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Abstract: Microwave radiation diagnosis technology can detect thermal changes in skin tissue earlier than 
anatomical changes, but its detection accuracy is limited by non-target radiation interference in the 
measurement environment, additional measurement errors of system units, and energy scattering and 
transmission between skin tissues. This paper aims to address the scientific challenges of analyzing the forward 
and inversion modelling detection mechanism of layered accurate temperature measurement of human skin 
tissue based on multi-band. The study focuses on the construction of a pencil beam antenna optimization 
system, the optimization strategy of high-sensitivity correlated radiometer architecture, and the high-precision 
multi-band forward and inversion modelling detection algorithm. The key technologies include: (1) A new 
method of integrated modeling and multi-index optimization of antenna with high directivity and small 
aperture is proposed, and a priori knowledge-guided neural network of pencil beam distribution is constructed 
to realize the inversion model of antenna structural parameters; (2) The influence mechanism of high sensitivity 
correlated radiometer architecture error is analyzed, and a periodic phase shift error correction algorithm based 
on uniform polar circle is designed; (3) Combining deep learning theory and hyper-parameter optimization 
framework, an iterative model is established, and the objective function modified by the penalty factor is 
defined to realize a new detection method combining forward and inversion. This paper presents a theoretical 
foundation for the industrialization of microwave radiation diagnostic technology. 

Keywords: microwave radiation diagnosis; accurate temperature measurement; pencil beam; 
correlated radiometer architecture; combining forward and inversion 

 

1. Introduction 

According to the latest statistics released by the World Health Organization in 2022, 
approximately 18.1 million people are diagnosed with skin cancer annually [1]. Early detection of 
skin lesions is crucial for effective treatment and improved patient prognosis, as demonstrated by 
relevant studies. Pathological changes in skin tissue can be categorized into epidermal, dermal, and 
subcutaneous tissue lesions based on their levels [2]. Currently, the primary methods for diagnosing 
skin lesions include X-ray photography, CT scans, MRI scans, and ultrasonic imaging. These methods 
each have their own advantages and limitations. However, due to the size and cost of the equipment, 
the harmful effects of ionizing radiation on the human body, and the poor ability to detect early 
stages, they are not suitable for large-scale early detection. Microwave radiation diagnostic 
technology is a promising direction to overcome these shortcomings. 

The pathological area of skin tissue exhibits distinct characteristics compared to the surrounding 
normal tissue. Specifically, it has a higher temperature, higher water content, and larger dielectric 
constant and conductivity. These properties make it more sensitive to microwave radiation, allowing 
for the detection of even minor temperature changes in the affected area. The single-band multi-angle 
method traditionally used for temperature inversion can only detect the temperature of a certain 
tissue layer, assuming that the temperature of other tissue layers is known. This results in only one 
real temperature parameter. Therefore, it is necessary to research the non-linear joint inversion 
mechanism under near-field scattering based on the multi-band method, with an aim to address the 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 March 2024                   doi:10.20944/preprints202403.0167.v2

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.



 2 

 

issue of accurately detecting the temperature change or distribution of skin tissues at different depths. 
The main principle is that microwave signals at various frequency bands can convey temperature 
information from skin tissues at different depths and emit it externally. To obtain the weight of the 
temperature contribution of each layer of skin tissue, the interaction between near-field scattering 
and system unit deviation is characterized. The actual temperature value of each layer of tissue 
detection area is then obtained by combining inversion. Since the temperature of human skin tissue 
is directly proportional to its microcirculation, this relationship can assist doctors in evaluating skin 
lesions by analyzing the temperature distribution and comparing it to an existing database to form a 
diagnosis. Early intervention and treatment can be facilitated through this process. 

However, the practical application of microwave radiation diagnosis technology is currently 
limited due to its lack of accuracy in temperature measurement, which falls short of the clinical 
application standard. The analysis of the microwave radiation diagnosis system and its working 
principle, as shown in Figure 1, reveals the main factors that lead to the bottleneck of temperature 
measurement accuracy. Firstly, if the radiation power received by the temperature measuring 
antenna contains non-target radiation interference, the detection result of the temperature inversion 
algorithm will deteriorate or even fail to converge, since the radiation process between human skin 
tissues is nonlinear. So, it is necessary to solve the problem of balance between small aperture and 
high directivity of the temperature measuring antenna. Secondly, the working state drift and working 
environment change of microwave radiation meter will lead to poor temperature measurement 
accuracy, so it is insufficient to merely adopt an internal calibration mechanism. Therefore, it is 
necessary to design a temperature-varying blackbody calibration source that considers both electro-
thermal characteristics and quantifies the transfer brightness temperature uncertainty of the 
calibration link. 

 
Figure 1. The principle and system composition block diagram of microwave radiation diagnosis 
technology. 

This paper presents a systematic study of the multi-band closed-loop forward and inversion 
modeling precise detection mechanism of skin tissue temperature. A series of in-depth theoretical 
studies are carried out on the key technologies, and carries out a series of in-depth theoretical studies 
on the key technologies. The main research includes three aspects. Firstly, improving the power 
transmission efficiency and pointing performance of the temperature measuring antenna, and 
revealing the mechanism for suppressing non-target radiation interference in the measurement 
environment. Secondly, proposing a high-sensitivity correlated radiometer architecture and a high-
precision calibration method to reduce the influence of additional measurement error factors of 
system units. Thirdly, researching the microwave radiation transmission model of human tissue and 
designing an efficient temperature inversion algorithm to solve the energy scattering transmission 
problem between skin tissues. 

2. Current Situation and Development 

2.1. Optimization of Near-Field Radiation Characteristics of Temperature Measurement Antenna and 
Antenna Structure Parameter Inversion Technology for Pencil-Shaped Beam Distribution 
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The microwave radiation diagnosis system receives radiation from sources other than the 
thermal radiation received by the antenna major lobe. Research conducted by Duke University, 
Southeast University, and our team indicates that the sensitivity and accuracy of the microwave 
radiation diagnosis system depend on the power transmission efficiency and main beam radiation 
efficiency of the antenna. When an antenna operates in the near-field and the major lobe beam is less 
than 15, the spatial resolution of the radiometer is approximately the size of the antenna aperture. 
Therefore, designing an extremely narrow pencil beam antenna for contact or non-contact 
measurement of human body temperature is an effective means of improving temperature 
measurement performance [3–6]. However, the traditional method of manually adjusting parameters 
is mainly based on empirical equations and parameter scanning. This method requires repeated 
adjustments of antenna structural parameters to take into account multiple antenna performance 
indicators related to beam distribution. It is not only limited but also time-consuming and labor-
intensive. 

Currently, researchers both domestically and internationally have utilized neural networks or 
deep learning to aid in antenna design [7–13]. In 2019, Budhu J. et al. from UCLA employed full-wave 
simulation in conjunction with particle swarm optimization and physical optics to design an 
inhomogeneous medium lens, which optimized the directivity of the lens antenna [7]. In 2020, Wu Q. 
from Southeast University utilized a Gaussian process regression model to predict the parameters 
and gain of a microstrip antenna. They established single-output, symmetric, and asymmetric multi-
output Gaussian process regression models to achieve single-frequency band, broadband, and multi-
band microstrip antennas [8]. In 2020, Yuan L. and colleagues from the University of Electronic 
Science and Technology of China connected reverse and forward neural networks in series to predict 
the structural parameters of super-surface elements with specific transmission amplitude. They used 
transfer function technology to fit the discrete electromagnetic response in this network, but this 
introduced additional errors [9]. Subsequently, the team used a multi-branch reverse neural network 
to optimize the pattern. To address the non-uniqueness of electromagnetic problems, they employed 
data classification technology to classify the training samples [10]. However, for pencil beam 
distribution antennas, it is necessary to consider multiple performance indicators simultaneously. 
Therefore, the machine learning method for achieving multi-objectives has also gained widespread 
attention. In 2018, Xiao L.Y. and colleagues from Xiamen University developed three parallel and 
independent forward neural networks to predict the electromagnetic parameters of Fabry-Perot 
Resonant Cave Antenna. They established the mapping relationship between multiple support vector 
machine models and the order of transfer function, which preliminarily proved its feasibility [11]. In 
2021, the team utilized a reverse neural network to predict the structural parameters of a multimode 
resonant antenna that meets specific performance indicators. The network comprises of three reverse 
networks. It was found that the multi-objective evaluation by the extreme learning machine may not 
yield the optimal result [12]. In 2021, Naseri P. from the University of Toronto, Canada, used a 
forward neural network to learn the mapping relationship between the structure, phase, and 
amplitude of multi-layer super-surface elements. To address the challenge of representing high-
dimensional structural data, a variational autoencoder was employed to fit the data to a specific 
distribution. The resulting distribution was then fed into a forward neural network to effectively 
restore the structural parameters by decoding it [13]. 

In summary, this research proposes a solution to the issues of excessive data demand and 
difficulty in describing the optimization target when solving complex electromagnetic problems. The 
approach involves using a reverse neural network as the main component, along with multiple 
forward neural networks to provide prior knowledge related to beam distribution. Additionally, 
equations or related parameters are defined to simplify the electromagnetic response of the 
optimization target, enabling the realization of the all-dielectric lens antenna multi-index 
optimization algorithm and antenna structure parameter inversion when the pencil beam is 
distributed. 

2.2. Quantification of Uncertainties in Architectural Performance Bottlenecks of Microwave Radiometers and 
Dual-Electro-Thermal Blackbody Calibration Sources 
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The sensitivity of microwave radiation method is affected by the state fluctuation and additional 
error of each unit in the system, which in turn affects the accuracy of temperature measurement. 
Research on the structure of microwave radiation meters has been ongoing since 1974, with scholars 
both domestically and internationally contributing. Relevant research indicates that the temperature 
measurement performance of full-power and Dick-type radiometers has encountered bottlenecks 
[14,15]. In recent years, our team and other scholars have begun to research related radiometer 
architecture [16–19]. The architecture’s sensitivity can be disregarded when in equilibrium. However, 
the correlation radiometer remains susceptible to gain fluctuations during actual use, which can 
degrade its sensitivity. Additionally, the zero-drift issue can also impact the radiometer’s 
measurement accuracy. In 2023, Hu A.Y. and colleagues from Beihang University proposed a 
coherent radiometer structure. The structure is based on the principle of circumferential uniform 
polyphase modulation. This structure eliminates the influence of zero drift and reduces the impact 
of gain fluctuation on sensitivity [19]. 

The accurate diagnosis of early skin lesions requires precise temperature measurements. 
However, the internal calibration scheme that the system uses, which only involves cold/hot noise 
sources, is inadequate. Therefore, it is necessary to research a blackbody calibration source with high 
emissivity and temperature uniformity for external calibration correction. Currently, blackbody 
calibration sources mainly come in two structural forms: coated cone array type and coated cavity 
type. Coated cone array calibration sources have gained popularity due to their compact structure. 
Researchers from the National Institute of Standards and Technology in the United States and the 
University of Berne in Switzerland have found that the brightness temperature of a calibration source 
radiation is determined by the temperature and emissivity performance of its coating. The calibration 
accuracy cannot be greatly improved due to the lack of established benchmarks and transmission 
standards for microwave brightness temperature. It is impossible to accurately trace the uncertainty 
of transmitting the brightness temperature actually measured by the radiometer [20,21]. In recent 
years, scholars, including our team, have been actively studying and constructing quantitative 
modeling methods, including complex radiation targets and near-field receiving antennas [22–25]. In 
2017, Schöder and colleagues from the University of Bern used far-field reciprocity to calculate the 
local absorption rate and overall reflectivity of the radiator in an inverse scattering model. They 
combined this with thermal analysis to calculate the temperature distribution of the radiator and 
proposed a directional radiation brightness temperature model for analyzing it [22]. The report 
suggests that researchers have analyzed and optimized radiators by considering overall radiation 
brightness temperature, rather than just emissivity and temperature separately. It also highlights 
important development trends. In 2021, Virone et al. from the Italian Institute of Electronic 
Information and Telecommunications modelled the radiation brightness temperature of the cone 
array calibration source and the transmission brightness temperature to the antenna from the 
perspective of circuit equivalence [23]. This report presents a method for weighting the directional 
radiation brightness temperature of a calibration source based on the antenna far-field pattern. It also 
includes the contribution of ambient brightness temperature based on specular reflection and diffuse 
reflection coefficients, and obtains the equivalent noise temperature of the antenna port. In 2022, Jin 
M. and colleagues from Beijing University of Chemical Technology proposed a cone array calibration 
source structure to optimize the inner cone curve with a method of thinning the top coating and 
thickening the bottom coating, which can improve the broadband temperature gradient and 
absorption performance. The overall directional radiation brightness temperature showed a 
comprehensive balance between emissivity and temperature gradient [24]. 

In summary, evaluating the mechanism and numerical value of the influence on calibration 
source radiation brightness temperature in the transmission process is difficult due to factors such as 
radiation source distribution, environmental impact, antenna efficiency, and mirror loss. This 
research aims to establish a scattering model of a calibration source using forward and backward 
modeling theory combined with the finite element method. The study will explore the boundary of 
the ability to take into account the electrical-thermal characteristics of the calibration source from the 
perspective of overall radiation brightness temperature. Additionally, the investigation will focus on 
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the influence of different antenna beams on the transmission effect of brightness temperature and 
trace back the uncertainty of transmission brightness temperature. Finally, the study will aim to 
achieve high-precision calibration source and calibration link design. 

2.3. Near-Field Temperature Contribution Weight Function Measurement of Skin Tissue and the Core 
Difficulty of Temperature Inversion Technology 

When microwave radiation method is used to measure the temperature of human tissues 
(organs) in near-field, the radiation brightness temperature received by antenna is the average 
brightness temperature weighted by the weight function W at the entrance of antenna in volume V. 
When measuring the layered temperature of human skin tissue, it is necessary to know that the 
number of brightness temperature is more than the number of tissue temperatures, that is, the target 
parameters are overdetermined, so a multi-band microwave radiation meter can be used, and the 
antenna temperature measured at this time can be equivalent to the matrix form of weight function 
W and layer temperature vector T. Because the energy transmission between skin tissues is nonlinear, 
and the weight function is related to the dielectric characteristics of skin tissue and the radiation 
characteristics of temperature measuring antenna near-field, so it is difficult to measure the weight 
function directly. Therefore, it is necessary to use inversion algorithm to solve the matrix in order to 
obtain the layer temperature vector T [26–30]. In 2015, He F. and colleagues of Huazhong University 
of Science and Technology measured water with temperature gradient by using Dicke radiometer in 
C-band. In order to invert the water temperature of each layer by using the measured value of single 
frequency band, multiple measuring angles were used as auxiliary parameters to simulate multi-
band temperature measurement [28]. In 2019, Qian P.C. and colleagues of Westmead Hospital in 
Australia simplified the solution of temperature distribution and weighted function inversion to the 
solution of overdetermined linear equations, and then added the numerical simulation in the 
anatomically realistic baby head model to quickly obtain the temperature distribution in the brain 
from the measured values obtained by multi-band microwave radiation meter. The algorithm can 
also be used for error analysis of microwave radiation measurement technology, which provides a 
basis for non-invasive body temperature monitoring [29]. Subsequently, the research teams from the 
University of Colorado, Tromso University and Huazhong University of Science and Technology 
adopted the least square method, model fitting method, Monte Carlo method and other inversion 
algorithms [30–32], but the results were quite different. Our team also put forward a neural network 
detection model optimized by evolutionary algorithm, but the result of inversion is still 
unsatisfactory [31]. 

The research above indicates that the accuracy of weight function calculation is closely linked to 
the near-field radiation pattern, size, measuring distance, and angle of the temperature measuring 
antenna when measuring skin tissue temperature under near-field conditions. Additionally, changes 
in the dielectric characteristics of human tissue can also affect the weight function, leading to further 
deterioration in inversion accuracy [33–35]. Furthermore, the total radiation power received by the 
antenna is determined by the combined radiation power of the environment, clothing, and skin 
tissues. The variation parameters are numerous, which greatly limits the accuracy of inverting the 
internal temperature of the human body [36,37]. In summary, the accuracy of temperature 
measurement using the microwave radiation method is closely linked to the near-field radiation 
characteristics of the antenna, the uncertainty of calibration link brightness temperature, and the 
temperature contribution weight of the inversion algorithm [38–40]. Currently, there is no mature or 
perfect scheme available, particularly as the human tissue model and inversion method require 
further study. Given the industry’s increasing focus on the application and theoretical research of 
microwave radiation diagnosis technology, it is crucial to urgently investigate a layered, accurate 
temperature measurement mechanism based on the multi-band method. 

3. Research Content and Key Technologies 
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3.1. A priori Knowledge Neural Network Optimization Model Combining Multi-Node Matching with Q-
Value Constraints and Multi-Objective Function Constraints 

a) Analyze the reasons why the voltage standing wave ratio (VSWR) is limited for each structural 
segment of a temperature measuring antenna under octave conditions; improve the power 
transmission efficiency of the antenna by optimizing VSWR parameters; propose a Q-constrained 
multi-branch broadband matching method based on both Chebyshev and multi-branch matching 
theory. 

According to Chebyshev’s waveguide matching theory, the matching node order N can be 
obtained by the following equation: 𝑁 = 𝑎𝑟𝑐𝑜𝑠ℎ ቈට(ோିଵ)మோ ⋅ ఘ(ఘିଵ)మ቉ (1) 

Where 𝑅  is the impedance ratio of the input and output ports of the waveguide, 𝜌  is the 
maximum VSWR of the waveguide. According to Equation (1), if 𝑁 = 3, the maximum VSWR 𝜌 of 
the waveguide is less than 1.1 theoretically. According to Chebyshev impedance transformation 
theory: 

⎩⎪⎨
⎪⎧ 𝑍̅ଵ = ቊ𝑅 ቂ𝐵 + ቀ𝐵ଶ + ஺మோ ቁቃభమቋభమ

𝑍̅ଶ = 𝑍̅ଵ/𝐴, 𝑍̅ଷ = 𝐴ଶ𝑅𝑍̅ଵଶ𝑍ଵ = 𝑍̅ଵ𝑍଴, 𝑍ଶ = 𝑍̅ଶ𝑍଴, 𝑍ଷ = 𝑍̅ଷ𝑍଴
 (2) 

Where 𝛧ଵ , 𝛧ଶ  and 𝛧ଷ  are the characteristic impedance of each matched branch, 𝛧଴  is the 
characteristic impedance at the waveguide input port and 𝑅 is the impedance ratio of the waveguide 
input and output port. 𝐴 and 𝐵 are the polynomial related to the fractional bandwidth parameter. 

According to the equivalent principle of tuning loop, the fractional bandwidth 𝐵௡  of multi-
branch matching loop is: 𝐵௡ = ଵொ ଵ௕೙ ୱ୧୬୦ቂ భೌ೙௟௡ቀభ౳ቁቃା(భష್೙)ೌ೙ ௟௡ቀభ౳ቁ (3) 

Where 𝛤 is the reflection coefficient, 𝑄 is the quality factor. 𝑎௡  and 𝑏௡ are the tuning loop 
coefficient. 

b) Explore the limitations of manual tuning antenna optimization; adopt the optimization 
algorithm of swarm intelligence fused with neural networks; optimize the major lobe beam, side lobe, 𝑆ଵଵand transition zone simultaneously as objectives; define the constraint range of multiple sub-
objective functions; reallocate weights to improve the pointing performance of the temperature 
measurement antenna. 

By assigning different weights to each optimization objective function, the proportion of 
optimization objectives is set, and the main indicators and secondary indicators are defined. The 
definition of the objective function is shown in Equation (4): 𝐹 = 𝐹ଵ ∙ 𝜔ଵ + 𝐹ଶ ∙ 𝜔ଶ + 𝐹ଷ ∙ 𝜔ଷ + 𝐹ସ ∙ 𝜔ସ (4) 

Where 𝐹 is the total fitness function value of the optimization objective. 𝐹ଵ, 𝐹ଶ, 𝐹ଷ, 𝐹ସ are 
the fitness function values of the major lobe beam, transition zone, side lobe and S11 respectively. 𝜔ଵ, 𝜔ଶ, 𝜔ଷ, 𝜔ସ are the weights of the optimization objectives. 

The expressions defined by 𝐹ଵ, 𝐹ଶ, 𝐹ଷ, 𝐹ସ are shown in Equation (5) as follows: 

⎩⎪⎨
⎪⎧𝑚𝑎𝑖𝑛 𝑙𝑜𝑏𝑒: 𝐹ଵ = ∑ ห𝐸௚௜(𝜑ா) − 𝐸௥௜(𝜑ா)ห + ∑ ห𝐸௚௜(𝜑ு) − 𝐸௥௜(𝜑ு)ห(𝑎)௠௔௫ ௙௥௘௤௜ୀ௠௜௡ ௙௥௘௤௠௔௫ ௙௥௘௤௜ୀ௠௜௡ ௙௥௘௤𝑡𝑟𝑎𝑛𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑟𝑒𝑔𝑖𝑜𝑛: 𝐹ଶ = ∑ ห𝑇ா௜଴.ଽ − 𝑇ா௜଴.ଷห +௠௔௫ ௙௥௘௤௜ୀ௠௜௡ ௙௥௘௤ ห𝑇ு௜଴.ଽ − 𝑇ு௜଴.ଷห (𝑏)𝑆𝐿𝐿 𝑔𝑜𝑎𝑙: 𝐹ଷ = ∑ ൫𝑆𝐿𝐿௥௜ − 𝑆𝐿𝐿௚௜൯௠௔௫ ௙௥௘௤௜ୀ௠௜௡ ௙௥௘௤  (𝑐)𝑆ଵଵ 𝑔𝑜𝑎𝑙: 𝐹ସ = ∑ ൫𝑆௥௜ − 𝑆௚௜൯௠௔௫ ௙௥௘௤௜ୀ௠௜௡ ௙௥௘௤  (𝑑) (5) 
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Where 𝑔 is the target value, 𝑟 is the actual value, and 𝑖 is the 𝑖th frequency point. For the 
major lobe beam, the optimization goal is to obtain a pencil beam distribution within the desired 
range. For the transition zone, 𝑇ா௜଴.ଽ, 𝑇ா௜଴.ଷ and 𝑇ு௜଴.ଽ, 𝑇ு௜଴.ଷ represent the angles corresponding to 90% 
and 30% of the maximum electromagnetic response on the E-plane and H-plane, respectively. The 
smaller the difference between the angles, the narrower the transition zone. For the side lobes, the 
goal is to minimize the difference between the optimized target 𝑆𝐿𝐿௚ and 𝑆𝐿𝐿௥ actual value. For the 
parameters, the optimization goal is to ensure that all S11 maximum values within the operating 
frequency band are less than the target value. 

c) To address the issue of the antenna structure’s inverse requiring excessive data, a neural 
network model based on prior knowledge is studied. As shown in Figure 2, multiple sub-forward 
neural networks (forward neural networks, FNN) are taken as the structural parameter of antenna 
with prior knowledge inversion and multi-indexes, and finally a multi-index optimization system 
with extremely narrow pencil beam temperature measuring antenna is constructed. 

 

Figure 2. Neural network model based on prior knowledge in this research. 

The input of INN is electromagnetic response: 𝑹௜ᇱ =[𝑟ଵଵ, 𝑟ଶଵ,  𝑟ଷଵ, ⋯ , 𝑟௎ଵ,  𝑟ଵଶ, 𝑟ଶଶ, 𝑟ଷଶ, ⋯ , 𝑟௏ଶ, 𝑟ଵଷ, 𝑟ଶଷ, 𝑟ଷଷ, ⋯ , 𝑟ௐଷ , 𝑟ଵସ, 𝑟ଶସ, 𝑟ଷସ, ⋯ , 𝑟௑ସ ], where 𝑟௡ଵ represents the major lobe 
beam, 𝑟௡ଶ represents the transition zone, and 𝑟௡ଷ represents the side lobes, 𝑟௡ସ represents the |𝑆ଵଵ|. [𝑈, 𝑉, 𝑊, 𝑋] are the number of discrete points. The output is structural parameters written as 𝑷௜ᇱ =[𝑝ଵ,  𝑝ଶ,  𝑝ଷ, ⋯ ,  𝑝ே], where 𝑁 is the number of structural parameters. The input of FNN is structural 
parameters, and the output is electromagnetic response. There are three hidden layers in total. The 
FNN corresponding to each optimization objective has two hidden layers. The output layer’s 
activation function is Tanh, while the hidden layer’s activation function is Relu. The inputs of the 
three sub-FNN are all the same set of structural parameters 𝑷௜ = [𝑝ଵ, 𝑝ଶ, 𝑝ଷ, ⋯ , 𝑝ே]். The inputs 𝑹௜ =[𝑟ଵ, 𝑟ଶ, 𝑟ଷ, ⋯ , 𝑟ெ]்of the three sub-FNNs are the same set of structural parameters. The outputs of the 
three sub-FNNs are different, namely the major lobe beam, transition zone, side lobe and |𝑆ଵଵ|. The 
loss function uses the MSE function to train the FNN to make the predicted electromagnetic response 
approach the real electromagnetic response. 

3.2. Channel Phase Shifting Correction Algorithm and Calibration Link Uncertainty Calibration for 
Measuring Radiation Brightness Temperature Errors 
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a) Construct an error model of microwave radiation meter architecture with key indicators such 
as sensitivity and accuracy; analyze the expression of the influence mechanism of phase, amplitude, 
offset and other errors on radiometer output data; design a periodic phase-shifting error correction 
algorithm based on uniform polar circle in combination with phase modulation circuit to correct the 
detected output data. 

To calculate the sensitivity of a phase modulation correlation radiometer, it is necessary to 
determine the output RMSF and the change in output mean value caused by the temperature 
variation of the target being measured. When SNR equals to 1, the sensitivity expression is: ∆T = ට ೞ்೤ೞమ ൫ଵାఙಸమ൯஻ఛ + బ்మఙಸమ൫ఈାఉఙഇమ൯ே  (6) 

Where , 𝛼 = ଵே ∑ 𝑠𝑖𝑛ସ 𝜃௜଴ + 𝑐𝑜𝑠ସ 𝜃௜଴ே௜ୀଵ ， 𝛽 = ଶே ∑ 𝑐𝑜𝑠ଶ 𝜃௜଴ 𝑠𝑖𝑛ଶ 𝜃௜଴ே௜ୀଵ , 𝐵  is the equivalent 
bandwidth of the RF front end, 𝜏 is the integration time of the system, 𝜎ଶீ and 𝜎ఏଶ are the root mean 
square of the gain and phase fluctuations, respectively. Equation (6) reveals that the sensitivity is 
affected by the gain fluctuations of the amplifier, the phase errors of the phase modulator, and the 
temperature difference between the target under test and the reference load. When the correlation 
radiometer operates in equilibrium, that is, 𝑇଴ = 0, the sensitivity expression is the same as that of an 
ideal correlation radiometer. When the radiometer operates in a non-equilibrium state, that is, 𝑇଴ ≠0, the gain fluctuations of the amplifier have a significant impact on the sensitivity. In the case of 
relatively ∆𝜃 small phase modulation errors, when 𝛼 + 𝛽𝜎ఏଶ ≈ 𝛼, the impact of phase modulation 
errors on this radiometer is not significant. 

To determine the phase error of the radiometer, the demodulated output data is corrected using 
a periodic phase modulation method. The radiometer 𝜃r input end is modulated by a phase shift in 
steps. At each phase point, the sampled data of the 𝑁 group output channels are collected and the 
average is calculated through digital integration. After obtaining the original sampled data of the 
output channels, the quadrant in which they belong is determined based on the sign of their symbols. 
First, the sum of squares of the sampled data of the output channels is calculated, then the square 
root is taken to obtain the demodulated voltage amplitude. Finally, under a fixed phase shift, the 
radiometer demodulated voltage amplitude is calculated, collecting the voltage amplitude and the 
corresponding phase difference values. The ideal radiometer I/Q channel output data is calculated 
based on the ideal situation data, and the measured output data of the I/Q channels are linearly fitted 
separately with the ideal situation data as reference. By the linear fitting method, the intercept and 
slope parameters are obtained, and the correction equations for the I/Q channel data can be derived 
as follows: 𝑉ூᇱ = 𝐴 ∙ (𝑐𝑜𝑠𝜃 ∙ 𝑐𝑜𝑠𝜑௘௥௥௢௥തതതതതതതത − 𝑠𝑖𝑛𝜃 ∙ 𝑠𝑖𝑛𝜑௘௥௥௢௥തതതതതതതത) (7) 𝑉ொᇱ = 𝐴 ∙ (𝑠𝑖𝑛𝜃 ∙ 𝑐𝑜𝑠𝜑௘௥௥௢௥തതതതതതതത + 𝑐𝑜𝑠𝜃 ∙ 𝑠𝑖𝑛𝜑௘௥௥௢௥തതതതതതതത) (8) 

Where 𝑉ூᇱ and𝑉ொᇱ  are the corrected output voltage values of the I/Q channels, 𝜃 is the phase 
modulation step size, 𝐴 is the amplitude coefficient, 𝑖 is the phase scanning times, and 𝜑௘௥௥௢௥തതതതതതതത is the 
actual mean phase error of the radiometer, as shown in Equation (9). 

𝜑௘௥௥௢௥തതതതതതതത = ∑ ௖௢௦షభቌ ೇ಺೔ᇲටೇ಺೔ᇲమశೇೂ೔ᇲమ ቍିఏ೔బಿ
ே  (9) 

b) A finite element method based on forward and backward modeling theory is proposed to 
calibrate the scattering model of the calibration source, the control strategy of the electro-thermal 
performance of the calibration source is studied, the structure of the calibration source is improved, 
the influence of antenna beam on the transmission effect of the brightness temperature is analyzed 
from the perspective of the overall directional radiation temperature, the uncertainty of the 
calibration link is traced back, and the error of the transmission brightness temperature is corrected. 

Among them, the radiation brightness temperature of the coated array calibration source can be 
obtained by calculating the directional radiation brightness temperature model, which is based on 
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reciprocity under the condition of far-field, and can calculate the radiation brightness temperature 
perpendicular to the front direction of the calibration source. Usually, the calculation of directional 
brightness temperature is the cross integration along the three-dimensional direction, as shown in 
Equation (10). However, for the coating array type calibration source, the temperature distribution 
and local absorption distribution inside the cone coating mainly vary along the direction. Therefore, 
the process of directional brightness temperature calculation can be simplified to one-dimensional 
integration, as shown in Equation (11). 𝐵𝑇 = (1 − 𝑟) ׬ ׬ ׬ 𝑃௔௕௦(𝑥, 𝑦, 𝑧)௓௒௑ 𝑇(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑟𝑇௦ (10) 𝐵𝑇 = (1 − 𝑟) ׬ 𝑃௔௕௦(𝑧)௭ 𝑇(𝑧)𝑑𝑧 + 𝑟𝑇௕ (11) 

Where, 𝐵𝑇 is the radiation brightness temperature perpendicular to the array surface, 𝑟 is the 
total reflectance of the cone array, 𝑃௔௕௦(𝑧) is the normalized absorption ratio inside the cone coating 
at height, 𝑇(𝑧) is the average temperature inside the cone coating at height 𝑧, 𝑇௕  is the ambient 
temperature, and 𝑇௕௔௦௘ is the set reference temperature of the cone calibration source. Explore the 
boundary of the electro-thermal dual consideration characteristics of the calibration source, that is, 
approaching 𝑇௕௔௦௘. It can be seen from Equation (11) that the radiation brightness temperature is 
obtained by coupling the results of electromagnetic analysis and temperature analysis through 
integration. The scene of directional radiation brightness temperature calculation for the calibration 
source is shown in Figure 3. 

 

Figure 3. Schematic diagram of the calculation of the brightness temperature of the coating array 
calibration source directional radiation scene. 

As shown in the above figure, when the finite cone array calibration source is operating in an 
open scene, assuming that the total power passing through the closed surface 𝐴surrounding the 
entire integration area is averaged as: − ∮ ଵଶ஺ Reൣ𝐸ሬ⃗ (𝑟஺)× 𝐻ሬሬ⃗ ∗(𝑟஺)൧ ∙ 𝑑𝑎⃗ = 𝑃௜௡௖ − 𝑃௦௖௔ − 𝑃௟௘௔௞ (12) 

Where, 𝐸ሬ⃗ (𝑟஺) , 𝐻∗ሬሬሬሬ⃗ (𝑟஺)  are the electromagnetic field distribution on the closed surface 𝐴 
irradiated by the antenna (single-mode excitation), 𝑎⃗ is the normal vector pointing outward of the 
closed surface, 𝑃௜௡௖ is the incident power on the antenna port cross-section, 𝑃௦௖௔ is the backscattered 
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power on the antenna port cross-section, 𝑃௟௘௔௞ is the total leakage to the surrounding space in the 
open scene, including antenna leakage and leakage after scattering by the calibration source. 

When the antenna is excited by a single mode, the absorbed power 𝑃௔௕௦(𝑟௠ᇱ ) in the target coating 
is: 𝑃௔௕௦(𝑟௠ᇱ ) = ∑ ଵଶఈᇲ 𝜎ห𝐸ఈᇲ் (𝑟௠ᇱ )หଶ 𝛼ᇱ ∈ 𝑥, 𝑦, 𝑧 (13) 

Where, 𝐸ఈᇲ்  (𝑟௠ᇱ ) is the polarized absorption electric field in the volume element of the 𝑚-𝑡ℎ 
calibration source coating when the antenna 𝑑𝑣 is excited by 𝛼ᇱ single mode. According to Equation 
(13), the key to obtaining the transfer brightness temperature is to calculate the local absorption 
power 𝑃௔௕௦(𝑟௠ᇱ ) within each volume element of the calibration source coating. 

The expression for the transfer brightness temperature received by the near-field antenna is 𝐵𝑇 = ௉೔೙೎ି௉ೞ೎ೌି௉೗೐ೌೖ∑ ௉ೌ್ೞ൫௥⃗೘ᇲ ൯ௗ௩೘ ∙ ଵ௉బ ∑ 𝑇(𝑟௠ᇱ )𝑃௔௕௦(𝑟௠ᇱ )𝑑𝑣௠  𝑚 ∈ 1 ⋯ 𝑀 (14) 

Where 𝑇(𝑟௠ᇱ ) is the local temperature within the volume element, 𝑃଴ is the 𝑆unit mode field 
power passing through the antenna port cross section under single-mode transmission. According to 
Equation (14), the transfer brightness temperature at the antenna port in the near-field calibration 
scenario is: the absorption power in the calibration source coating integrated after being weighted by 
the temperature distribution at the corresponding local position. 

3.3. Incoherent Skin Tissue Radiation Forward Model and Objective Function Constrained Deep Learning 
Combined Inversion Method 

a) Clarify the relationship between human skin tissue radiation brightness temperature and 
weight function; research the temperature distribution of human epidermis, dermis, subcutaneous 
tissue and muscle layer by using C, X and Ku frequency bands; obtain the mathematical 
representation of skin tissue heat transfer based on incoherent method; derive the estimation 
equation of apparent brightness temperature when human body transmissivity is 0. 

The radiation brightness temperature 𝑇஻  of skin tissue is a weighted contribution of the 
temperatures of each layer, which can be expressed as: 𝑇஻ = ׬ 𝑊(𝑧, 𝑓)𝑇(𝑧)𝑑𝑧 ௏  (15) 

Where, 𝑇(𝑧) and 𝑊(𝑟, 𝑓) are the physical temperature and weighting function of each layer of 
tissue, and 𝑧 is the depth at which the measured tissue is located below the surface. 

In the absence of scattering, the weighting function 𝑊(𝑧) can be expressed as: 𝑊(𝑧) = ௗ்ௗ௭ = 𝛼(𝑧) 𝑠𝑒𝑐 𝜃 ∙ 𝑒𝑥𝑝 ቀ− ׬ 𝑠𝑒𝑐 𝜃 ∙ 𝛼(𝑧ᇱ)௓ᇲୀௗ௓ᇲୀ଴ 𝑑𝑧ᇱቁ (16) 

Where 𝑇 is the transmissivity, 𝛼 is the absorption coefficient, and 𝜃 is the angle of incidence. 
It can be seen from Equations (15) and (16) that brightness temperature 𝑇஻ is the sum of the 

vertical antenna aperture weighted skin tissue temperatures, and the weighting function directly 
affects the 𝑇஻ observation results. Therefore, in order to accurately describe the relationship between 
brightness temperature and the physical temperatures of various layers of skin tissue, it is necessary 
to establish a radiative transfer forward model to numerically calculate the weighting function. 

Considering the scattering, the forward model of radiation transmission of incoherent skin tissue 
is established, as shown in Figure 4. 
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(a) (b) 

Figure 4. (a) Incoherent model of microwave thermal radiation between human skin tissues; (b) 
microwave thermal radiation model of human body surface wearing clothes. 

As shown in Figure 4(a), the microwave thermal radiation model between skin tissues includes 
epidermis layer, dermis layer, subcutaneous tissue layer and muscle layer. Considering the multiple 
reflections in the radiation transmission process of human tissues, the brightness temperature 
contribution of human tissues is divided into two parts: upward and downward. It is assumed that 
the brightness temperature emitted upward by the epidermis layer is 𝑇ଵ௨, the brightness temperature 
emitted downward by the epidermis layer is 𝑇ଵௗ, the brightness temperature emitted upward by the 
dermis layer is 𝑇ଶ௨, the brightness temperature emitted downward by the dermis layer is 𝑇ଶௗ, the 
brightness temperature emitted upward by the subcutaneous tissue layer is 𝑇ଷ௨ , the brightness 
temperature emitted downward by the subcutaneous tissue layer is 𝑇ଷௗ , and the brightness 
temperature emitted upward by the muscle layer is 𝑇ସ௨ . Therefore, the total emitted brightness 
temperature 𝑇஺௉ of the skin surface layer can be expressed as: 𝑇஺௉ =  𝑇ଵ௨ + 𝑇ଵௗ + 𝑇ଶ௨ + 𝑇ଶௗ + 𝑇ଷ௨ + 𝑇ଷௗ + 𝑇ସ௨ (17) 

Assume that the brightness temperatures emitted by the epidermis layer, dermis layer, 
subcutaneous tissue layer, and muscle layer are 𝑇ଵ, 𝑇ଶ, 𝑇ଷ and 𝑇ସ, respectively; the tissue loss factors 
of each layer are 𝐿ଵ, 𝐿ଶ, 𝐿ଷ and 𝐿ସ; the reflectivity at the boundaries of each tissue layer are 𝛤ଵ, 𝛤ଶ 
and 𝛤ଷ respectively. Therefore, the upward and downward emitted brightness temperatures of each 
tissue layer can be expressed as: 𝑇ଵ௨ = ଵି௰భଵି೨భ೨మಽభమ ׬  ௗభ଴ 𝑘௔భ𝑇௘௣௜(𝑧) 𝑠𝑒𝑐 𝜃ଵ 𝑒ି ׬  ೥బ ௞ೌభ ௦௘௖ ఏభௗక𝑑𝑧  (18) 

𝑇ଵௗ = ௰మ௅భ ଵି௰భଵି೨భ೨మಽభమ ׬  ௗభ଴ 𝑘௔భ𝑇௘௣௜(𝑧) 𝑠𝑒𝑐 𝜃ଵ 𝑒ି ׬  ೏భ೥ ௞ೌభ ೞ೐೎ ഇభௗక𝑑𝑧 (19) 

𝑇ଶ௨ = ଵ௅భ ଵି௰భଵି೨భ೨మಽభమ
ଵି௰మଵି೨మ೨యಽమమ ׬  ௗభାௗమௗభ 𝑘௔మ𝑇ௗ௘௥(𝑧) 𝑠𝑒𝑐 𝜃ଶ 𝑒ି ׬  ೥೏భ ௞ೌమ ௦௘௖ ఏమௗక𝑑𝑧 (20) 

𝑇ଶௗ = ௰య௅మ ଵ௅భ ଵି௰భଵି೨భ೨మಽభమ
ଵି௰మଵି೨మ೨యಽమమ ׬  ௗభାௗమௗభ 𝑘௔మ𝑇ௗ௘௥(𝑧) 𝑠𝑒𝑐 𝜃ଶ 𝑒ି ׬  ೏భశ೏మ೥ ௞ೌమ ௦௘௖ ఏమௗక𝑑𝑧 (21) 

𝑇ଷ௨ = ଵ௅భ௅మ ଵି௰భଵି೨భ೨మಽభమ
ଵି௰మଵି೨మ೨యಽమమ

ଵି௰యଵି೨య೨రಽయమ ׬  ௗభାௗమାௗయௗభାௗమ 𝑘௔య𝑇௦௨௕(𝑧) 𝑠𝑒𝑐 𝜃ଷ ∙ 𝑒ି ׬  ೥೏భశ೏మ ௞ೌయ ௦௘௖ ఏయௗక𝑑𝑧 (22) 

𝑇ଷௗ = ௰ర௅య ଵ௅భ௅మ ଵି௰భଵି೨భ೨మಽభమ
ଵି௰మଵି೨మ೨యಽమమ

ଵି௰యଵି೨య೨రಽయమ ׬  ௗభାௗమାௗయௗభାௗమ 𝑘௔య𝑇௦௨௕(𝑧) 𝑠𝑒𝑐 𝜃ଷ ∙ 𝑒ି ׬  ೏భశ೏మశ೏య೥ ௞ೌయௗక𝑑𝑧 (23) 

𝑇ସ௨ = ଵ௅భ௅మ௅య ଵି௰భଵି೨భ೨మಽభమ
ଵି௰మଵି೨మ೨యಽమమ

ଵି௰యଵି೨య೨రಽయమ
ଵି௰రଵି೨ర೨ఱಽరమ ׬  ௗభାௗమାௗయାௗరௗభାௗమାௗయ 𝑘௔ర𝑇௠௨௦(𝑧) ∙ 𝑒ି ׬  ೥೏భశ೏మశ೏య ௞ೌరௗక𝑑𝑧 (24) 

Where, 𝑘௔೔ is the absorption coefficient of each layer of organization. It can be represented as 𝛼௜ by the attenuation constant 𝑘௔೔ = 2𝛼௜. 𝑇௘௣௜, 𝑇ௗ௘௥, 𝑇௦௨௕, 𝑇௠௨௦ are the physical temperatures of the 
epidermis, dermis, subcutaneous tissue layer, and muscle layer, respectively. The specific values can 
be calculated using the Pennes bioheat transfer equation: 
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𝜌𝑐 డ்డ௧ = 𝑘𝛻ଶ𝑇 + 𝜛௕𝜌௕𝑐௕(𝑇௔ − 𝑇) + 𝑞௠௘௧ (25) 

Where, 𝜌, 𝑐, 𝑘 are the skin tissue density, specific heat capacity, and thermal conductivity, 𝜛௕, 𝜌௕ , 𝑐௕  are the blood perfusion rate, density, and specific heat capacity, 𝑇௔  is the blood arterial 
temperature, 𝑇 is the skin tissue layer temperature, and 𝑞௠௘௧ is the tissue metabolic heat. 

As shown in Figure 4(b), the apparent brightness temperature when the human body 
transmissivity equals 0 can be expressed as: 𝑇஺௉ுௌ = [𝜀୦𝑇௛ + 𝑇௦ᇱ𝜌௛]𝑡௖ + 𝜀ୡ𝑇௖ + 𝜌ୡ𝑇௦ = [𝜀୦𝑇௛ + (𝑇௦𝑡௖ + 𝜀ୡ𝑇௖ + 𝜌ୡ𝑇௛)𝜌௛]𝑡௖ + 𝜀ୡ𝑇௖ + 𝜌ୡ𝑇௦ (26) 

Where, 𝑇஺௉ுௌ is the skin brightness temperature of the human body, 𝜀୦ is the emissivity of the 
human body, 𝑡௖ is the transmissivity of the clothing, 𝜌ୡ is the reflectance of the clothing, 𝑇௛ is the 
physical temperature of the human body, 𝑇௖ is the physical temperature of the clothing, 𝑇௦ is the 
ambient temperature, and 𝑇௦ᇱ is the equivalent ambient temperature. 

b) Analyze the factors that affect the accuracy of temperature measurement under near-field 
condition; analyze the microwave radiation forward model of human skin tissue; calculate the 
constraint range of temperature difference between adjacent skin tissues in different areas of an 
individual driven by solving the contribution weight of brightness temperature of each layer of 
tissue; define the objective function of the penalty function correction algorithm. 

When the microwave temperature measurement system is affected by the random disturbance 
of environment and equipment, the inversion result exceeds the reasonable distribution range of skin 
tissue temperature difference, so the limit value constraint objective function of temperature 
distribution is adopted. Assuming that for the 𝑗th sample, the temperature difference between the 𝑖th and (𝑖+1)th layer of tissue is ∆𝑇௝(௜), it should satisfy ∆𝑇௠௜௡(௜) ≤ ∆𝑇௝(௜) ≤ ∆𝑇௠௔௫(௜) , which ∆𝑇௠௜௡(௜)  and ∆𝑇௠௔௫(௜) are the minimum temperature difference and maximum temperature difference between the 𝑖th and (𝑖+1)th layer of tissue. The predicted temperature difference between the ith and (𝑖+1)th layer 
of tissue is ∆T෡௝(௜). When it exceeds the [∆𝑇௠௜௡(௜) , ∆𝑇௠௔௫(௜) ] range, the inversion algorithm is corrected by 
defining an appropriate penalty function to distribute the inversion prediction values within a 
reasonable temperature range. If the definition ∆T෡௝(௜) does not exceed the temperature difference 
distribution range, the value of the penalty function is zero; if ∆T෡௝(௜) exceeds the temperature 
difference range, the value of the penalty function becomes non-zero, and with the increase of the 
deviation degree, the value of the penalty function increases according to the square trend. According 
to the relationship between the zero point of the quadratic function and the solution of the equation, 
the penalty function is defined as follows: 

𝑃(∆𝑇෠௝(௜)) = ቐ 0, ∆𝑇෠௝(௜) ∈  [∆𝑇௠௜௡, ∆𝑇௠௔௫] 𝑘 ቀ൫∆𝑇෠௝(௜)൯ଶ − (∆𝑇௠௜௡ + ∆𝑇௠௔௫)∆𝑇෠௝(௜) + ∆𝑇௠௜௡∆𝑇௠௔௫ቁ , other (27) 

Where 𝑘 is the penalty function coefficient whose value ranges less than 1. 
Equation (27) describes the predicted temperature difference penalty function between the 𝑖 

and (𝑖+1)th layers. For the prediction of multi-layer structures, the penalty function should be the 
superposition of the predicted temperature difference losses of adjacent layers, namely: 𝑃(𝑇෠௝(ଵ), 𝑇෠௝(ଶ) … 𝑇෠௝(௟)) = ∑ 𝑃(∆𝑇෠௝(௜))௟ିଵ௜ୀଵ  (28) 

Where, 𝑇෠௝(௜)(𝑖 = 1,2, … , 𝑙) are the predicted temperatures of the 𝑖th layer of tissue and 𝑙 is the 
number of layers of tissue. 

c) In order to optimize the accuracy, generalization and robustness of the inversion algorithm, a 
closed-loop high-precision forward and inversion modeling detection method for human tissue 
temperature measurement is proposed, as shown in Figure 5. Firstly, the human tissue temperature 
data set and constraint conditions are constructed by the forward model, then the human simulated 
tissue fluid, skin tissue and other samples are tested, and the clinical data are collected to verify the 
inversion algorithm. Finally, the clinical experiment is guided by the test results and evaluation 
indicators, and the mathematical and physical relationship of the forward model is improved by 
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comparing the clinical data with the simulation data, which further enhances the scientific nature of 
the method. 

 
Figure 5. Closed-loop high-precision forward and inversion modeling detection method for human 
tissue temperature measurement. 

4. Conclusion 

Based on the analysis of current research, although many researchers have extensively studied 
the architecture of microwave radiation meters and inversion algorithms, there are still several 
limitations and gaps. These include inaccuracies in temperature measurement, near-field radiation 
characteristics of the antenna, uncertainty in brightness temperature calibration, the contribution of 
skin tissue temperature to weight, and a lack of research on forward and inversion modeling to detect 
the stratified temperature of skin tissue. This research proposes a precise temperature measurement 
scheme for human skin tissue using a multi-band closed-loop forward and inversion modeling 
approach. However, there are still some key technologies that need to be urgently addressed in the 
scheme. For instance, optimizing the pencil beam radiation characteristics of the temperature 
measuring antenna by combining the quantitative model of calibration link uncertainty, and 
characterizing the relationship between the key unit parameters of the system and the temperature 
measurement performance. Focusing on constructing the accurate temperature measurement 
mechanism of human skin tissue in forward and inversion modeling and solving the influence of 
many variable parameters and nonlinear scattering of the measured object on the temperature 
measurement accuracy, so as to realize a set of early diagnosis system of human skin tissue lesions 
that meets the clinical test standards, this research aims to enhance the theoretical framework of 
microwave radiation diagnosis technology and establish a solid theoretical foundation for its 
practical implementation. 
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