue
. Temperature
*Permittivity » Evaluation
*Conductivity Indicator
~Water Content Clinical L * Process Data
Experiment

Figure 5. Closed-loop high-precision forward and inversion modeling detection method for human
tissue temperature measurement.

4. Conclusion

Based on the analysis of current research, although many researchers have extensively studied
the architecture of microwave radiation meters and inversion algorithms, there are still several
limitations and gaps. These include inaccuracies in temperature measurement, near-field radiation
characteristics of the antenna, uncertainty in brightness temperature calibration, the contribution of
skin tissue temperature to weight, and a lack of research on forward and inversion modeling to detect
the stratified temperature of skin tissue. This research proposes a precise temperature measurement
scheme for human skin tissue using a multi-band closed-loop forward and inversion modeling
approach. However, there are still some key technologies that need to be urgently addressed in the
scheme. For instance, optimizing the pencil beam radiation characteristics of the temperature
measuring antenna by combining the quantitative model of calibration link uncertainty, and
characterizing the relationship between the key unit parameters of the system and the temperature
measurement performance. Focusing on constructing the accurate temperature measurement
mechanism of human skin tissue in forward and inversion modeling and solving the influence of
many variable parameters and nonlinear scattering of the measured object on the temperature
measurement accuracy, so as to realize a set of early diagnosis system of human skin tissue lesions
that meets the clinical test standards, this research aims to enhance the theoretical framework of
microwave radiation diagnosis technology and establish a solid theoretical foundation for its
practical implementation.
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