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Abstract: Partial Information Decompositions (PIDs) aim to categorize how a set of source variables provide

information about a target variable redundantly, uniquely, or synergetically. The original proposal for such an

analysis used a lattice-based approach and gained significant attention. However, finding a suitable underlying

decomposition measure is still an open research question, even at an arbitrary number of discrete random variables.

This work proposes a solution to this case with a non-negative PID that satisfies an inclusion-exclusion relation

for any f-information measure. The decomposition is constructed from a pointwise perspective of the target

variable to take advantage of the equivalence between the Blackwell and zonogon order in this setting. The

zonogons correspond to the Neyman-Pearson region for an indicator variable of one target state and f-information

is the expected value of quantifying its boundary. We prove that the decomposition satisfies the axioms of the

original decomposition framework and guarantees non-negative partial information results. We highlight that our

decomposition behaves differently depending on the used information measure, which can be utilized for different

applications. We additionally show how our proposal can be used to obtain a non-negative decomposition of

Rényi-information at a transformed inclusion-exclusion relation, and for tracing partial information flows through

Markov chains.

Keywords: partial information decomposition; redundancy; synergy; information flow analysis; f-information;

rényi-information

1. Introduction

From computer science to neuroscience, we can find the following problem: We would like
to know information about a random variable T, called the target, that we cannot observe di-
rectly. However, we can obtain information about the target indirectly from another set of variables
V = {V1, ..., Vn}. We can use information measures to quantify how much information any set of
variables provides about the target. When doing so, we can identify the concept of redundancy: For
example, if we have two identical variables V1 = V2, then we can use one variable to predict the
other and thus anything that this other variable can predict. Similarly, we can identify the concept of
synergy: For example, if we have two independent variables and a target that corresponds to their XOR
operation T = (V1 XOR V2), then both variables provide no advantage on their own for predicting
the state of T, yet their combination fully determines it. Williams and Beer [1] suggested that it is
possible to characterize information as visualized by the Venn diagram for two variables V = {V1, V2}
in Figure 1a. This decomposition attributes the total information about the target to being redundant,
synergetic, or unique to a particular variable. As indicated in Figure 1a by I(·, T), we can quantify three
of the areas using information measures. However, this is insufficient to determine the four partial
areas that represent the individual contributions. This causes the necessity to extend an information
measure to either quantify the amount of redundancy or synergy between a set of variables.

Williams and Beer [1] first proposed a framework for Partial Information Decompositions (PIDs)
and found favor by the community [2]. However, the proposed measure of redundancy was criticized
for not distinguishing ”the same information and the same amount of information“ [3–6]. The proposal
of Williams and Beer [1] focused specifically on mutual information. This work additionally studies
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the decomposition of any f -information or Rényi-information at discrete random variables. They have
significance, among others, in parameter estimations, high-dimensional statistics, hypothesis testing,
channel coding, data compression and privacy analyses [7,8].
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Figure 1: Partial information decomposition representations at two variables V = {V1,V2}. (a) Visualization of the
desired intuition for multivariate information as Venn diagram. (b) Representation as redundancy lattice, where I∩
quantifies the information that is contained in all of its provided variables (inside their intersection). The ordering
represents the expected subset relation of redundancy. (c) Representation as synergy lattice, where I∪ quantifies the
information that is contained in neither of its provided variables (outside their union). (d) When having two partial
information decompositions with respect to the same target variable, we can study how the partial information of
one decomposition propagates into the next. We refer to this as information flow analysis of a Markov chain such as
T → (A1, A2)→ (B1, B2).

1.1 Related work

Most of the literature focuses on the decomposition of mutual information. Here, many alternative
measures have been proposed but cannot fully replace the original measure of Williams and Beer [1]
since they do not provide non-negative results for any |V|: The special case of bivariate partial informa-
tion decompositions (|V| = 2) has been well studied and several non-negative decompositions for the
framework of Williams and Beer [1] are known [9, 5, 10, 11, 12]. However, each of these decompositions
provides negative partial information for |V|> 2. Further research [13, 14, 15] specifically aimed to define
decompositions of mutual information for an arbitrary number of observable variables, but similarly
obtain negative partial contributions and the resulting difficulty of interpreting their results. Griffith
et al. [3] studied the decomposition of zero-error information and obtained negative partial contributions.
Kolchinsky [16] proposed a decomposition framework for an arbitrary number of observable variables
that is applicable beyond Shannon information theory, however, where the partial contributions do not
sum to the total amount.

In this work, we propose a decomposition measure for replacing the one presented by Williams and
Beer [1] while maintaining its desired properties. To achieve this, we combine several concepts from the
literature: We use the Blackwell order, a preorder of information channels, for the decomposition and
for deriving its operational interpretation, similar to Bertschinger et al. [9] and Kolchinsky [16]. We use
its special case for binary input channels, the zonogon order studied by Bertschinger and Rauh [17], to
achieve non-negativity at an arbitrary number of variables and provide it with a practical meaning by
highlighting its equivalence to the Neyman-Pearson (decision) region. To utilize this special case for
a general decomposition, we use the concept of a target pointwise decomposition as demonstrated by
Williams and Beer [1] and related to Lizier et al. [18], Finn and Lizier [13], and Ince [14]. Specifically, we
use Neyman-Pearson regions of an indicator variable for each target state to define distinct information
and quantify pointwise information from its boundary. This allows for the non-negative decomposition
of an arbitrary number of variables, where the source and target variables can have an arbitrary finite
number of states. Finally, we apply the concepts from measuring on lattices, discussed by Knuth [19], to
transform a non-negative decomposition with inclusion-exclusion relation from one information measure
to another while maintaining the decomposition properties.

Remark. We use the term ’target pointwise’ or simply ’pointwise’ within this work to refer to the analysis of
each target state individually. This differs from [18, 13, 14], who use the latter term for the analysis of all joint
sources-target realizations.
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Figure 1. Partial information decomposition representations at two variables V = {V1, V2}. (a)
Visualization of the desired intuition for multivariate information as Venn diagram. (b) Representation
as redundancy lattice, where I∩ quantifies the information that is contained in all of its provided
variables (inside their intersection). The ordering represents the expected subset relation of redundancy.
(c) Representation as synergy lattice, where I∪ quantifies the information that is contained in neither of
its provided variables (outside their union). (d) When having two partial information decompositions
with respect to the same target variable, we can study how the partial information of one decomposition
propagates into the next. We refer to this as information flow analysis of a Markov chain such as
T → (A1, A2) → (B1, B2).

1.1. Related Work

Most of the literature focuses on the decomposition of mutual information. Here, many alternative
measures have been proposed but cannot fully replace the original measure of Williams and Beer [1]
since they do not provide non-negative results for any |V|: The special case of bivariate partial
information decompositions (|V| = 2) has been well studied and several non-negative decompositions
for the framework of Williams and Beer [1] are known [5,9–12]. However, each of these decompositions
provides negative partial information for |V| > 2. Further research [13–15] specifically aimed to
define decompositions of mutual information for an arbitrary number of observable variables, but
similarly obtain negative partial contributions and the resulting difficulty of interpreting their results.
Griffith et al. [3] studied the decomposition of zero-error information and obtained negative partial
contributions. Kolchinsky [16] proposed a decomposition framework for an arbitrary number of
observable variables that is applicable beyond Shannon information theory, however, where the partial
contributions do not sum to the total amount.

In this work, we propose a decomposition measure for replacing the one presented by Williams
and Beer [1] while maintaining its desired properties. To achieve this, we combine several con-
cepts from the literature: We use the Blackwell order, a preorder of information channels, for
the decomposition and for deriving its operational interpretation, similar to Bertschinger et al. [9]
and Kolchinsky [16]. We use its special case for binary input channels, the zonogon order studied
by Bertschinger and Rauh [17], to achieve non-negativity at an arbitrary number of variables and
provide it with a practical meaning by highlighting its equivalence to the Neyman-Pearson (decision)
region. To utilize this special case for a general decomposition, we use the concept of a target pointwise
decomposition as demonstrated by Williams and Beer [1] and related to Lizier et al. [18], Finn and
Lizier [13], and Ince [14]. Specifically, we use Neyman-Pearson regions of an indicator variable for
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each target state to define distinct information and quantify pointwise information from its boundary.
This allows for the non-negative decomposition of an arbitrary number of variables, where the source
and target variables can have an arbitrary finite number of states. Finally, we apply the concepts
from measuring on lattices, discussed by Knuth [19], to transform a non-negative decomposition
with inclusion-exclusion relation from one information measure to another while maintaining the
decomposition properties.

Remark 1. We use the term ’target pointwise’ or simply ’pointwise’ within this work to refer to the analysis of
each target state individually. This differs from [13,14,18], who use the latter term for the analysis of all joint
sources-target realizations.

1.2. Contributions

In a recent work [20], we presented a decomposition of mutual information on the redundancy lattice
(Figure 1b). This work aims to simplify, generalize and extend these ideas to make the following
contributions to the area of Partial Information Decompositions:

• We propose a representation of distinct uncertainty and distinct information, which is used to
demonstrate the unexpected behavior of the measure by Williams and Beer [1] (Sections 2.2
and 3).

• We propose a decomposition for any f -information on both the redundancy lattice (Figure 1b)
and synergy lattice (Figure 1c) that satisfies an inclusion-exclusion relation and provides a
meaningful operational interpretation (Section 3.2).

• We prove that the proposed decomposition satisfies the original axioms of Williams and Beer [1]
and guarantees non-negative partial information (Theorem 3).

• We propose to transform the non-negative decomposition of one information measure into
another. This transformation maintains the non-negativity and its inclusion-exclusion relation
under a re-definition of information addition (Section 3.3).

• We demonstrate the transformation of an f -information decomposition into a decomposition for
Rényi- and Bhattacharyya-information (Section 3.3).

• We demonstrate that the proposed decomposition obtains different properties from different
information measures and analyze the behavior of total variation in more detail (Section 4).

• We demonstrate the analysis of partial information flows through Markov chains (Figure 1d) for
each information measure on both the redundancy and synergy lattice (Section 4.2).

2. Background

This section aims to provide the required background information and introduce the used notation.
Section 2.1 discusses the Blackwell order and its special case at binary targets, the zonogon order,
which will be used for operational interpretations and the representation of f -information for its
decomposition. Section 2.2 discusses the PID framework of Williams and Beer [1] and the relation
between a decomposition based on the redundancy lattice and one based on the synergy lattice. We also
demonstrate the unintuitive behavior of the original decomposition measure which will be resolved
by our proposal in Section 3. Section 2.3 provides the considered definitions of f -information, Rényi-
information, and Bhattacharyya information for the later demonstration of transforming decomposition
results between measures.

Notation 1 (Random variables and their distribution). We use the notation T (upper case) to represent
a random variable, ranging over the event space T (calligraphic) containing events t ∈ T (lower case), and
use the notation PT (P with subscript) to indicate its probability distribution. The same convention applies
to other variables, such as a random variable S with events s ∈ S and distribution PS. We indicate the outer
product of two probability distributions as PS ⊗ PT , which assigns the product of their marginals PS(s) · PT(t)
to each event (s, t) of the Cartesian product S × T . Unless stated otherwise, we use the notation T, S and V to
represent random variables throughout this work.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2024                   doi:10.20944/preprints202403.0285.v2

https://doi.org/10.20944/preprints202403.0285.v2


4 of 43

2.1. Blackwell and Zonogon Order

Definition 1 (Channel). A channel µ = T → S from T to S represents a garbling of the input variable T that
results in variable S. Within this work, we represent an information channel µ as (row) stochastic matrix, where
each element is non-negative, and all rows sum to one.

For the context of this work, we consider a variable S to be the observation of the output from an
information channel T → S from the target variable T, such that the corresponding channel can be
obtained from their conditional probability distribution, as shown in Equation 1 where T = {t1, ..., tn}
and S = {s1, ..., sm}.

µ = (T → S) = P(S|T) =




p(s1 | t1) . . . p(sm | t1)
...

. . .
...

p(s1 | tn) . . . p(sm | tn)


 (1)

Notation 2 (Binary input channels). Throughout this work, we reserve the symbol κ for binary input channels,
meaning κ signals a stochastic matrix of dimension 2 × m. We use the notation v⃗ ∈ κ to indicate a column of
this matrix.

Definition 2 (More informative [17,21]). An information channel µ1 = T → S1 is more informative than
another channel µ2 = T → S2 if - for any decision problem involving a set of actions a ∈ Ω and a reward
function u : (Ω, T ) → R that depends on the chosen action and state of the variable T - an agent with access to
S1 can always achieve an expected reward at least as high as another agent with access to S2.

Definition 3 (Blackwell order [17,21]). The Blackwell order is a preorder of channels. A channel µ1 is
Blackwell superior to channel µ2, if we can pass its output through a second channel λ to obtain an equivalent
channel to µ2, as shown in Equation 2.

µ2 ⊑ µ1 ⇐⇒ µ2 = µ1 · λ for some stochastic matrix λ (2)

Blackwell [21] showed that a channel is more informative if and only if it is Blackwell superior.
Bertschinger and Rauh [17] showed that the Blackwell order does not form a lattice for channels
µ = T → S if |T | > 2 since the ordering does not provide unique meet and join elements. However,
binary target variables |T | = 2 are a special case where the Blackwell order is equivalent to the
zonogon order (discussed next) and does form a lattice [17].

Definition 4 (Zonogon [17]). The zonogon Z(κ) of a binary input channel κ = T → S is defined using the
Minkowski sum from the collection of vector segments as shown in Equation 3. The zonogon Z(κ) can similarly
be defined as image of the unit cube [0, 1]|S| under the linear map of κ.

Z(κ) :=

{
∑

i
xi v⃗i : 0 ≤ xi ≤ 1, v⃗i ∈ κ

}
=
{

κa : a ∈ [0, 1]|S|
}

(3)

The zonogon Z(κ) is a centrally symmetric convex polygon, and the set of vectors v⃗i ∈ κ span its
perimeter. Figure 2 shows the example of a binary input channel and its corresponding zonogon.

Definition 5 (Zonogon sum). The addition of two zonogons corresponds to their Minkowski sum as shown in
Equation 4.

Z(κ1) + Z(κ2) := {a + b : a ∈ Z(κ1), b ∈ Z(κ2)} = Z
([

κ1 κ2

])
(4)
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Definition 6 (Zonogon order [17]). A zonogon Z(κ1) is zonogon superior to another Z(κ2) if and only if
Z(κ2) ⊆ Z(κ1).

Bertschinger and Rauh [17] showed that for binary input channels, the zonogon order is equivalent
to the Blackwell order and forms a lattice (Equation 5). In the remaining work, we will only discuss
binary input channels, such that the orderings of Definition 2, 3 and 6 are equivalent and can be
thought of as zonogons with subset relation.

κ1 ⊑ κ2 ⇐⇒ Z(κ1) ⊆ Z(κ2) (5)

For obtaining an interpretation of what a channel zonogon Z(κ) represents, we can consider a binary
decision problem by aiming to predict the state t ∈ T of a binary target variable T using the output of
channel κ = T → S. Any decision strategy λ ∈ [0, 1]|S|×2 for obtaining a binary prediction T̂ can be
fully characterized by its resulting pair of True-Positive Rate (TPR) and False-Positive Rate (FPR), as
shown in Equation 6

κ · λ = (T → S → T̂) = P(T̂|T) =

[
p(T̂ = t | T = t) p(T̂ ̸= t | T = t)
p(T̂ = t | T ̸= t) p(T̂ ̸= t | T ̸= t)

]
=

[
TPR 1 − TPR
FPR 1 − FPR

]
(6)

Therefore, a channel zonogon Z(κ) provides the set of all achievable (TPR,FPR)-pairs for a given
channel κ [20,22]. This can also be seen from Equation 3, where the unit cube a ∈ [0, 1]|S| represents all
possible first columns of the decision strategy λ. The first column of λ fully determines the second
since each row has to sum to one. As a result, κa provides the (TPR,FPR)-pair for the decision strategy
λ = [ a (1−a) ] and the definition of Equation 3 all achievable (TPR,FPR)-pairs for predicting the state
of a binary target variable. Since this will be helpful for operational interpretations, we label the axis of
zonogon plots accordingly, as shown in Figure 2. The zonogon ([17] p. 2480) is the Neyman-Pearson
region ([7] p. 231).
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Figure 2: An example zonogon (blue) for a binary input channel κ from T = {t1, t2} to S = {s1, s2, s3, s4}. The zonogon
is the Neyman-Pearson region and its perimeter corresponds to the vectors v⃗si ∈ κ sorted by increasing/decreasing
slope for the lower/upper half which results from the likelihood ratio test. The zonogon thus represents the
achievable (TPR,FPR)-pairs for predicting T while knowing S.

Definition 7 (Neyman-Pearson region [7] & decision regions). The Neyman-Pearson region for a binary
decision problem is the set of achievable (TPR,FPR)-pairs and can be visualized as shown in Figure 2. The Neyman-
Pearson regions underlie the zonogon order and their boundary can be obtained from the likelihood-ratio test. We
refer to subsets of the Neyman-Pearson region as reachable decision regions, or simply decision regions, and its
boundary as zonogon perimeter.

Remark. Due to the zonogon symmetry, the diagram labels can be swapped (FPR x-axis/TPR y-axis) which
changes the interpretation to aiming a prediction for T ̸= t.

Notation 3 (Channel lattice). We use the notation κ1 ⊓ κ2 for the meet element of binary input channels under
the Blackwell order and κ1 ⊔ κ2 for their join element. We use the notation ⊤BW =

[
1 0
0 1

]
for the top element of

binary input channels under the Blackwell order and ⊥BW =
[

1
1

]
for the bottom element.

For binary input channels, the meet element of the Blackwell order corresponds to the zonogon
intersection Z(κ1 ⊓ κ2) = Z(κ1) ∩ Z(κ2) and the join element of the Blackwell order corresponds to the
convex hull of their union Z(κ1 ⊔ κ2) = Conv(Z(κ1) ∪ Z(κ2)). Equation 7 describes this for an arbitrary
number of channels.

Z

(l

κ∈A

κ

)
=
⋂

κ∈A
Z(κ) and Z

(
⊔

κ∈A
κ

)
= Conv

(
⋃

κ∈A
Z(κ)

)
(7)

Example 1. The remaining work only analyzes indicator variables, so we only need to consider the case |T | = 2
where all presented ordering relations of this section are equivalent and form a lattice.

Figure 3a visualizes a channel T κ−→ S with |S| = 3. We can use the observations of S for making a prediction
T̂ about T. For example, we predict that T is in its first state with probability w1 if S is in its first state, with
probability w2 if S is in its second state and with probability w3 if S is in its third state. This randomized decision
strategies can be noted as stochastic matrix λ shown in Figure 3a. The resulting TPR and FPR of this decision
strategy is obtained from the weighted sum of these parameters (w1, w2 and w3) with the vectors in κ. Each decision
strategy corresponds to a point within the zonogon, since the probabilities are constrained by w1,w2,w3 ∈ [0,1]
and the resulting zonogon is the Neyman-Pearson region.

Figure 3b visualizes an example for the discussed ordering relations, where all observable variables have two
states: |Si| = 2 where i ∈ {1,2,3}. The zonogon/Neyman-Pearson region corresponding to variable S3 is fully
contained within the others (Z(κ3) ⊆ Z(κ1) and Z(κ3) ⊆ Z(κ2)). Therefore, we can say that S3 is Blackwell
inferior (Definition 3) and less informative (Definition 2) than S1 and S2 about T. Practically, this means that we
can construct an equivalent variable to S3 by garbling S1 or S2 and that for any sequence of actions based on S3 and
any reward function with dependence on T, we can achieve an expected reward at least a high by acting based on S1
or S2 instead. The variables S1 and S2 are incomparable from the zonogon order, Blackwell order, and informativity
order, since the Neyman-Pearson region of one is not fully contained in the other.

The zonogon shown in Figure 3a corresponds to the join under the zonogon order, Blackwell order and
informativity order of S1 and S2 in Figure 3b about T. For binary targets, this distribution can directly be obtained
from the convex hull of their Neyman-Pearson regions and corresponds to a valid joint distribution for (T,S1,S2).
All other joint distributions are either equivalent or superior to it. When doing this on indicator variables for
|T | > 2, then the obtained joint distributions for each t ∈ T may not combine into a specific valid overall joint
distribution.

5

Figure 2. An example zonogon (blue) for a binary input channel κ from T = {t1, t2} to S =

{s1, s2, s3, s4}. The zonogon is the Neyman-Pearson region and its perimeter corresponds to the
vectors v⃗si ∈ κ sorted by increasing/decreasing slope for the lower/upper half which results from
the likelihood ratio test. The zonogon thus represents the achievable (TPR,FPR)-pairs for predicting T
while knowing S.

Definition 7 (Neyman-Pearson region [7] & decision regions). The Neyman-Pearson region for a binary
decision problem is the set of achievable (TPR,FPR)-pairs and can be visualized as shown in Figure 2. The
Neyman-Pearson regions underlie the zonogon order and their boundary can be obtained from the likelihood-ratio
test. We refer to subsets of the Neyman-Pearson region as reachable decision regions, or simply decision regions,
and its boundary as zonogon perimeter.
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Remark 2. Due to the zonogon symmetry, the diagram labels can be swapped (FPR x-axis/TPR y-axis) which
changes the interpretation to aiming a prediction for T ̸= t.

Notation 3 (Channel lattice). We use the notation κ1 ⊓ κ2 for the meet element of binary input channels under
the Blackwell order and κ1 ⊔ κ2 for their join element. We use the notation ⊤BW =

[
1 0
0 1

]
for the top element of

binary input channels under the Blackwell order and ⊥BW =
[

1
1

]
for the bottom element.

For binary input channels, the meet element of the Blackwell order corresponds to the zonogon
intersection Z(κ1 ⊓ κ2) = Z(κ1) ∩ Z(κ2) and the join element of the Blackwell order corresponds to
the convex hull of their union Z(κ1 ⊔ κ2) = Conv(Z(κ1) ∪ Z(κ2)). Equation 7 describes this for an
arbitrary number of channels.

Z

(l

κ∈A

κ

)
=
⋂

κ∈A
Z(κ) and Z

(
⊔

κ∈A
κ

)
= Conv

(
⋃

κ∈A
Z(κ)

)
(7)

Example 1. The remaining work only analyzes indicator variables, so we only need to consider the case |T | = 2
where all presented ordering relations of this section are equivalent and form a lattice.

Figure 3a visualizes a channel T κ−→ S with |S| = 3. We can use the observations of S for making a
prediction T̂ about T. For example, we predict that T is in its first state with probability w1 if S is in its first state,
with probability w2 if S is in its second state and with probability w3 if S is in its third state. This randomized
decision strategies can be noted as stochastic matrix λ shown in Figure 3a. The resulting TPR and FPR of this
decision strategy is obtained from the weighted sum of these parameters (w1, w2 and w3) with the vectors in
κ. Each decision strategy corresponds to a point within the zonogon, since the probabilities are constrained by
w1, w2, w3 ∈ [0, 1] and the resulting zonogon is the Neyman-Pearson region.

Figure 3b visualizes an example for the discussed ordering relations, where all observable variables have two
states: |Si| = 2 where i ∈ {1, 2, 3}. The zonogon/Neyman-Pearson region corresponding to variable S3 is fully
contained within the others (Z(κ3) ⊆ Z(κ1) and Z(κ3) ⊆ Z(κ2)). Therefore, we can say that S3 is Blackwell
inferior (Definition 3) and less informative (Definition 2) than S1 and S2 about T. Practically, this means that
we can construct an equivalent variable to S3 by garbling S1 or S2 and that for any sequence of actions based on
S3 and any reward function with dependence on T, we can achieve an expected reward at least a high by acting
based on S1 or S2 instead. The variables S1 and S2 are incomparable from the zonogon order, Blackwell order,
and informativity order, since the Neyman-Pearson region of one is not fully contained in the other.

The zonogon shown in Figure 3a corresponds to the join under the zonogon order, Blackwell order and
informativity order of S1 and S2 in Figure 3b about T. For binary targets, this distribution can directly be
obtained from the convex hull of their Neyman-Pearson regions and corresponds to a valid joint distribution for
(T, S1, S2). All other joint distributions are either equivalent or superior to it. When doing this on indicator
variables for |T | > 2, then the obtained joint distributions for each t ∈ T may not combine into a specific valid
overall joint distribution.
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(b) Channel orderings

Figure 3: Visualizations for Example 1 where |T | = 2. (a) A randomized decision strategy for predictions based
on T κ−→ S can be represented by a |S| × 2 stochastic matrix λ. The first column of this decision matrix provides
the weights for summing the columns of channel κ to determine the resulting prediction performance (TPR, FPR).
Any decision strategy corresponds to a point in the zonogon. (b) All presented ordering relations in Section 2.1 are
equivalent at binary targets and correspond to the subset relation of the visualized zonogons. The variable S3 is less
informative than both S1 and S2 with respect to T, and the variables S1 and S2 are incomparable. The shown channel
in (a) is the Blackwell join of κ1 and κ2 in (b).

2.2 Partial Information Decomposition

The commonly used framework for PIDs was introduced by Williams and Beer [1]. A PID is computed
with respect to a particular random variable that we would like to know information about, called the
target, and tries to identify from which variables that we have access to, called visible variables, we obtain
this information. Therefore, this section considers sets of variables that represent their joint distribution.

Notation 4. Throughout this work, we use the notation T for the target variable and V = {V1, ...,Vn} for the set
of visible variables. We use the notation P(V) for the power set of V, and P1(V) = P(V) \ ∅ for its power set
without the empty set.

Definition 8 (Sources, Atoms [1]).

• A source Si ∈ P1(V) is a non-empty set of visible variables.

• An atom α ∈ A(V) is a set of sources constructed by Equation 8.

A(V) = {α ∈ P1(P1(V)) : ∀Sa,Sb ∈ α,Sa ̸⊂ Sb}, (8)

The used filter for obtaining the set of atoms (Equation 8) removes sets that would be equivalent to
other elements. This is required for obtaining a lattice from the following two ordering relations:

Definition 9 (Redundancy-/Gain-lattice [1]). The redundancy lattice (A(V),≼) is obtained by applying the
ordering relation of Equation 9 to all atoms α, β ∈ A(V).

α ≼ β ⇐⇒ ∀Sb ∈ β,∃Sa ∈ α,Sa ⊆ Sb (9)

The redundancy lattice for three visible variables is visualized in Figure 4a. On this lattice, we can
think of an atom as representing the information that can be obtained from all of its sources about the
target T (their redundancy or informational intersection). For example, the atom α = {{V1,V2},{V1,V3}}
represents on the redundancy lattice the information that is contained in both (V1,V2) and (V1,V3) about T.
Since both sources in α provide the information of V1, their redundancy contains at least this information,
and the atom β = {{V1}} is considered its predecessor. Therefore, the ordering indicates an informational
subset relation for the redundancy of atoms, and the information that is represented by an atom increases
as we move up. The up-set of an atom α on the redundancy lattice indicates the information that is lost
when losing all of its sources. Considering the example from above, if we lose access to {V1 (or) V2} and
{V1 (or) V3}, then we lose access to all atoms in the up-set of α = {{V1,V2},{V1,V3}}.

6

Figure 3. Visualizations for Example 1 where |T | = 2. (a) A randomized decision strategy for
predictions based on T κ−→ S can be represented by a |S| × 2 stochastic matrix λ. The first column of this
decision matrix provides the weights for summing the columns of channel κ to determine the resulting
prediction performance (TPR, FPR). Any decision strategy corresponds to a point in the zonogon. (b)
All presented ordering relations in Section 2.1 are equivalent at binary targets and correspond to the
subset relation of the visualized zonogons. The variable S3 is less informative than both S1 and S2 with
respect to T, and the variables S1 and S2 are incomparable. The shown channel in (a) is the Blackwell
join of κ1 and κ2 in (b).

2.2. Partial Information Decomposition

The commonly used framework for PIDs was introduced by Williams and Beer [1]. A PID is
computed with respect to a particular random variable that we would like to know information
about, called the target, and tries to identify from which variables that we have access to, called visible
variables, we obtain this information. Therefore, this section considers sets of variables that represent
their joint distribution.

Notation 4. Throughout this work, we use the notation T for the target variable and V = {V1, ..., Vn} for the
set of visible variables. We use the notation P(V) for the power set of V, and P1(V) = P(V) \ ∅ for its power
set without the empty set.

Definition 8 (Sources, Atoms [1]).

• A source Si ∈ P1(V) is a non-empty set of visible variables.
• An atom α ∈ A(V) is a set of sources constructed by Equation 8.

A(V) = {α ∈ P1(P1(V)) : ∀Sa, Sb ∈ α, Sa ̸⊂ Sb}, (8)

The used filter for obtaining the set of atoms (Equation 8) removes sets that would be equivalent
to other elements. This is required for obtaining a lattice from the following two ordering relations:

Definition 9 (Redundancy-/Gain-lattice [1]). The redundancy lattice (A(V),≼) is obtained by applying
the ordering relation of Equation 9 to all atoms α, β ∈ A(V).

α ≼ β ⇐⇒ ∀Sb ∈ β, ∃Sa ∈ α, Sa ⊆ Sb (9)
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The redundancy lattice for three visible variables is visualized in Figure 4a. On this lattice, we
can think of an atom as representing the information that can be obtained from all of its sources
about the target T (their redundancy or informational intersection). For example, the atom α =

{{V1, V2}, {V1, V3}} represents on the redundancy lattice the information that is contained in both
(V1, V2) and (V1, V3) about T. Since both sources in α provide the information of V1, their redundancy
contains at least this information, and the atom β = {{V1}} is considered its predecessor. Therefore, the
ordering indicates an informational subset relation for the redundancy of atoms, and the information
that is represented by an atom increases as we move up. The up-set of an atom α on the redundancy
lattice indicates the information that is lost when losing all of its sources. Considering the example
from above, if we lose access to {V1 (or) V2} and {V1 (or) V3}, then we lose access to all atoms in the
up-set of α = {{V1, V2}, {V1, V3}}.

Definition 10 (Synergy-/Loss-lattice [23]). The synergy lattice (A(V),⪯) is obtained by applying the
ordering relation of Equation 10 to all atoms α, β ∈ A(V).

α ⪯ β ⇐⇒ ∀Sb ∈ β, ∃Sa ∈ α, Sb ⊆ Sa (10)

The synergy lattice for three visible variables is visualized in Figure 4b. On this lattice, we can
think of an atom as representing the information that is contained in neither of its sources (information
outside their union). For example, the atom α = {{V1, V2}, {V1, V3}} represents on the synergy
lattice the information that is obtained from neither (V1, V2) nor (V1, V3) about T. The ordering again
indicates their expected subset relation: the information that is obtained from neither {V1 (and) V2}
nor {V1 (and) V3} is fully contained in the information that cannot be obtained from β = {{V1}} and
thus α is a predecessor of β.

With an intuition for both ordering relations in mind, we can see how the filter in the construction
of atoms (Equation 8) removes sets that would be equivalent to another atom: the set {{V1, V2}, {V1}}
is removed from the power set of sources since it would be equivalent to the atom {{V1}} under the
ordering of the redundancy lattice and equivalent to the atom {{V1, V2}} under the ordering of the
synergy lattice.

Notation 5 (Redundancy/Synergy lattices). We use the notation (A(V),⋎,⋏) for the join and meet
operators on the redundancy lattice, and (A(V),∨,∧) for the join and meet operators on the synergy lattice.
We use the notation ⊤RL = {V} for the top and ⊥RL = ∅ for the bottom atom on the redundancy lattice, and
⊤SL = ∅ and ⊥SL = {V} for the top and bottom atom on the synergy lattice. For an atom α, we use the
notation ↓α for its down-set, ↓̇α for its strict down-set, and α− for its cover set. These definitions will only
appear in the Möbius inverse of a function that is directly associated with either the synergy or redundancy
lattice such that there is no ambiguity about which ordering relation has to be considered.

The redundant, unique, or synergetic information (partial contributions) can be calculated based
on either lattice. They are obtained by quantifying each atom of the redundancy or synergy lattice with
a cumulative measure that increases as we move up in the lattice. The partial contributions are then
obtained in a second step from a Möbius inverse.
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Definition 10 (Synergy-/Loss-lattice [23]). The synergy lattice (A(V),⪯) is obtained by applying the ordering
relation of Equation 10 to all atoms α, β ∈ A(V).

α ⪯ β ⇐⇒ ∀Sb ∈ β,∃Sa ∈ α,Sb ⊆ Sa (10)

The synergy lattice for three visible variables is visualized in Figure 4b. On this lattice, we can
think of an atom as representing the information that is contained in neither of its sources (information
outside their union). For example, the atom α = {{V1,V2},{V1,V3}} represents on the synergy lattice the
information that is obtained from neither (V1,V2) nor (V1,V3) about T. The ordering again indicates their
expected subset relation: the information that is obtained from neither {V1 (and) V2} nor {V1 (and) V3} is
fully contained in the information that cannot be obtained from β = {{V1}} and thus α is a predecessor
of β.

With an intuition for both ordering relations in mind, we can see how the filter in the construction
of atoms (Equation 8) removes sets that would be equivalent to another atom: the set {{V1,V2},{V1}}
is removed from the power set of sources since it would be equivalent to the atom {{V1}} under the
ordering of the redundancy lattice and equivalent to the atom {{V1,V2}} under the ordering of the
synergy lattice.

Notation 5 (Redundancy/Synergy lattices). We use the notation (A(V),⋎,⋏) for the join and meet operators
on the redundancy lattice, and (A(V),∨,∧) for the join and meet operators on the synergy lattice. We use the
notation ⊤RL = {V} for the top and ⊥RL = ∅ for the bottom atom on the redundancy lattice, and ⊤SL = ∅ and
⊥SL = {V} for the top and bottom atom on the synergy lattice. For an atom α, we use the notation ↓α for its
down-set, ↓̇α for its strict down-set, and α− for its cover set. These definitions will only appear in the Möbius
inverse of a function that is directly associated with either the synergy or redundancy lattice such that there is no
ambiguity about which ordering relation has to be considered.

{S123}

{S12} {S13} {S23}

{S12,S13} {S12,S23} {S13,S23}

{S1} {S2} {S3} {S12,S13,S23}
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∅

(a) Redundancy-/Gain-Lattice (A({V1,V2,V3}), ≼)
(quantifies information present in all sources)

∅

{S1} {S2} {S3}
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(b) Synergy-/Loss-Lattice (A({V1,V2,V3}), ⪯)
(quantifies information present in neither source)

Figure 4: For the visualization, we abbreviated the notation by indicating the contained visible variable as index of
the source, for example, S12 = {V1,V2} to represent their joint distribution: (a) A redundancy lattice based on the
ordering ≼ of Equation 9. (b) A synergy lattice based on the ordering ⪯ of Equation 10 for the partial information
decomposition at V = {V1,V2,V3}. On the redundancy lattice, the redundancy of all sources within an atom increases
while moving up. On the synergy lattice, the information that is obtained from neither source of an atom increases
while moving up.

The redundant, unique, or synergetic information (partial contributions) can be calculated based on
either lattice. They are obtained by quantifying each atom of the redundancy or synergy lattice with
a cumulative measure that increases as we move up in the lattice. The partial contributions are then
obtained in a second step from a Möbius inverse.

Definition 11 ([Cumulative] redundancy measure [1]). A redundancy measure I∩(α; T) is a function that
assigns a real value to each atom of the redundancy lattice. It is interpreted as a cumulative information measure
that quantifies the redundancy between all sources S ∈ α of an atom α ∈ A(V) about the target T.

7

Figure 4. For the visualization, we abbreviated the notation by indicating the contained visible
variable as index of the source, for example, S12 = {V1, V2} to represent their joint distribution: (a) A
redundancy lattice based on the ordering ≼ of Equation 9. (b) A synergy lattice based on the ordering
⪯ of Equation 10 for the partial information decomposition at V = {V1, V2, V3}. On the redundancy
lattice, the redundancy of all sources within an atom increases while moving up. On the synergy lattice,
the information that is obtained from neither source of an atom increases while moving up.

Definition 11 ([Cumulative] redundancy measure [1]). A redundancy measure I∩(α; T) is a function that
assigns a real value to each atom of the redundancy lattice. It is interpreted as a cumulative information measure
that quantifies the redundancy between all sources S ∈ α of an atom α ∈ A(V) about the target T.

Definition 12 ([Cumulative] loss measure [23]). A loss measure I∪(α; T) is a function that assigns a real
value to each atom of the synergy lattice. It is interpreted as a cumulative measure that quantifies the information
about T that is provided by neither of the sources S ∈ α of an atom α ∈ A(V).

To ensure that a redundancy measure actually captures the desired concept of redundancy, Williams
and Beer [1] defined three axioms that a measure I∩ should satisfy. For the synergy lattice, we consider
the equivalent axioms discussed by Chicharro and Panzeri [23]:

Axiom 1 (Commutativity [1,23]). Invariance in the order of sources (σ permuting the order of indices):

I∩({S1, ..., Si}; T) = I∩({Sσ(1), ..., Sσ(i)}; T)

I∪({S1, ..., Si}; T) = I∪({Sσ(1), ..., Sσ(i)}; T)

Axiom 2 (Monotonicity [1,23]). Additional sources can only decrease redundant information. Additional
sources can only decrease the information that is in neither source.

I∩({S1, ..., Si−1}; T) ≥ I∩({S1, ..., Si}; T)

I∪({S1, ..., Si−1}; T) ≥ I∪({S1, ..., Si}; T)
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Axiom 3 (Self-redundancy [1,23]). For a single source, redundancy equals mutual information. For a single
source, the information loss equals the difference between the total available mutual information and the mutual
information of the considered source with the target.

I∩({Si}; T) = I(Si; T) and I∪({Si}; T) = I(V; T)− I(Si; T)

The first axiom states that an atom’s redundancy and information loss should not depend on
the order of its sources. The second axiom states that adding sources to an atom can only decrease
the redundancy of all sources (redundancy lattice) and decrease the information from neither source
(synergy lattice). The third axiom binds the measures to be consistent with mutual information and
ensures that the bottom element of both lattices is quantified to zero.

Once a lattice with corresponding cumulative measure (I∩/I∪) is defined, we can use the Möbius
inverse to compute the partial contribution of each atom. This partial information can be visualized
as partial area in a Venn diagram (see Figure 1a) and corresponds to the desired redundant, unique,
and synergetic contributions. However, the same atom represents different partial contributions on
each lattice: As visualized for the case of two visible variables in Figure 1, the unique information of
variable V1 is represented by α = {{V1}} on the redundancy lattice and by β = {{V2}} on the synergy
lattice.

Definition 13 (Partial information [1,23]). Partial information ∆I∩(α; T) and ∆I∪(α; T) corresponds to the
Möbius inverse of its corresponding cumulative measure on the respective lattice.

Redundancy-Lattice: ∆I∩(α; T) = I∩(α; T)− ∑
β∈↓̇α

∆I∩(β; T), (11a)

Synergy-Lattice: ∆I∪(α; T) = I∪(α; T)− ∑
β∈↓̇α

∆I∪(β; T). (11b)

Remark 3. Using the Möbius inverse for defining partial information enforces an inclusion-exclusion relation
in that all partial information contributions have to sum to the corresponding cumulative measure. Kolchinsky
[16] argues that an inclusion-exclusion relation should not be expected to hold for PIDs and proposes an
alternative decomposition framework. In this case, the sum of partial contributions (unique/redundant/synergetic
information) is no longer expected to sum to the total amount I(V; T).

Property 1 (Local positivity, non-negativity [1]). A partial information decomposition satisfies non-negativity
or local positivity if its partial information contributions are always non-negative, as shown in Equation 12.

∀α ∈ A(V). ∆I∩(α; T) ≥ 0 or ∆I∪(α; T) ≥ 0 (12)

The non-negativity property is important if we assume an inclusion-exclusion relation since it
states that the unique, redundant, or synergetic information cannot be negative. If an atom α provides
a negative partial contribution in the framework of Williams and Beer [1], then this may indicate that
we over-counted some information in its down-set.

Remark 4. Several additional axioms and properties have been suggested since the original proposal of Williams
and Beer [1], such as target monotonicity and target chain rule [4]. However, this work will only consider the
axioms and properties of Williams and Beer [1]. To the best of our knowledge, no other measure since the original
proposal (discussed below) has been able to satisfy these properties for an arbitrary number of visible variables
while ensuring an inclusion-exclusion relation for their partial contributions.
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It is possible to convert between both representations due to a lattice duality:

Definition 14 (Lattice duality and dual decompositions [23]). Let C = (A(V),≼) be a redundancy
lattice with associated measure I∩ and let D = (A(V),⪯) be a synergy lattice with measure I∪, then the two
decompositions are said to be dual if and only if the down-set on one lattice corresponds to the up-set in the other
as shown in Equation 13.

∀α ∈ C, ∃β ∈ D : ∆I∩(α; T) = ∆I∪(β; T) (13a)

∀α ∈ D, ∃β ∈ C : ∆I∪(α; T) = ∆I∩(β; T) (13b)

∀α ∈ C, ∃β ∈ D : I∩(α; T) = ∑
γ∈↓α

∆I∩(γ; T) = ∑
γ∈↑β

∆I∪(γ; T) (13c)

∀α ∈ D, ∃β ∈ C : I∪(α; T) = ∑
γ∈↓α

∆I∪(γ; T) = ∑
γ∈↑β

∆I∩(γ; T) (13d)

Williams and Beer [1] proposed Imin∩ , as shown in Equation 14, to be used as measure of redun-
dancy and demonstrated that it satisfies the three required axioms and local positivity. They define
redundancy (Equation 14b) as the expected value of the minimum specific information (Equation 14a).

Remark 5. Throughout this work, we use the term ’target pointwise information’ or simply ’pointwise informa-
tion’ to refer to ’specific information’. This shall avoid confusion when naming their corresponding binary input
channels in Section 3.

I(Si; T = t) = ∑
s∈Si

p(s | t)
[

log
(

1
p(t)

)
− log

(
1

p(t | s)

)]
(14a)

Imin
∩ (S1, ..., Sk; T) = ∑

t∈T
p(t) min

i∈1..k
I(Si; T = t). (14b)

To the best of our knowledge, this measure is the only existing non-negative decomposition that
satisfies all three axioms listed above for an arbitrary number of visible variables while providing an
inclusion-exclusion relation of partial information.

However, the measure Imin∩ could be criticized for not providing a notion of distinct information
due to its use of a pointwise minimum (for each t ∈ T ) over the sources. This leads to the question
of distinguishing ”the same information and the same amount of information“ [3–6]. We can use
the definition through a pointwise minimum (Equation 14) to construct examples of unexpected
behavior: consider for example a uniform binary target variable T and two visible variables as output
of the channels visualized in Figure 5. The channels are constructed to be equivalent for both target
states and provide access to distinct decision regions while ensuring a constant pointwise information
∀t ∈ T : I(Vx, T = t) = 0.2. Even though our ability to predict the target variable significantly depends
on which of the two indicated channel outputs we observe (blue or green in Figure 5, incomparable
informativity based on Definition 2), the measure Imin∩ concludes full redundancy between them
I(V1; T) = Imin∩ ({V1, V2}; T) = I(V2, T) = 0.2. We think this behavior is undesired and, as discussed
in the literature, caused by an underlying lack of distinguishing the same information. To resolve this
issue, we will present a representation of f -information in Section 3.1, which allows the use of all
(TPR,FPR)-pairs for each state of the target variable to represent a distinct notion of uncertainty.
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κ(x,y) =
[

x 1 − x − y y
y 1 − x − y x

]
, where x ≤ y.

I(V1; T) = Imin∩ ({V1,V2}; T) = I(V2, T) = 0.2

Figure 5: Example of the unexpected behavior of Imin∩ : the dashed isoline indicates the pairs (x,y) for which channel
κ(x,y) = T → Vi results in a pointwise information ∀t ∈ T : I(Vi, T = t) = 0.2 for a uniform binary target variable.
Even though observing the output of both indicated example channels (blue/green) provides significantly different
abilities for predicting the target variable state, the measure Imin∩ indicates full redundancy.

Definition 15 ( f -divergence [24]). Let f : (0,∞)→ R be a function that satisfies the following three properties.

• f is convex,

• f (1) = 0,

• f (z) is finite for all z > 0.

By convention we understand that f (0) = limz→0+ f (z) and 0 f
( 0

0
)
= 0. For any such function f and two discrete

probability distributions P and Q over the event space X , the f -divergence for discrete random variables is defined
as shown in Equation 15.

D f (P ∥ Q) := ∑
x∈X

Q(x) f
(

P(x)
Q(x)

)
= EQ

[
f
(

P(X)

Q(X)

)]
(15)

Notation 6. Throughout this work, we reserve the name f for functions that satisfy the required properties for an
f -divergence of Definition 15.

An f -divergence quantifies a notion of dissimilarity between two probability distributions P and Q.
Key properties of f -divergences are their non-negativity, their invariance under bijective transformations,
and them satisfying a data-processing inequality [7, p. 89]. A list of commonly used f -divergences is
shown in Table 1. Notably, the continuation for a = 1 of both the Hellinger- and α-divergence result in
the KL-divergence [26].

DKL Kullback-Leiber (KL) divergence f (z) = z logz
DTV Total Variation (TV) f (z) = 1

2 |z − 1|
Dχ2 χ2-divergence f (z) = (z − 1)2

DH2 Squared Hellinger distance f (z) = (1 −√
z)2

DLC Le Cam distance f (z) = 1−z
2z+2

DJS Jensen-Shannon divergence f (z) = z log 2z
z+1 + log 2

z+1
DHa Hellinger divergence with a ∈ (0,1) ∪ (1,∞) f (z) = za−1

a−1

Dα=a α-divergence with a ∈ (0,1) ∪ (1,∞) f (z) = za−1−a(z−1)
a(a−1)

Table 1: Commonly used functions for f -divergences.

The generator function of an f -divergence is not unique since D f (z) = D f (z)+c(z−1) for a real constant
c ∈ R [7, p. 90f.]. As a result, the considered α-divergence is a linear scaling of the Hellinger divergence
(DHa = a · Dα=a) as shown in Equation 16.

za − 1
a − 1

+ c(z − 1) = a · za − 1 − a(z − 1)
a(a − 1)

for c = − a
a − 1

(16)

10

Figure 5. Example of the unexpected behavior of Imin∩ : the dashed isoline indicates the pairs (x, y)
for which channel κ(x, y) = T → Vi results in a pointwise information ∀t ∈ T : I(Vi, T = t) = 0.2
for a uniform binary target variable. Even though observing the output of both indicated example
channels (blue/green) provides significantly different abilities for predicting the target variable state,
the measure Imin∩ indicates full redundancy.

2.3. Information Measures

This section discusses two generalizations of mutual information at discrete random variables
based on f -divergences and Rényi divergences [24,25]. While mutual information has interpretational
significance in channel coding and data compression, other f -divergences have their significance in
parameter estimations, high-dimensional statistics, and hypothesis testing ([7], p. 88), while Rényi-
divergences can be found among others in privacy analysis [8]. Finally, we introduce Bhattacharyya
information for demonstrating that it is possible to chain decomposition transformations in Section 3.3.
All definitions in this section only consider the case of discrete random variables (which is what we
need for the context of this work).

Definition 15 ( f -divergence [24]). Let f : (0, ∞) → R be a function that satisfies the following three
properties.

• f is convex,
• f (1) = 0,
• f (z) is finite for all z > 0.

By convention we understand that f (0) = limz→0+ f (z) and 0 f
( 0

0
)
= 0. For any such function f and two

discrete probability distributions P and Q over the event space X , the f -divergence for discrete random variables
is defined as shown in Equation 15.

D f (P ∥ Q) := ∑
x∈X

Q(x) f
(

P(x)
Q(x)

)
= EQ

[
f
(

P(X)

Q(X)

)]
(15)

Notation 6. Throughout this work, we reserve the name f for functions that satisfy the required properties for
an f -divergence of Definition 15.

An f -divergence quantifies a notion of dissimilarity between two probability distributions P
and Q. Key properties of f -divergences are their non-negativity, their invariance under bijective
transformations, and them satisfying a data-processing inequality ([7], p. 89). A list of commonly
used f -divergences is shown in Table 1. Notably, the continuation for a = 1 of both the Hellinger- and
α-divergence result in the KL-divergence [26].
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Table 1. Commonly used functions for f -divergences.

DKL Kullback-Leiber (KL) divergence f (z) = z log z
DTV Total Variation (TV) f (z) = 1

2 |z − 1|
Dχ2 χ2-divergence f (z) = (z − 1)2

DH2 Squared Hellinger distance f (z) = (1 −√
z)2

DLC Le Cam distance f (z) = 1−z
2z+2

DJS Jensen-Shannon divergence f (z) = z log 2z
z+1 + log 2

z+1
DHa Hellinger divergence with a ∈ (0, 1) ∪ (1, ∞) f (z) = za−1

a−1
Dα=a α-divergence with a ∈ (0, 1) ∪ (1, ∞) f (z) = za−1−a(z−1)

a(a−1)

The generator function of an f -divergence is not unique since D f (z) = D f (z)+c(z−1) for a real
constant c ∈ R ([7], p. 90f). As a result, the considered α-divergence is a linear scaling of the Hellinger
divergence (DHa = a · Dα=a) as shown in Equation 16.

za − 1
a − 1

+ c(z − 1) = a · za − 1 − a(z − 1)
a(a − 1)

for c = − a
a − 1

(16)

Definition 16 ( f -information [7]). An f -information is defined based on an f -divergence from the joint
distribution of two discrete random variables and the product of their marginals as shown in Equation 17.

I f (S; T) := D f

(
P(S,T) ∥ PS ⊗ PT

)

= ∑
(s,t)∈S×T

PS(s) · PT(t) · f

(
P(S,T)(s, t)

PS(s) · PT(t)

)

= ∑
t∈T

PT(t)

[
∑
s∈S

PS(s) · f

(
PS|T(s | t)

PS(s)

)]
(17)

Definition 17 ( f -entropy). A notion of f -entropy for a discrete random variable is obtained from the self-
information of a variable H f (T) := I f (T; T).

Notation 7. Using the KL-divergence results in the definition of mutual information and Shannon entropy.
Therefore, we use the notation IKL for mutual information (KL-information) and HKL (KL-entropy ) for the
Shannon entropy.

The remaining part of this section will define Rényi- and Bhattacharyya-information to highlight
that they can be represented as an invertible transformation of Hellinger-information. This will be
used in Section 3.3 to transform the decomposition of Hellinger-information to a decomposition of
Rényi- and Bhattacharyya-information.

Remark 6. We could similarly choose to represent Renyi divergence as a transformation of the α-divergence. A
liner scaling of the considered f -divergence will however not affect our later results (see Section 3.3).
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Definition 18 (Rényi divergence [25]). Let P and Q be two discrete probability distributions over the event
space X , then Rényi divergence Ra is defined as shown in Equation 18 for a ∈ (0, 1) ∪ (1, ∞), and extended to
a ∈ {0, 1, ∞} by continuation.

Ra(P ∥ Q) :=
1

a − 1
log
(
EQ

[(
P(X)

Q(X)

)a])

=
1

a − 1
log


1 + (a − 1)EQ




(
P(X)
Q(X)

)a
− 1

a − 1







=
1

a − 1
log(1 + (a − 1)DHa(P ∥ Q))

(18)

Notably, the continuation of Rényi divergence for a = 1 also equals the KL-divergence ([7], p.
116). Renyi divergence can be expressed as an invertible transformation of the Hellinger divergence
(DHa , see Equation 18) [26].

Definition 19 (Rényi-information [7]). Rényi-information is defined equivalent to f -information as shown in
Equation 19 and corresponds to an invertible transformation of Hellinger-information (IHa ).

IRa(S; T) := Ra

(
P(S;T) ∥ PS ⊗ PT

)

=
1

a − 1
log(1 + (a − 1)IHa(S; T))

(19)

Finally, we consider the Bhattacharyya distance (Definition 20), which is equivalent to a linear
scaling from a special case of Rényi divergence (Equation 20) [26]. It is applied, among others, in signal
processing [27] and coding theory [28]. The corresponding information measure (Equation 21) is like
its distance the scaling of a special case of Rényi-information.

Definition 20 (Bhattacharyya distance [29]). Let P and Q be two discrete probability distributions over the
event space X , then the Bhattacharyya distance is defined as shown in Equation 20.

B(P ∥ Q) := − log

(
∑

x∈X

√
P(x)Q(x)

)

= − log

(
∑

x∈X
Q(x)

√
P(x)
Q(x)

)

= − log


1 − 0.5 ·EQ




(
P(X)
Q(X)

)0.5
− 1

0.5 − 1







= − log
(
1 − 0.5 · DH0.5(P ∥ Q)

)

= 0.5 · R0.5(P ∥ Q)

(20)

Definition 21 (Bhattacharyya-information). Bhattacharyya-information is defined equivalent to f -information
as shown in Equation 21.

IB(S; T) := B
(

P(S,T) ∥ PS ⊗ PT

)
= 0.5 · IR0.5(S; T) (21)

Example 2. Consider the channel T κ−→ S with T = {t1, t2} and S = {s1, s2}. While it will be discussed in
more detail in Section 3.1, Equation 22 already indicates that f -information can be interpreted as the expected
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value of quantifying the boundary of the Neyman-Pearson region for an indicator variable of each target state
t ∈ T . Each state of a source variable s ∈ S corresponds to one side/edge of this boundary as discussed in
Section 2.1 and visualized in Figure 2. Therefore, the sum over s ∈ S corresponds to the sum of quantifying each
edge of the zonogon by some function, which is only parameterized by the distribution of the indicator variable for
t. This function satisfies a triangle inequality (Corollary A1) and the total boundary is non-negative (Theorem 2
discussed later). Therefore, we can vaguely think of pointwise f -information as quantifying the length of the
boundary of the Neyman-Pearson region or zonogon perimeter to give an oversimplified intuition.

I f (S; T) = ∑
t∈T

PT(t)




∑
s∈S

quantifies each zonogon edge︷ ︸︸ ︷

PS(s) · f

(
PS|T(s | t)

PS(s)

)



︸ ︷︷ ︸
pointwise information of an indicator variable T = t

(22)

Below is a step-wise computation of χ2-information ( f (z) = (z− 1)2) on a small example from this interpretation
for the setting of Equation 23.

κ = PS|T =

[
p(S = s1 | T = t1) p(S = s2 | T = t1)

p(S = s1 | T = t2) p(S = s2 | T = t2)

]
=

[
0.8 0.2

0.35 0.65

]
(23a)

PT =
[

p(T = t1) p(T = t2)
]
=
[
0.4 0.6

]
(23b)

Since |T | = 2, we compute the pointwise information for two indicator variables as shown in Figure 6. Since
each state s ∈ S corresponds to one edge of the zonogon, we compute them individually. Notice that the
quantification of each vector vsi can be expressed as a function that is only parameterized by the distribution of
the indicator variable. The total zonogon perimeter is quantified to the sum of each of its edges, which equals
pointwise information. In this particular case, we obtain 0.292653 for the total boundary on the indicator of t1

and 0.130068 for the total boundary on the indicator of t2. The expected information corresponds to the expected
value of these pointwise quantifications and provides the final result (Equation 24).

Iχ2(S; T) = p(T = t1) · 0.292653 + p(T = t2) · 0.130068 = 0.195102 (24)
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κ := (T = t1)→ S =
[
v⃗s1 v⃗s2

]
=

[
0.80 0.20
0.35 0.65

]

indicator distribution t1:
[
0.4 0.6

]

PS(s1) =
[
0.4 0.6

]
· v⃗s1 = 0.53

quantification v⃗s1 : 0.53 ·
(

0.8
0.53 − 1

)2
= 0.137547

PS(s2) =
[
0.4 0.6

]
· v⃗s2 = 0.47

quantification v⃗s2 : 0.47 ·
(

0.2
0.47 − 1

)2
= 0.155106

total pointwise χ2-information of t1:

0.137547 + 0.155106 = 0.292653

(a) Pointwise information of indicator T = t1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v⃗s2

v⃗s1

0.068936

0.
06

11
32

True-Positive Rate (TPR)

Fa
ls

e-
Po

si
ti

ve
R

at
e

(F
PR

)

κ := (T = t2)→ S =
[
v⃗s1 v⃗s2

]
=

[
0.35 0.65
0.80 0.20

]

indicator distribution t2:
[
0.6 0.4

]

PS(s1) =
[
0.6 0.4

]
· v⃗s1 = 0.53

quantification v⃗s1 : 0.53 ·
(

0.35
0.53 − 1

)2
= 0.061132

PS(s2) =
[
0.6 0.4

]
· v⃗s2 = 0.47

quantification v⃗s2 : 0.47 ·
(

0.65
0.47 − 1

)2
= 0.068936

total pointwise χ2-information of t2:

0.061132 + 0.068936 = 0.130068

(b) Pointwise information of indicator T = t2

Figure 6: This example visualizes the computation of χ2-information by indicating its results on the representation
of zonogons of an indicator variable. (a) For the pointwise information of t1, both vectors of the zonogon perimeter
are quantified to the sum 0.292653. (b) For the pointwise information of t2, both vectors of the zonogon perimeter are
quantified to the sum of 0.130068. The final χ2-information is their expected value Iχ2 (S; T) = 0.4 · 0.292653 + 0.6 ·
0.130068 = 0.195102.

this requires a meaningful definition of when information is the same. Therefore, Section 3.1 presents
an interpretation of f -information that enables a representation of distinct information. Specifically, we
demonstrate that pointwise f -information for a target state t ∈ T corresponds to the Neyman-Pearson
region of its indicator variable, which is quantified by its boundary (zonogon perimeter). This allows for
the interpretation that each distinct (TPR,FPR)-pair for predicting a state of the target variable provides a
distinct notion of uncertainty. This interpretation of f -information is used in Section 3.2 to construct a
partial information decomposition under the Blackwell order for each state t ∈ T individually. These
individual decompositions are then combined into the final result. Therefore, we decompose specific
information based on the Blackwell order rather than using its minimum, like Williams and Beer [1]. We
use the resulting decomposition of any f -information in Section 3.3 to transform a Hellinger-information
decomposition into a Rényi-information decomposition while maintaining its non-negativity and an
inclusion-exclusion relation. In Sections 3.2 and 3.3, we first demonstrate the decomposition on the
synergy lattice and then its corresponding dual decomposition on the redundancy lattice. To achieve the
desired axioms and properties, we combine different aspects of the existing literature:

• Like Bertschinger et al. [9] and Kolchinsky [16] we base the decomposition on the Blackwell order
and use this to obtain the operational interpretation of the decomposition.

• Like Williams and Beer [1] and related to Lizier et al. [18], Finn and Lizier [13], and Ince [14], we
perform a decomposition from a pointwise perspective but only for the target variable.

• In a similar manner to how Finn and Lizier [13] used probability mass exclusion to differentiate dis-
tinct information, we use Neyman-Pearson regions for each state of a target variable to differentiate
distinct information.

• We propose applying the concepts about lattice re-graduations discussed by Knuth [19] to PIDs
to transform the decomposition of one information measure to another while maintaining its
consistency.

13

Figure 6. This example visualizes the computation of χ2-information by indicating its results on the
representation of zonogons of an indicator variable. (a) For the pointwise information of t1, both vectors
of the zonogon perimeter are quantified to the sum 0.292653. (b) For the pointwise information of t2,
both vectors of the zonogon perimeter are quantified to the sum of 0.130068. The final χ2-information
is their expected value Iχ2 (S; T) = 0.4 · 0.292653 + 0.6 · 0.130068 = 0.195102.

3. Decomposition Methodology

To construct a partial information decomposition in the framework of Williams and Beer [1], we
only have to define a cumulative redundancy measure (I∩) or cumulative loss measure (I∪). However,
doing this requires a meaningful definition of when information is the same. Therefore, Section 3.1
presents an interpretation of f -information that enables a representation of distinct information.
Specifically, we demonstrate that pointwise f -information for a target state t ∈ T corresponds to
the Neyman-Pearson region of its indicator variable, which is quantified by its boundary (zonogon
perimeter). This allows for the interpretation that each distinct (TPR,FPR)-pair for predicting a state of
the target variable provides a distinct notion of uncertainty. This interpretation of f -information is used
in Section 3.2 to construct a partial information decomposition under the Blackwell order for each state
t ∈ T individually. These individual decompositions are then combined into the final result. Therefore,
we decompose specific information based on the Blackwell order rather than using its minimum,
like Williams and Beer [1]. We use the resulting decomposition of any f -information in Section 3.3
to transform a Hellinger-information decomposition into a Rényi-information decomposition while
maintaining its non-negativity and an inclusion-exclusion relation. In Sections 3.2 and 3.3, we first
demonstrate the decomposition on the synergy lattice and then its corresponding dual decomposition
on the redundancy lattice. To achieve the desired axioms and properties, we combine different aspects
of the existing literature:

• Like Bertschinger et al. [9] and Kolchinsky [16] we base the decomposition on the Blackwell order
and use this to obtain the operational interpretation of the decomposition.
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• Like Williams and Beer [1] and related to Lizier et al. [18], Finn and Lizier [13], and Ince [14], we
perform a decomposition from a pointwise perspective but only for the target variable.

• In a similar manner to how Finn and Lizier [13] used probability mass exclusion to differentiate
distinct information, we use Neyman-Pearson regions for each state of a target variable to
differentiate distinct information.

• We propose applying the concepts about lattice re-graduations discussed by Knuth [19] to PIDs
to transform the decomposition of one information measure to another while maintaining its
consistency.

We extend Axiom 3 of Williams and Beer [1] as shown below, to allow binding any information
measure to the decomposition.

Axiom 4 (Self-redundancy). For a single source, redundancy I∩,∗ and information loss I∪,∗ correspond to
information measure I∗ as shown below:

I∩,∗({Si}; T) = I∗(Si; T) and I∪,∗({Si}; T) = I∗(V; T)− I∗(Si; T) (25)

3.1. Representing f-Information

We begin with an interpretation of f -information, for which we define a pointwise (indicator)
variable π(T, t) that represents one state of the target variable (Equation 26a) and construct its pointwise
information channel (Definition 22). Then, we define a function r f based on the generator function of
an f -divergence. This function acts like a pseudo-distance for measuring half the length the zonogon
perimeter of each pointwise information channel (see Figure 2). These zonogon perimeter lengths are
pointwise f -information.

Definition 22 ([Target] pointwise binary input channel). We define a target pointwise binary input
channel κ(S, T, t) from one state of the target variable t ∈ T to an information source S with event space
S = {s1, . . . , sm} as shown in Equation 26b.

π(T, t) :=

{
1 if T = t

0 otherwise
(26a)

κ(S, T, t) := π(T, t) → S =

[
p(S = s1 | T = t) . . . p(S = sm | T = t)
p(S = s1 | T ̸= t) . . . p(S = sm | T ̸= t)

]
(26b)

Definition 23 ([Target] pointwise f -information).

• We define a function r f as shown in Equation 27a to quantify a vector, where 0 ≤ p, x, y ≤ 1.
• We define a target pointwise f -information function i f , as shown in Equation 27b, to quantify half the

zonogon perimeter for the corresponding pointwise channel Z(κ(S, T, t)).

r f
(

p,
[ x

y
])

:= (px + (1 − p)y) · f
(

x
px + (1 − p)y

)
(27a)

i f (p, κ) := ∑
v⃗∈κ

r f (p, v⃗) (27b)

Theorem 1 (Properties of r f ). For a constant 0 ≤ p ≤ 1: (1) the function r f (p, v⃗) is convex in v⃗, (2) scales
linearly in v⃗, (3) satisfies a triangle inequality in v⃗, (4) quantifies any vector of slope one to zero, and (5)
quantifies the zero vector to zero.
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Proof.

1. The convexity of r f (p, v⃗) in v⃗ is shown separately in Lemma A1 of Appendix A.
2. That r f (p, ℓ⃗v) = ℓr f (p, v⃗) scales linearly in v⃗ can directly be seen from Equation 27a.
3. The triangle inequality of r f (p, v⃗) in v⃗ is shown separately in Corollary A1 of Appendix A.
4. A vector of slope one is quantified to zero r f (p,

[
ℓ
ℓ

]
) = ℓ · f (1) = 0, since f (1) = 0 is a

requirement on the generator function of an f -divergence (Definition 15).
5. The zero vector is quantified to zero r f (p,

[
0
0
]
) = 0 · f

( 0
0
)
= 0 by the convention of generator

functions for an f -divergence (Definition 15).

The function r f provides the following properties to the pointwise information measure i f .

Theorem 2 (Properties of i f ). The pointwise information measure i f (1) maintains the ordering relation of the
Blackwell order for binary input channels and (2) is non-negative.

Proof.

1. That the function r f maintains the ordering relation of the Blackwell order on binary input
channels is shown separately in Lemma A2 of Appendix A (Equation 28a).

2. The bottom element ⊥BW =
[

1
1

]
consists of a single vector of slope one, which is quantified

to zero by Theorem 1 (Equation 28b). The combination with Equation 28a ensures the non-
negativity.

κ1 ⊑ κ2 =⇒ i f (p, κ1) ≤ i f (p, κ2), (28a)

i f (p,⊥BW) = 0. (28b)

An f -information corresponds to the expected value of the target pointwise f -information function
defined above (Equation 29). As a result, we can interpret f -information as quantifying (half) the
expected zonogon perimeter length for the pointwise channels Z(κ(S, T, t)), where the function r f acts
as a pseudo-distance.

I f (S; T) = ∑
t∈T

PT(t) · i f (PT(t), κ(S, T, t))

= ∑
t∈T

PT(t) ·

 ∑

v⃗∈κ(S,T,t)
r f (PT(t), v⃗)




= ∑
t∈T

PT(t) ·
[

∑
s∈S

PS(s) · f

(
PS|T(s | t)

PS(s)

)]
(29)

3.2. Decomposing f-Information

With the representation of Section 3.1 in mind, we can define a non-negative partial information
decomposition for a set of visible variables V = {V1, ..., Vn} about a target variable T for any f -
information. The decomposition is performed from a pointwise perspective, which means that we
decompose the pointwise measure i f on the synergy lattice (A(V),⪯) for each t ∈ T . The pointwise
synergy lattices are then combined using a weighted sum to obtain the decomposition of I f .

We map each atom of the synergy lattice to the join of pointwise channels for its contained sources.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 April 2024                   doi:10.20944/preprints202403.0285.v2

https://doi.org/10.20944/preprints202403.0285.v2


19 of 43

Definition 24 (From atoms to channels). We define the channel corresponding to an atom α ∈ A(V) as
shown in Eqation 30.

κ⊔(α, T, t) :=

{
⊥BW if α = ⊤SL = ∅
⊔

S∈α κ(S, T, t)) otherwise
(30)

Lemma 1. For any set of sources α, β ∈ P(P1(V)) and target variable T with state t ∈ T , the function κ⊔
maintains the ordering of the synergy lattice under the Blackwell order as shown in Equation 31.

α ⪯ β =⇒ κ⊔(β, T, t) ⊑ κ⊔(α, T, t) (31)

Lemma 1 is shown separately in Section B.1 of Appendix B. The mapping from Definition 24
provides a lattice that can be quantified using pointwise f -information to construct a cumulative loss
measure for its decomposition using the Möbius inverse.

Definition 25 ([Target] pointwise cumulative and partial loss measures). We define the target pointwise
cumulative and partial loss functions as shown in Equation 32a and 32b.

i∪, f (α, T, t) := i f (PT(t), κ(V, T, t))− i f (PT(t), κ⊔(α, T, t)) (32a)

∆i∪, f (α, T, t) := i∪, f (α, T, t)− ∑
β∈↓̇α

∆i∪, f (β, T, t) (32b)

The combined cumulative and partial measures are the expected value of their correspond-
ing pointwise measures. This corresponds to combining the pointwise decomposition lattices by a
weighted sum.

Definition 26 (Combined cumulative and partial loss measures). The cumulative loss measure I∪, f is
defined by Equation 33 and the decomposition result ∆I∪, f by Equation 34.

I∪, f (α; T) := ∑
t∈T

PT(t) · i∪, f (α, T, t) (33)

∆I∪, f (α; T) := ∑
t∈T

PT(t) · ∆i∪, f (α, T, t)

= I∪, f (α; T)− ∑
β∈↓̇α

∆I∪, f (β; T)
(34)

Theorem 3. The presented definitions for the pointwise and expected loss measures (i∪, f and I∪, f ) provide a
non-negative PID on the synergy lattice with inclusion-exclusion relation that satisfies the Axioms 1, 2 and 4
for any f -information measure.

Proof.

• Axiom 1: The measure i∪, f (Equation 32a) is invariant to permuting the order of sources in α,
since the join operator of the zonogon order (

⊔
S∈α) is. Therefore, also I∪, f satisfies Axiom 1.

• Axiom 2: The monotonicity of both i∪, f and I∪, f on the synergy lattice is shown separately as
Corollary A2 in Appendix B.

• Axiom 4: For a single source, i∪, f equals the pointwise information loss by definition (see
Equation 25, 27b and 32a). Therefore, I∪, f satisfies Axiom 4.
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• Non-negativity: The non-negativity of ∆i∪, f and ∆I∪, f is shown separately as Lemma A7 in
Appendix B.

The function i f (PT(t), κ⊔(α, T, t)) quantifies the convex hull/blackwell join of the Neyman-
Pearson regions of its sources and represents a notion of pointwise union information about the
target state t ∈ T . It is used in Equation 32a to define a pointwise loss measure for the synergy
lattice. However, we can equally define pointwise redundant (intersection) information through an
inclusion-exclusion relation of this union measure. The resulting pointwise and combined cumulative
measures (i∩, f and I∩, f ) are shown in Equation 35. The partial contributions (∆i∩, f and ∆I∩, f ) are
obtained from the Möbius inverse, which results in the corresponding dual decomposition on the
redundancy lattice [23]. This conversion between representations (redundancy lattice ↔ synergy
lattice) can be applied to any cumulative decomposition measure in the framework of Williams and
Beer [1] that satisfies non-negativity.

Definition 27 (Dual decomposition on the redundancy lattice). We define the pointwise and cumulative
redundancy measure as shown in Equation 35.

i∩, f (α, T, t) := ∑
β∈P1(α)

(−1)|β|−1i f (PT(t), κ⊔(β, T, t)) (35a)

I∩, f (α; T) := ∑
t∈T

PT(t) · i∩, f (α, T, t) (35b)

= I f (V; T)− ∑
β∈P1(α)

(−1)|β|−1 I∪, f (β; T) (35c)

Corollary 1. The dual decomposition as defined by Equation 35 provides a non-negative PID which satisfies an
inclusion-exclusion relation and the axioms of Williams and Beer [1] on the redundancy lattice.

Proof. The Axioms 1 and 4 are transformed from Theorem 3 by Equation 35c. The non-negativity is
obtained from Theorem 3 since the partial contributions are identical between dual decompositions [23].
The non-negativity ensures monotonicity (Axiom 2) since the cumulative measure I∩, f is the sum of
(non-negative) partial contributions in its down-set due to the Möbius inverse.

Remark 7. The definitions of Equation 33 and 35 satisfy the desired property of Bertschinger et al. [9], who
argued that any sensible measure for unique and redundant information should only depend on the marginal
distribution of sources.

Remark 8. As discussed before [20], it is possible to further split redundancy into two components for extracting
the pointwise meet under the Blackwell order (zonogon intersection, first component). The second component of
redundancy as defined above contains decision regions that are part of the convex hull but not the individual
channel zonogons (discussed as shared information in [20]). By combining Equation 35 and Lemma A6, we
obtain that both components of this split for redundancy are non-negative.

From a pointwise perspective (|T | = 2), there always exists a dependency between the sources for
which the synergy of this state becomes zero. This dependence corresponds, by definition, to the join
of their channels. This is helpful for the operational interpretation in the following paragraph since,
individually, each pointwise synergy becomes fully volatile to the dependence between the sources.
There may not exist a dependency between the sources for which the expected synergy becomes zero
for |T | > 2. However, each decision region that is quantified as synergetic becomes inaccessible at
some dependence between the sources.
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Operational interpretation: The decomposition obtains the operational interpretation that if
a variable provides pointwise unique information, then there exists a unique decision region for
some t ∈ T that this variable provides access to. Moreover, if a set of variables provides synergetic
information, then a decision region for some t ∈ T may become inaccessible if the dependence between
the variables changes. Due to the equivalence of the zonogon and Blackwell order for binary input
variables, these interpretations can also be transferred to a set of actions a ∈ Ω and a pointwise reward
function u(a, π(T, t)), which only depends on one state of the target variable π(T, t) (see Section 2.1):
If a variable provides unique information, then it provides an advantage for some set of actions and
pointwise reward function, while synergy indicates that the advantage for some pointwise reward
function is based on the dependence between variables.

The implication of the interpretation does not hold in the other direction, which we will also
highlight in the example of I∪,TV in Section 4.1. Finally, the definition of the Blackwell order through
the chaining of channels (Equation 2) highlights its suitability for tracing the flows of information in
Markov chains (see Section 4.2).

3.3. Decomposing Rényi-Information

Since Rényi-information is an invertible transformation of Hellinger-information and α-information,
we argue that their decompositions should be consistent. We propose to view the decomposition
of Rényi-information as a transformation from an f -information and demonstrate the approach by
transferring the Hellinger-information decomposition to a Rényi-information decomposition. Then,
we demonstrate that the result is invariant to a linear scaling of the considered f -information, such
that the transformation from α-information provides identical results. The obtained Rényi-information
decomposition is non-negative and satisfies the three axioms proposed by Williams and Beer [1]
(see below). However, its inclusion-exclusion relation is based on a transformed addition opera-
tor. For transforming the decomposition, we consider Rényi-information to be a re-graduation of
Hellinger-information, as shown in Equation 36.

va(z) :=
1

a − 1
log(1 + (a − 1)z) (36a)

IRa(S; T) = va(IHa(S; T)) (36b)

To maintain consistency when transforming the measure, we also have to transform its operators ([19],
p. 6 ff.):

Definition 28 (Addition of Rényi-information). We define the addition of Rényi-information ⊕a with its
corresponding inverse function ⊖a by Equation 37.

x ⊕a y := va(v−1
a (x) + v−1

a (y)) =
log
(

e(a−1)x + e(a−1)y − 1
)

a − 1
(37a)

x ⊖a y := va(v−1
a (x)− v−1

a (y)) =
log
(

e(a−1)x − e(a−1)y + 1
)

a − 1
(37b)

To transform a decomposition of the synergy lattice, we define the cumulative loss measures
as shown in Equation 38 and use the transformed operators when computing the Möbius inverse
(Equation 39a) to maintain consistency in the results (Equation 39b).
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Definition 29. The cumulative and partial Rényi-information loss measures are defined as transformations of
the cumulative and partial Hellinger-information loss measures, as shown in Equations 38 and 39.

I∪,Ra(α; T) := va(I∪,Ha(α; T)) (38)

∆I∪,Ra(α; T) := I∪,Ra(α; T) ⊖a ∑
β∈↓̇α

∆I∪,Ra(β; T) where: + := ⊕a (39a)

= va(∆I∪,Ha(α; T)) (39b)

Remark 9. We show in Lemma A8 of Appendix C that re-scaling the original f -information does not af-
fect the resulting decomposition or transformed operators. Therefore, transforming a Hellinger-information
decomposition or a α-information decomposition to a Rényi-information decomposition provides identical results.

The operational interpretation presented in Section 3.2 is similarly applicable to partial Rényi-
information (∆I∪,Ra , Equation 39b), since the function va satisfies va(0) = 0 and x ≤ 0 =⇒ 0 ≤ va(x).

Theorem 4. The presented definitions for the cumulative loss measure I∪,Ra provide a non-negative PID on the
synergy lattice with inclusion-exclusion relation under the transformed addition (Definition 28) that satisfies the
Axioms 1, 2 and 4 for any Rényi-information measure.

Proof.

• Axiom 1: I∪,Ra(α; T) is invariant to permuting the order of sources, since I∪,Ha(S; T) satisfies
Axiom 1 (see Section 3.2).

• Axiom 2: I∪,Ra(α; T) satisfies monotonicity, since I∪,Ha(S; T) satisfies Axiom 2 (see Section 3.2)
and the transformation function va is monotonically increasing for a ∈ (0, 1) ∪ (1, ∞).

• Axiom 4: Since I∪,Ha satisfies Axiom 4 (see Section 3.2, Equation 36 and 38), I∪,Ra satisfies the
self-redundancy axiom by definition, however, at a transformed operator: I∪,Ra({Si}; T) =

IRa({V}; T)⊖a IRa({Si}; T).
• Non-negativity: The decomposition of I∪,Ra is non negative, since ∆I∪,Ha is non-negative (see

Section 3.2), the Möbius inverse is computed with transformed operators (Equation 39b) and the
function va satisfies x ≤ 0 =⇒ 0 ≤ va(x).

Remark 10. To obtain an equivalent decomposition of Rényi-information on the redundancy lattice, we can
correspondingly transform the dual decomposition from the redundancy lattice of Hellinger-Information as
shown in Equation 40. The resulting decomposition will satisfy the non-negativity, axioms of Williams and Beer
[1] and an inclusion-exclusion relation under the transformed operators (Definition 28) for the same reasons
described above from Corollary 1.

I∩,Ra(α; T) := va(I∩,Ha(α; T)) (40a)

∆I∩,Ra(α; T) := va(∆I∩,Ha(α; T)) (40b)

Remark 11. The relation between the redundancy and synergy lattice can be used for the definition of a bi-
valution [19] in calculations as discussed in [20]. This is also possible for Rényi-information at transformed
operators.
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When taking the limit of Rényi-information for a → 1, we obtain mutual information (IKL). Since
mutual information is also an f -information, we expect its operators in the Möbius inverse to be
addition. This is indeed the case (Equation 41), and the measures will be consistent.

lim
a→1

x ⊕a y = x + y

lim
a→1

x ⊖a y = x − y
(41)

Finally, the decomposition of Bhattacharyya-information can be obtained by re-scaling the decomposi-
tion of Rényi-information at a = 0.5, which causes another transform of the addition operator for the
inclusion-exclusion relation.

4. Evaluation

A comparison of the proposed decomposition with other methods of the literature can be found
in [20] for mutual information. Therefore, this section first compares different f -information measures
at typical decomposition examples and discusses the special case of total variation (TV)-information to
explain its distinct behavior. Since we can see larger differences between measures in more complex
scenarios, we compare the measures by analyzing the information flows in a Markov chain. We
provide the used implementation for both dual decompositions of f-information and the examples
used in this work at [30].

4.1. Partial Information Decomposition

4.1.1. Comparison of Different f-Information Measures

We use the examples discussed by Finn and Lizier [13] to compare different f -information
decompositions and add a generic example from [20]. All used probability distributions and their
abbreviations can be found in Appendix D. We normalize the decomposition results to the f -Entropy
of the target variable for the visualization in Figure 7.
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Figure 7: Comparison of different f -information measures normalized to the f -Entropy of the target variable. All
distributions are shown in Appendix D and correspond to the examples of [13, 20]. The example name abbreviations
are listed below Table 2. The measures behave mostly similarly since the decompositions follow an identical structure.
However, it can be seen that total variation attributes more information to being redundant than other measures and
appears to behave differently in the generic example since it does not attribute any partial information to the first
variable or their synergy.

4 Evaluation

A comparison of the proposed decomposition with other methods of the literature can be found
in [20] for mutual information. Therefore, this section first compares different f -information measures
at typical decomposition examples and discusses the special case of total variation (TV)-information to
explain its distinct behavior. Since we can see larger differences between measures in more complex
scenarios, we compare the measures by analyzing the information flows in a Markov chain. We provide
the used implementation for both dual decompositions of f-information and the examples used in this
work at [30].

4.1 Partial Information Decomposition

4.1.1 Comparison of different f-information measures

We use the examples discussed by Finn and Lizier [13] to compare different f -information decomposi-
tions and add a generic example from [20]. All used probability distributions and their abbreviations can
be found in Appendix D. We normalize the decomposition results to the f -Entropy of the target variable
for the visualization in Figure 7.

Since all results are based on the same framework, they behave similarly at examples that analyze a
specific aspect of the decomposition function (XOR, Unq, PwUnq, RdnErr, Tbc, AND). However, it can be
observed that the decomposition of total variation (TV) appears to differ from others: (1) In all examples,
total variation attributes more information to being redundant than other measures. (2) In the generic
example, total variation is the only measure that does not attribute any information to being unique to
variable one or synergetic. We discuss the case of total variation in Section 4.1.2 to explain its distinct
behavior.

We visualize the zonogons for the generic example in Figure 11, which shall highlight that the
implication of the operational interpretation does not hold in the other direction: the existence of partial
information implies an advantage for the expected reward towards some state of the target variable, but
an advantage for the expected reward towards some state of the target variable does not imply partial
information in the example of total variation.

19

Figure 7. Comparison of different f -information measures normalized to the f -Entropy of the target
variable. All distributions are shown in Appendix D and correspond to the examples of [13,20]. The
example name abbreviations are listed below Table A1. The measures behave mostly similarly since
the decompositions follow an identical structure. However, it can be seen that total variation attributes
more information to being redundant than other measures and appears to behave differently in the
generic example since it does not attribute any partial information to the first variable or their synergy.
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Since all results are based on the same framework, they behave similarly at examples that analyze
a specific aspect of the decomposition function (XOR, Unq, PwUnq, RdnErr, Tbc, AND). However, it
can be observed that the decomposition of total variation (TV) appears to differ from others: (1) In
all examples, total variation attributes more information to being redundant than other measures. (2)
In the generic example, total variation is the only measure that does not attribute any information to
being unique to variable one or synergetic. We discuss the case of total variation in Section 4.1.2 to
explain its distinct behavior.

We visualize the zonogons for the generic example in Figure A2, which shall highlight that the
implication of the operational interpretation does not hold in the other direction: the existence of
partial information implies an advantage for the expected reward towards some state of the target
variable, but an advantage for the expected reward towards some state of the target variable does not
imply partial information in the example of total variation.

4.1.2. The special case of total variation

The behavior of total variation appears different compared to other f -information measures
(Figure 7). This is due to total variation measuring the perimeter of a zonogon such that the result
corresponds to a linear scaling of the maximal (Euclidean) height h∗ that the zonogon reaches above
the diagonal as visualized in Figure 8.
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Figure 8: Visualization of the maximal (Euclidean) height h∗ at point P∗ that a zonogon (blue) reaches above the
diagonal.

Let α ∈A(Mi) and β ∈A(Mi+1), then we compute information flows equivalently on the redundancy
or synergy lattice as shown in Equation 43. When using a redundancy measure ◦ = ∩, then the strict
down-set of α refers to the strict down-set on its redundancy lattice (A(Mi),≼) and when using a loss
measure ◦ = ∪, then the strict down-set refers to the strict down-set on its synergy lattice (A(Mi),⪯).
We obtain the intersection of cumulative measures by quantifying their meet, which is on both lattice
equivalent to their union of sources (J◦→◦, f , Equation 43a). To obtain how much of the partial contribution
of α can be found in the cumulative measure of β (J∆→◦, f ), we remove the contributions of its down-set
(↓̇α on lattice for A(Mi), see Equation 43b). To finally obtain the flow from the partial contribution of α to
the partial contribution of β (J∆→∆, f ), we similarly remove the contributions of the down-set of β (↓̇β on
lattice for A(Mi+1), see Equation 43c). The approach can be extended for tracing information flows over
multiple steps, however, we will only trace one step in this example.

J◦→◦, f (α, β, T) := I◦, f (α ∪ β; T) (43a)

J∆→◦, f (α, β, T) := J◦→◦, f (α, β, T)− ∑
γ∈↓̇α

J∆→◦, f (γ, β, T) (43b)

J∆→∆, f (α, β, T) := J∆→◦, f (α, β, T)− ∑
γ∈↓̇β

J∆→∆, f (α,γ, T) (43c)

Remark. The resulting partial information flows are equivalent (dual) between the redundancy and loss measure
except for the bottom element since their functionality differs: The flow from or to the bottom element on the
redundancy lattice is always zero. In contrast, the flow from or to the bottom element on the synergy lattice
quantifies the information gained or lost in the step.

Remark. The information flow analysis of Rényi- and Bhattacharyya-information can be obtained as a transfor-
mation of the information flow from Hellinger-information. Alternatively, the information flow can be computed
directly using Equation 43 under the corresponding definition of addition and subtraction for the used information
measure.

We randomly generate an initial distribution and each row of a transition matrix under the constraint
that at least one value shall be above 0.8 to avoid an information decay that is too rapid through the chain.
The specific parameters of the example are shown in Appendix F. The used event spaces are X = {0,1,2}
and Y = {0,1} such that |Mi|= 6. We construct a Markov chain of five steps with the target T = M3 and
trace each partial information for one step using Equation 43. We visualized the results for KL-, TV-, and
χ2-information in Figure 9, and the results for H2-, LC- and JS-information in Figure 12 of Appendix F.

All results display the expected behavior that the information that Mi provides about M3 increases for
1 ≤ i ≤ 3 and decreases for 3 ≤ i ≤ 5. The information flow results of KL-, H2-, LC-, and JS-information
are conceptually similar. Their main differences appear in the rate at which the information decays
and, therefore, how much of the total information we can trace. In contrast, the results of TV- and
χ2-information display different behavior, as shown in Figure 9: TV-information indicates significantly
more redundancy, and χ2-information displays significantly more synergy than the other measures.
Additionally, the decomposition of TV-information contains fever information flows. For example, it is
the only analysis that does not show any information flow from M2 into the unique contribution of Y3 or
from M2 into the synergy of (X3,Y3). This demonstrates that the same decomposition method can obtain
different behaviors from different f -divergences.

21

Figure 8. Visualization of the maximal (Euclidean) height h∗ at point P∗ that a zonogon (blue) reaches
above the diagonal.

Remark 12. From a cost perspective, the height h∗ can be interpreted as performance evaluation of the optimal
decision strategy (symmetric point to P∗ in the lower zonogon half) for a prediction T̂ with minimal expected cost

at the cost ratio Cost(T=t,T̂ ̸=t)−Cost(T=t,T̂=t)
Cost(T ̸=t,T̂=t)−Cost(T ̸=t,T̂ ̸=t)

= 1−PT(t)
PT(t)

(see Equation 8 of [31]) for each target state individually.

Lemma 2.

a) The pointwise total variation (iTV) is a linear scaling of the maximal (Euclidean) height h∗ that the
corresponding zonogon reaches above the diagonal, as visualized in Figure 8 (Equation 42a).

b) For a non-empty set of pointwise channels A, pointwise total variation iTV quantifies the join element to
the maximum of its individual channels (Equation 42b).

c) The loss measure i∪,TV quantifies the meet for a set of sources on the synergy lattice to their minimum
(Equation 42c).
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iTV(p, κ) =
1 − p

2 ∑
v∈κ

|vx − vy| = (1 − p)
h∗√

2
(42a)

iTV(p,
⊔

κ∈A
κ) = max

κ∈A
iTV(p, κ) (42b)

i∪,TV(
∧

α∈A
α, T, t) = min

α∈A
i∪,TV(α, T, t) (42c)

Proof. The proof of the first two statements (Equation 42b and 42b) is provided separately in Ap-
pendix E, which imply the third (Equation 42c) by Definition 25.

Quantifying the meet element on the synergy lattice to the minimum has the following con-
sequences for total variation: (1) It attributes a minimum amount of synergy, and therefore more
information to redundancy than other measures. (2) For each state of the target, at most one variable
can provide unique information. In the case of |T | = 2, the pointwise channels are symmetric (see
Equation 6), such that the same variable provides the maximal zonogon height both times. This is the
case in the generic example of Figure 7, and the reason why at most one variable can provide unique
information in this setting. However, beyond binary targets (|T | > 2), both variables may provide
unique information at the same time since different sources can provide the maximal zonogon height
for different target states (see later example in Figure 9).

Remark 13. Using the pointwise minimum on the synergy lattice results in a similar structure to the proposed
measure of Williams and Beer [1]. However, TV-information is based on a different pointwise measure iTV ,
which displays the same behavior (Equation 42b), unlike pointwise KL-information.

4.2. Information Flow Analysis

The differences between f -information measures in Section 4.1 appear more visible in complex scenarios.
Therefore, this section compares different measures in the information flow analysis of a Markov chain.

Consider a Markov chain M1 → M2 → · · · → M5, where Mi = (Xi, Yi) is the joint distribution of
two variables. Assume that we are interested in state three and thus define T = M3 as the target variable.
Using the approach described in Section 3, we can compute an information decomposition for each state
Mi of the Markov chain with respect to the target. Now, we are additionally interested in how the partial
information decomposition from stage Mi propagates into the next Mi+1, as visualized in Figure 9.

Definition 30 (Partial information flow). The partial information flow of an atom α ∈ A(Mi) into the atom
β ∈ A(Mi+1) quantifies the redundancy between the partial contributions of their respective decomposition lattices.

Notation 8. We use the notation I◦, f with ◦ ∈ {∪,∩} to refer to either the loss measure I∪, f or redundancy
measure I∩, f . The same applies to the functions J◦→◦, f and J∆→◦, f of Equation 43.

Let α ∈ A(Mi) and β ∈ A(Mi+1), then we compute information flows equivalently on the
redundancy or synergy lattice as shown in Equation 43. When using a redundancy measure ◦ = ∩,
then the strict down-set of α refers to the strict down-set on its redundancy lattice (A(Mi),≼) and
when using a loss measure ◦ = ∪, then the strict down-set refers to the strict down-set on its synergy
lattice (A(Mi),⪯). We obtain the intersection of cumulative measures by quantifying their meet,
which is on both lattice equivalent to their union of sources (J◦→◦, f , Equation 43a). To obtain how
much of the partial contribution of α can be found in the cumulative measure of β (J∆→◦, f ), we remove
the contributions of its down-set (↓̇α on lattice for A(Mi), see Equation 43b). To finally obtain the flow
from the partial contribution of α to the partial contribution of β (J∆→∆, f ), we similarly remove the
contributions of the down-set of β (↓̇β on lattice for A(Mi+1), see Equation 43c). The approach can be
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extended for tracing information flows over multiple steps, however, we will only trace one step in
this example.
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Figure 9: Analysis of the Markov chain information flow (Equation 71). Visualized results for the information
measures: KL, TV, and χ2. The remaining results (H2-, LC-, and JS-information) can be found in Figure 12.

5 Discussion

Using the Blackwell-order to construct pointwise lattices and to decompose pointwise information is
motivated from the following three aspects:

• All information measures in Section 2.3 are the expected value of the pointwise information
(quantification of the Neyman-Pearson region boundary) for an indicator variable of each target
state. Therefore, we argue for acknowledging the “pointwise nature” [13] of these information
measures and to decompose them accordingly. A similar argument was made previously by Finn
and Lizier [13] for the case of mutual information and motivated their proposed pointwise partial
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Figure 9. Analysis of the Markov chain information flow (Equation A27). Visualized results for the
information measures: KL, TV, and χ2. The remaining results (H2-, LC-, and JS-information) can be
found in Figure A3.
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J◦→◦, f (α, β, T) := I◦, f (α ∪ β; T) (43a)

J∆→◦, f (α, β, T) := J◦→◦, f (α, β, T)− ∑
γ∈↓̇α

J∆→◦, f (γ, β, T) (43b)

J∆→∆, f (α, β, T) := J∆→◦, f (α, β, T)− ∑
γ∈↓̇β

J∆→∆, f (α, γ, T) (43c)

Remark 14. The resulting partial information flows are equivalent (dual) between the redundancy and loss
measure except for the bottom element since their functionality differs: The flow from or to the bottom element on
the redundancy lattice is always zero. In contrast, the flow from or to the bottom element on the synergy lattice
quantifies the information gained or lost in the step.

Remark 15. The information flow analysis of Rényi- and Bhattacharyya-information can be obtained as a transforma-
tion of the information flow from Hellinger-information. Alternatively, the information flow can be computed directly
using Equation 43 under the corresponding definition of addition and subtraction for the used information measure.

We randomly generate an initial distribution and each row of a transition matrix under the
constraint that at least one value shall be above 0.8 to avoid an information decay that is too rapid
through the chain. The specific parameters of the example are shown in Appendix F. The used event
spaces are X = {0, 1, 2} and Y = {0, 1} such that |Mi| = 6. We construct a Markov chain of five
steps with the target T = M3 and trace each partial information for one step using Equation 43. We
visualized the results for KL-, TV-, and χ2-information in Figure 9, and the results for H2-, LC- and
JS-information in Figure A3 of Appendix F.

All results display the expected behavior that the information that Mi provides about M3 increases
for 1 ≤ i ≤ 3 and decreases for 3 ≤ i ≤ 5. The information flow results of KL-, H2-, LC-, and JS-
information are conceptually similar. Their main differences appear in the rate at which the information
decays and, therefore, how much of the total information we can trace. In contrast, the results of TV- and
χ2-information display different behavior, as shown in Figure 9: TV-information indicates significantly
more redundancy, and χ2-information displays significantly more synergy than the other measures.
Additionally, the decomposition of TV-information contains fever information flows. For example, it is
the only analysis that does not show any information flow from M2 into the unique contribution of Y3

or from M2 into the synergy of (X3, Y3). This demonstrates that the same decomposition method can
obtain different behaviors from different f -divergences.

5. Discussion

Using the Blackwell-order to construct pointwise lattices and to decompose pointwise information
is motivated from the following three aspects:

• All information measures in Section 2.3 are the expected value of the pointwise information
(quantification of the Neyman-Pearson region boundary) for an indicator variable of each target
state. Therefore, we argue for acknowledging the “pointwise nature” [13] of these information
measures and to decompose them accordingly. A similar argument was made previously by Finn
and Lizier [13] for the case of mutual information and motivated their proposed pointwise partial
information decomposition.

• The Blackwell order does not form a lattice beyond indicator variables since it does not provide
a unique meet or join element for |T | > 2 [17]. However, from a pointwise perspective, the
informativity (Definition 2) provides a unique representation of union information. This enables
separating the definition of redundant, unique and synergetic information from a specific infor-
mation measure, which then only serves for its quantification. We interpret these observations as
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indication that the Blackwell order should be used to decompose pointwise information based
on indicator variables rather than decomposing the expected information based on the full target
distribution.

• We can consider where the alternative approach would lead, if we decomposed the expected
information from the full target distribution using the Blackwell order: the decomposition
would become identical to the method of Bertschinger et al. [9] and Griffith and Koch [10].
For bivariate examples (|V| = 2), this decomposition [9,10] is non-negative and satisfies an
additional property (identity, proposed by Harder et al. [5]). However, the identity property
is inconsistent [32] with the Axioms of Williams and Beer [1] and non-negativity for |V| >
2. This causes negative partial information when extending the approach to |V| > 2. The
identity property also contradicts the conclusion of Finn and Lizier [13] from studying Kelly
Gambling that “information should be regarded as redundant information, regardless of the
independence of the information sources” ([13], p. 26). It also contradicts our interpretation of
distinct information through distinct decision regions when predicting an indicator variable for
some target state. We do not argue that this interpretation should be applicable to the concept
of information in general, but acknowledge that this behavior seems present in the information
measures studied in this work and construct their decomposition accordingly.

Our critique for the decomposition measure of Williams and Beer [1] focuses on the implication
that a less informative variable (Definition 2) about t ∈ T provides less pointwise information
(I(S; T = t), Definition 14a): κ(S1, T, t) ⊑ κ(S2, T, t) =⇒ I(S1; T = t) ≤ I(S2; T = t). This implication
does not hold in the other direction. Therefore, equal pointwise information does not imply equal
informativity and thus does not mean being redundant.

We chose to define a notion of pointwise union information based on the join of the Blackwell
order since it leads to a meaningful operational interpretation: the convex hull of the pointwise
Neyman-Pearson regions is always a subset of their joint distribution. Moreover, it is possible to
construct joint distributions for which each individual decision region outside the convex hull becomes
inaccessible, even if there may not exist one unique joint distribution at which all synergetic regions
are lost simultaneously. This volatility due to the dependence between variables appears suitable for a
notion of synergy. Similarly, the resulting unique information appears suitable since it ensures that
a variable with unique information must provide access to some additional decision region. Finally,
the obtained unique and redundant information is sensible [9] since it only depends on the marginal
distributions with the target.

We perform the decomposition on a pointwise lattice using the Blackwell join since it is possible
to represent f -information as the expected value of quantifying the Neyman-Pearson region boundary
(zonogon perimeter) for indicator variables (pointwise channels). Since the pointwise measures satisfy
a triangle inequality, we mentioned the oversimplified intuition of pointwise f -information as length
of the zongon perimeter. Correspondingly, if we identified an information measure that behaved
more like the area of the zonogon (which could also maintain their ordering), then we would need to
decompose it on a pointwise lattice using the Blackwell meet to achieve non-negativity. We assume
that most information measures behave more similar to quantifying the boundary length rather
than its area, since the boundary segments can directly be obtained from the conditional probability
distribution and do not require an actual construction from the likelihood-ratio test.

In the literature, PIDs have been defined based on different ordering relations [16], the Blackwell
order being only one of them. We think that this diversity is desirable since each approach provides
a different operational interpretation of redundancy and synergy. For this reason, we wonder if
obtaining a non-negative decomposition with inclusion-exclusion relation for other ordering relations
was possible when transferring them to a pointwise perspective or from mutual information to other
information measures.

Studying the relations between different information measures for the same decomposition
method may provide further insights into their properties, as demonstrated by the example of total
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variation in Section 4.2. The ability to decompose different information measures is also a necessity to
apply the method in a variety of areas, since each information measure can then provide the operational
meaning within its respective domains. To ensure consistency between related information measures,
we allowed the re-definition of information addition, as demonstrated in the example of Rényi-
information in Section 3.3, which also opens new possibilities for satisfying the inclusion-exclusion
relation.

There is currently no universally accepted definition of conditional Rényi information. Assuming
that IRa(T; Si | Sj) should capture the information that Si provides about T when already knowing the
information from Sj, then one could propose that this quantity should correspond to the according
partial information contributions (unique/synergetic) and thus the definition of Equation 44.

With this in mind, it is also possible to define, model, decompose and trace Transfer Entropy [33],
used in the analysis of complex systems, for each presented information measure with the methodology
of Section 4.2.

IRa(T; Si | Sj) := IRa(T; Si, Sj)⊖ IRa(T; Sj) (44)

Finally, studying the corresponding definitions for continuous random variables and identifying
suitable information measures for specific applications would be interesting directions for future work.

6. Conclusions

In this work, we demonstrated a non-negative PID in the framework of Williams and Beer [1] for
any f -information with practical operational interpretation. We demonstrated that the decomposition
of f -information can be used to obtain a non-negative decomposition of Rényi-information, for which
we re-defined the addition to demonstrate that its results satisfy an inclusion-exclusion relation.
Finally, we demonstrated how the proposed decomposition method can be used for tracing the
flow of information through Markov chains and how the decomposition obtains different properties
depending on the chosen information measure.
Funding: This research was funded by Swedish Civil Contingencies Agency (MSB) through the project RIOT
grant number MSB 2018-12526.

Appendix A Quantifying Zonogon Perimeters

Lemma A1. If the function f is convex, then the function r f (p, v⃗) as defined in Equation 27a is convex in its
second argument (⃗v) for a constant p ∈ [0, 1] and v⃗ ∈ [0, 1]2.

Proof. We use the following definitions for abbreviating the notation. Let 0 ≤ t ≤ 1 and v⃗i =
[ xi

yi

]
:

a1 := x1 p + y1(1 − p)

a2 := x2 p + y2(1 − p)

b1 :=
ta1

ta1 + (1 − t)a2

b2 :=
(1 − t)a2

ta1 + (1 − t)a2
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The case of ai = 0 is handled by the convention that 0 · f
( 0

0
)
= 0. Therefore, we can assume that ai ̸= 0

and use 0 ≤ b1 ≤ 1 with b2 = 1 − b1 to apply the definition of convexity on the function f :

r f

(
p,
[

tx1+(1−t)x2
ty1+(1−t)y2

])
= (ta1 + (1 − t)a2) · f

(
tx1 + (1 − t)x2

ta1 + (1 − t)a2

)

= (ta1 + (1 − t)a2) · f
(

b1
x1

a1
+ b2

x2

a2

)

≤ (ta1 + (1 − t)a2) ·
(

b1 f
(

x1

a1

)
+ b2 f

(
x2

a2

))
(by convexity of f )

= ta1 · f
(

x1

a1

)
+ (1 − t)a2 · f

(
x2

a2

)

= t · r f
(

p,
[ x1

y1

])
+ (1 − t) · r f

(
p,
[ x2

y2

])

Corollary A1. For a constant p ∈ [0, 1] and v⃗1, v⃗2, (⃗v1 + v⃗2) ∈ [0, 1]2, the function r f (p, v⃗) as defined in
Equation 27a satisfies a triangle inequality on its second argument: r f (p, v⃗1 + v⃗2) ≤ r f (p, v⃗1) + r f (p, v⃗2).

Proof.

r f (p, ℓ⃗v1 + (1 − ℓ)⃗v2) ≤ ℓr f (p, v⃗1) + (1 − ℓ)r f (p, v⃗2) (be Lemma A1)

r f (p, 0.5(⃗v1 + v⃗2)) ≤ 0.5
(

r f (p, v⃗1) + r f (p, v⃗2)
)

(let ℓ = 0.5)

r f (p, v⃗1 + v⃗2) ≤ r f (p, v⃗1) + r f (p, v⃗2) (by r f (p, ℓ⃗v) = ℓr f (p, v⃗))

Lemma A2. For a constant p ∈ [0, 1], the function i f maintains the ordering relation from the Blackwell order
on binary input channels: κ1 ⊑ κ2 =⇒ i f (p, κ1) ≤ i f (p, κ2).

Proof. Let κ1 be represented by a 2 × n matrix and κ2 by a 2 × m matrix. By the definition of the
Blackwell order (κ1 ⊑ κ2, Equation 2), there exists a stochastic matrix λ such that κ1 = κ2 · λ. We use
the notation κ2[:, i] to refer to the ith column of matrix κ2 and indicate the element at row i ∈ {1..m}
and column j ∈ {1..n} of λ by λ[i, j]. Since λ is a valid (row) stochastic matrix of dimension m × n, its
rows sum to one ∀i ∈ {1..m}. ∑n

j=1 λ[i, j] = 1.

i f (p, κ1) =
n

∑
j=1

r f (p, κ1[:, j]) (by Equation 27b)

=
n

∑
j=1

r f (p,
m

∑
i=1

κ2[:, i]λ[i, j]) (by Equation 2)

≤
n

∑
j=1

m

∑
i=1

r f (p, κ2[:, i]λ[i, j]) (by Corollary A1)

=
n

∑
j=1

m

∑
i=1

λ[i, j]r f (p, κ2[:, i]) (by r f (p, ℓ⃗v) = ℓr f (p, v⃗))

=
m

∑
i=1

r f (p, κ2[:, i]) (by
n

∑
j=1

λ[i, j] = 1)

= i f (p, κ2) (by Equation 27b)
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Lemma A3. Consider two non-empty sets of binary input channels with equal cardinality (|A| = |B|) and a
constant p ∈ [0, 1]. If the Minkowski sum for the zonogons of channels in A is a subset of the Minkowski sum
for the zonogons of channels in B, then the sum of pointwise information for the channels in A is less than the
sum of pointwise information for the channels in B as shown in Equation A1.

∑
κ∈A

Z(κ) ⊆ ∑
κ∈B

Z(κ) =⇒ ∑
κ∈A

i f (p, κ) ≤ ∑
κ∈B

i f (p, κ) (A1)

Proof. Let n = |A| = |B|. We use the notation A[i] with 1 ≤ i ≤ n to indicate the channel κi within
the set A.

n

∑
i=1

Z(A[i]) ⊆
n

∑
i=1

Z(B[i])

Z
([

A[1] . . . A[n]
])

⊆ Z
([

B[1] . . . B[n]
])

(by Equation 4)

Z
(

1
n
·
[
A[1] . . . A[n]

])
⊆ Z

(
1
n
·
[
B[1] . . . B[n]

])
(scale to sum (1, 1))

i f

(
p,

1
n
·
[
A[1] . . . A[n]

])
≤ i f

(
p,

1
n
·
[
B[1] . . . B[n]

])
(by Eq. 5, Lem. A2)

n

∑
i=1

i f

(
p,

1
n

A[i]
)
≤

n

∑
i=1

i f

(
p,

1
n

B[i]
)

(by Equation 27b)

1
n

n

∑
i=1

i f (p, A[i]) ≤ 1
n

n

∑
i=1

i f (p, B[i]) (by r f (p, ℓ⃗v) = ℓr f (p, v⃗))

∑
κ∈A

i f (p, κ) ≤ ∑
κ∈B

i f (p, κ)

Appendix B The Non-Negativity of Partial f-Information

The proof of non-negativity can be divided into three parts. First, we show that the loss measure
maintains the ordering relation of the synergy lattice and how the quantification of a meet element
i∪, f (α ∧ β, T, t) can be computed. Second, we demonstrate the construction of a bijective mapping
between all subsets of even and odd cardinality that maintains a required subset relation for any
selection function. Finally, we combine these two results to demonstrate that an inclusion-exclusion
relation using the convex hull of zonogons is greater than their intersection and obtain the non-
negativity of the decomposition by transitivity.

Appendix B.1 Properties of the Loss Measure on the Synergy Lattice

We require some of the following properties to hold for any set of sources α ∈ P(P1(V)).
Therefore, we define an equivalence relation from the ordering of the synergy lattice (∼=) as shown in
Equation A2.

Notation A1 (Equivalence under synergy-ordering). We use the notation α ∼= β for the equivalence of two
sets of sources α, β ∈ P(P1(V)) on the synergy lattice.

(α ∼= β) ⇐⇒ (α ⪯ β and β ⪯ α) (A2)

Lemma A4. Any set of sources α ∈ P(P1(V)) is equivalent (∼=) to some atom of the synergy lattice γ ∈ A(V).

∀α ∈ P(P1(V)). ∃γ ∈ A(V). γ ∼= α
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The union for two sets of sources is equivalent to the meet of their corresponding atoms on the synergy lattice.
Let α, β ∈ P(P1(V)) and γ, δ ∈ A(V):

γ ∼= α and δ ∼= β =⇒ (γ ∧ δ) ∼= (α ∪ β)

Proof. The used filter in the definition of an atom (A(V) ⊆ P(P1(V)), Equation 8) only removes sets
of cardinality 2 ≤ |α| and for any removed set of sources, we can construct an equivalent set which
contains one less source by removing the subset Sa ⊂ Sb as shown in Equation A3a. Therefore, all sets
of sources α ∈ P(P1(V)) are equivalent to some atom γ ∈ A(V) within the lattice (Equation A3b).

Sa ⊂ Sb =⇒ α ∼= (α \ Sa) where: Sa, Sb ∈ α (A3a)

∀α ∈ P(P1(V)), ∃γ ∈ A(V). α ∼= γ (A3b)

The union of two sets of sources α ∈ P(P1(V)) is inferior to each individual set α and β:

(α ∪ β) ⪯ α (by Equation 10)

(α ∪ β) ⪯ β (by Equation 10)

All sets of sources ε ∈ P(P1(V)) that are inferior of both α and β (ε ⪯ α and ε ⪯ β) are also inferior to
their union.

ε ⪯ α and ε ⪯ β =⇒ ε ⪯ (α ∪ β) (by Equation 10)

Therefore, the union of α and β is equivalent to the meet of their corresponding atoms on the synergy
lattice.

Proof of Lemma 1 from Section 3.2:
For any set of sources α, β ∈ P(P1(V)) and target variable T with state t ∈ T , the function κ⊔ (Equation 30)
maintains the ordering from the synergy lattice under the Blackwell order.

α ⪯ β =⇒ κ⊔(β, T, t) ⊑ κ⊔(α, T, t) (A4)

Proof. We consider two cases for β:

1. If β = ∅, then the implication holds for any α since the bottom element κ⊔(∅, T, t) = ⊥BW is
inferior (⊑) to any other channel.

2. If β ̸= ∅, then α is also a non-empty set since α ⪯ β ≺ ⊤SL = ∅.

α ⪯ β

∀Sb ∈ β, ∃Sa ∈ α. Sb ⊆ Sa (by Equation 10)

∀Sb ∈ β, ∃Sa ∈ α. κ(Sb, T, t) ⊑ κ(Sa, T, t) (by Equation 2)
⊔

Sb∈β

κ(Sb, T, t) ⊑
⊔

Sa∈α

κ(Sa, T, t)

κ⊔(β, T, t) ⊑ κ⊔(α, T, t)

Since the implication holds for both cases, the ordering is maintained.

Corollary A2. The defined cumulative loss measures (i∪, f of Equation 32a and I∪, f of Equation 33) maintain
the ordering relation of the synergy lattice for any set of sources α, β ∈ P(P1(V)) and target variable T with
state t ∈ T :

α ⪯ β =⇒ i∪, f (α, T, t) ≤ i∪, f (β, T, t)

α ⪯ β =⇒ I∪, f (α; T) ≤ I∪, f (β; T)
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Proof. The pointwise monotonicity of the cumulative loss measure (α ⪯ β =⇒ i∪, f (α, T, t) ≤
i∪, f (β, T, t)) is obtained from Lemma 1 and A2 with Equation 32a. Sine all cumulative pointwise
losses i∪, f are smaller for α than β, so will be their weighted sum (α ⪯ β =⇒ I∪, f (α; T) ≤ I∪, f (β; T),
see Equation 33).

Corollary A3. The cumulative pointwise loss of the meet from two atoms is equivalent to the cumulative
pointwise loss of their union for any target variable T with state t ∈ T :
i∪, f (α ∧ β, T, t) = i∪, f (α ∪ β, T, t).

Proof. The result follows from Lemma A4 and Corollary A2.

Appendix B.2 Mapping subsets of even and odd cardinality

Let P(A) represent the power-set of a non-empty set A ̸= ∅ and separate the subsets of even (Le)
and odd (Lo) cardinality as shown below. Additionally, let L≤1 represent all subsets with cardinality
less or equal to one and L1 all subsets of cardinality equal to one:

L≤1 := {B ∈ P(A) : |B| ≤ 1}
L1 := {B ∈ P(A) : |B| = 1}
Le := {B ∈ P(A) : |B| even}
Lo := {B ∈ P(A) : |B| odd}

P(A) = Le ∪ Lo and ∅ = Le ∩ Lo

(A5)

The number of subsets with even cardinality is equal to the number of subsets with odd cardinality as
shown in Equation A6.

|Le| =

⌊ |A|
2

⌋

∑
i=0

(|A|
2i

)
= 2|A|−1 =

⌊ |A|
2

⌋

∑
i=0

( |A|
2i + 1

)
= |Lo| (A6)

Consider a function ge : Le → L≤1, which takes an even subset E ∈ Le and returns a subset of
cardinality |ge(E)| = min(|E|, 1) according to Equation A7.

∀E ∈ Se :

{
ge(E) = ∅ if E = ∅

ge(E) = {e} s.t. e ∈ E otherwise
(A7)

Lemma A5. For any function ge ∈ Ge, there exists a function G : (Le,Ge) → Lo which satisfies the following
two properties:

a) For any subset with even cardinality, the function ge(·) returns a subset of function G(·):

∀ge ∈ Ge, E ∈ Le : ge(E) ⊆ G(E, ge). (A8)

b) The function G(·) which satisfies Equation A8 has an inverse on its first argument G−1 : (Lo,Ge) → Le.

∀ge ∈ Ge, E ∈ Le, ∃G−1 : G−1(G(E, ge), ge) = E. (A9)

Proof. We construct a function G for an arbitrary ge and demonstrate that it satisfies both properties
(Equation A8 and A9) by induction on the cardinality of A. We indicate the cardinality of A with
n = |A| as subscript An, Le,n, Lo,n and Gn:
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1. At the base case A1 = {a}, the sets of subsets are Le,1 = {∅} and Lo,1 = {{a}}. We define the
function G1(∅, ge) := {a} for any ge to satisfy both required properties:

a) The constraints of Equation A7 ensures that ge(∅) = ∅. Since the empty set is the only
element in Se,1, the subset relation (requirement of Equation A8) is satisfied ge(∅) = ∅ ⊆
{a} = G1(∅, ge).

b) The function G1 : (Le,1,Ge) → Lo,1 is a bijection from Le,1 to Lo,1 and therefore has an
inverse on its first argument G−1

1 : (Lo,1,Ge) → Le,1 (requirement of Equation A9).

2. Assume there exists a function Gn, which satisfies both required properties (Equation A8 and A9)
at sets of cardinality 1 ≤ n = |An|.

3. For the induction step, we show the definition of a function Gn+1 that satisfies both required
properties. For sets An+1 = An ∪ {q}, the subsets of even and odd cardinality can be expanded
as shown in Equation A10.

Le,n+1 = Le,n ∪ {O ∪ {q} : O ∈ Lo,n},

Lo,n+1 = Lo,n ∪ {E ∪ {q} : E ∈ Le,n}.
(A10)

We define Gn+1 for E ∈ Le,n and O ∈ Lo,n at any ge as shown in Equation A11 using the function
Gn and its inverse G−1

n from the induction hypothesis. The function Gn+1 is defined for any
subset in Le,n+1 as it can be seen from Equation A10.

Gn+1(E, ge) :=

{
E ∪ {q} if ge(Gn(E, ge) ∪ {q}) ̸= {q}
Gn(E, ge) if ge(Gn(E, ge) ∪ {q}) = {q}

Gn+1(O ∪ {q}, ge) :=

{
O if ge(O ∪ {q}) ̸= {q}
G−1

n (O, ge) ∪ {q} if ge(O ∪ {q}) = {q}

(A11)

Figure A1 provides an intuition for the definition of Gn+1: the outcome of ge(O∪{q}) determines,
if the function Gn+1 maintains or breaks the mapping of Gn.

a) The constraints of Equation 51 ensures that ge(∅) = ∅. Since the empty set is the only
element in Se,1, the subset relation (requirement of Equation 52) is satisfied ge(∅) = ∅ ⊆ {a}=
G1(∅, ge).

b) The function G1 : (Le,1,Ge)→Lo,1 is a bijection from Le,1 to Lo,1 and therefore has an inverse
on its first argument G−1

1 : (Lo,1,Ge)→Le,1 (requirement of Equation 53).

2. Assume there exists a function Gn, which satisfies both required properties (Equation 52 and 53) at
sets of cardinality 1 ≤ n = |An|.

3. For the induction step, we show the definition of a function Gn+1 that satisfies both required
properties. For sets An+1 = An ∪ {q}, the subsets of even and odd cardinality can be expanded as
shown in Equation 54.

Le,n+1 = Le,n ∪ {O ∪ {q} : O ∈ Lo,n} ,
Lo,n+1 = Lo,n ∪ {E ∪ {q} : E ∈ Le,n} .

(54)

We define Gn+1 for E ∈ Le,n and O ∈ Lo,n at any ge as shown in Equation 55 using the function Gn
and its inverse G−1

n from the induction hypothesis. The function Gn+1 is defined for any subset in
Le,n+1 as it can be seen from Equation 54.

Gn+1(E, ge) :=

{
E ∪ {q} if ge(Gn(E, ge) ∪ {q}) ̸= {q}
Gn(E, ge) if ge(Gn(E, ge) ∪ {q}) = {q}

Gn+1(O ∪ {q}, ge) :=

{
O if ge(O ∪ {q}) ̸= {q}
G−1

n (O, ge) ∪ {q} if ge(O ∪ {q}) = {q}

(55)

Figure 10 provides an intuition for the definition of Gn+1: the outcome of ge(O ∪ {q}) determines,
if the function Gn+1 maintains or breaks the mapping of Gn.

P(An) {B ∪ {q} : B ∈ P(An)}

P(An+1)

Gn Gn+1Gn+1
Gn+1

Gn+1

E = G−1
n (O, ge)

O = Gn(E, ge)

E ∪ {q} = G−1
n (O, ge) ∪ {q}

O ∪ {q} = Gn(E, ge) ∪ {q}

if ge(O ∪ {q}) = {q}:

if ge(O ∪ {q}) ̸= {q}:

Figure 10: Intuition for the definition of Equation 55. We can divide the set P(An+1) into P(An) and {B ∪ {q} : B ∈
P(An)}. The definition of function Gn+1 mirrors Gn if ge(O ∪ {q}) = {q} (blue) and otherwise breaks its mapping
(orange).

The function F as defined in Equation 55 satisfies both requirements (Equation 52 and 53) for any
ge:

a) To demonstrate that the function satisfies the subset relation of Equation 52, we analyze the
four cases for the return value of Gn+1 as defined in Equation 55 individually:

– ge(E) ⊆ E ∪ {q} holds, since the function ge always returns a subset of its input (Equation
51).

– ge(E) ⊆ Gn(E, ge) holds by the induction hypothesis.
– if ge(O ∪ {q}) ̸= {q} then ge(O ∪ {q})⊆ O: Since the input to function ge is not the empty

set, the function ge(O ∪ {q}) returns a singleton subset of its input (Equation 51). If the
element in the singleton subset is unequal to q, then it is a subset of O.

– if ge(O ∪ {q}) = {q} then ge(O ∪ {q}) ⊆ {q} ∪ G−1
n (O, ge) holds trivially.

b) To demonstrate that the function Gn+1 has an inverse (Equation 53), we show that the function
Gn+1 is a bijection from Le,n+1 to Lo,n+1. Since the function Gn+1 is defined for all elements in
Le,n+1 and both sets have the same cardinality (|Le,n+1|= |Lo,n+1|, Equation 50), it is sufficient
to show that the function Gn+1 is distinct for all inputs.

28

Figure A1. Intuition for the definition of Equation A11. We can divide the set P(An+1) into P(An)

and {B ∪ {q} : B ∈ P(An)}. The definition of function Gn+1 mirrors Gn if ge(O ∪ {q}) = {q} (blue)
and otherwise breaks its mapping (orange).

The function F as defined in Equation A11 satisfies both requirements (Equation A8 and A9) for
any ge:

a) To demonstrate that the function satisfies the subset relation of Equation A8, we analyze the
four cases for the return value of Gn+1 as defined in Equation A11 individually:

– ge(E) ⊆ E ∪ {q} holds, since the function ge always returns a subset of its input
(Equation A7).
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– ge(E) ⊆ Gn(E, ge) holds by the induction hypothesis.
– if ge(O ∪ {q}) ̸= {q} then ge(O ∪ {q}) ⊆ O: Since the input to function ge is not the

empty set, the function ge(O∪ {q}) returns a singleton subset of its input (Equation A7).
If the element in the singleton subset is unequal to q, then it is a subset of O.

– if ge(O ∪ {q}) = {q} then ge(O ∪ {q}) ⊆ {q} ∪ G−1
n (O, ge) holds trivially.

b) To demonstrate that the function Gn+1 has an inverse (Equation A9), we show that the
function Gn+1 is a bijection from Le,n+1 to Lo,n+1. Since the function Gn+1 is defined
for all elements in Le,n+1 and both sets have the same cardinality (|Le,n+1| = |Lo,n+1|,
Equation A6), it is sufficient to show that the function Gn+1 is distinct for all inputs.

The return value of Gn+1 has four cases, two of which return a set containing q (case 1 and 4
in Equation A11), while the two others do not (case 2 and 3 in Equation A11). Therefore, we
have to show that both of these cases cannot coincide for any input:

– Case 2 and 3 in Equation A11: If the return value of both cases was equal, then O =

Gn(E, ge) and therefore ge(O∪{q}) = ge(Gn(E, ge)∪{q}). This leads to a contradiction,
since the condition of case 3 ensures ge(O ∪ {q}) ̸= {q}, while the condition of case 2
ensures ge(Gn(E, ge) ∪ {q}) = {q}. Hence, the return values of case 2 and 3 are distinct.

– Case 1 and 4 in Equation A11: If the return value of both cases was equal, then
E = G−1

n (O, ge) and therefore ge(O ∪ {q}) = ge(Gn(E, ge) ∪ {q}). This leads to a
contradiction, since the condition of case 4 ensures ge(O ∪ {q}) = {q}, while the condi-
tion of case 1 ensures ge(Gn(E, ge) ∪ {q}) ̸= {q}. Hence, the return values of case 1 and
4 are distinct.

Since the function Gn+1 is a bijection, there exists an inverse G−1
n+1.

Appendix B.3 The Non-Negativity of the Decomposition

Lemma A6. Consider a non-empty set of of binary input channel A ̸= ∅ and 0 ≤ p ≤ 1. Quantifying an
inclusion-exclusion principle on the pointwise information of their Blackwell join is larger than the pointwise
information of their Blackwell meet as shown in Equation A12.

i f

(
p,

l

κ∈A

κ

)
≤ ∑

∅ ̸=B⊆A
(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)
(A12)

Proof. Consider a function go : Lo → L1, where go(O) ⊆ O such that the function returns a sin-
gleton subset for a set of odd cardinality. Equation A13 can be obtained from the constraints on ge

(Equation A7) and Lemma A5.

∀ge ∈ Ge, E ∈ Le, ∃go ∈ Go, G :

{
ge(∅) ⊆ go(G(∅)) if E = ∅

ge(E) = go(G(E)) otherwise
(A13)

Equation A14a holds since we can replace ge(∅) with go(G(∅)), meaning there exists a κ ∈ A
for creating a (Minkowski) sum over the same set of channel zonogons on both sides of the quality.
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Equation A14b holds since Lemma A5 ensured that the existing function G is a bijection. Equation A14c
holds since the intersection is a subset of each individual zonogon.

∀ge ∈ Ge, ∃go ∈ Go, κ ∈ A, G : Z(κ) + ∑
E∈Le\∅

Z(ge(E)) = ∑
E∈Le

Z(go(G(E))) (A14a)

∀ge ∈ Ge, ∃go ∈ Go, κ ∈ A : Z(κ) + ∑
E∈Le\∅

Z(ge(E)) = ∑
O∈Lo

Z(go(O)) (A14b)

∀ge ∈ Ge, ∃go ∈ Go :
⋂

κ∈A
Z(κ) + ∑

E∈Le\∅
Z(ge(E)) ⊆ ∑

O∈Lo

Z(go(O)) (A14c)

Equation A14c is parameterized by ge and subsets are closed under set union. Therefore, we can
combine all choices for ge and go using the set-theoretic union as shown below. For the notation, let
m = 2|A|−1 and we indicate subsets of A with even cardinality as Ei ∈ Le, where 1 ≤ i ≤ m. We use
the last index for the empty set Em = ∅. The subsets of A with odd cardinality are correspondingly
noted as Oi ∈ Lo. For clarity, we note binary input channels from an even subset as λ ∈ E and binary
input channels from an odd subset as ν ∈ O.

⋃

λ1∈E1
λ2∈E2...

λm−1∈Em−1

(
⋂

κ∈A
Z(κ) +

m−1

∑
i=1

Z(λi)

)
⊆

⋃

ν1∈O1
ν2∈O2...
νm∈Om

(
m

∑
j=1

Z(νj)

)

⋂

κ∈A
Z(κ) +

m−1

∑
i=1

⋃

λ∈Ei

Z(λ) ⊆
m

∑
j=1

⋃

ν∈Oj

Z(ν)
(

Minkowski sum dis-
tributes over set union

)

Conv


⋂

κ∈A
Z(κ) +

m−1

∑
i=1

⋃

λ∈Ei

Z(λ)


 ⊆ Conv




m

∑
j=1

⋃

ν∈Oj

Z(ν)




(
if X ⊆ Y then

Conv(X) ⊆ Conv(Y)

)

⋂

κ∈A
Z(κ) +

m−1

∑
i=1

Conv


 ⋃

λ∈Ei

Z(λ)


 ⊆

m

∑
j=1

Conv


 ⋃

ν∈Oj

Z(ν)


 (

Convex hull distributes
over Minkowski sum

)

Z

(l

κ∈A

κ

)
+

m−1

∑
i=1

Z


 ⊔

λ∈Ei

λ


 ⊆

m

∑
j=1

Z


 ⊔

ν∈Oj

ν


 (by Equation 7)

i f

(
p,

l

κ∈A

κ

)
+

m−1

∑
i=1

i f


p,

⊔

λ∈Ei

λ


 ≤

m

∑
j=1

i f


p,

⊔

ν∈Oj

ν


 (by Lemma A3)

i f

(
p,

l

κ∈A

κ

)
+ ∑

∅ ̸=B⊆A
|B| even

i f

(
p,
⊔

κ∈B
κ

)
≤ ∑

∅ ̸=B⊆A
|B| odd

i f

(
p,
⊔

κ∈B
κ

)
(replace notation)

i f

(
p,

l

κ∈A

κ

)
≤ ∑

∅ ̸=B⊆A
(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)

Lemma A7. The decomposition of f -information is non-negative on the pointwise and combined synergy lattice
for any target variable T with state t ∈ T :

∀α ∈ A(V). 0 ≤ ∆i∪, f (α, T, t),

∀α ∈ A(V). 0 ≤ ∆I∪, f (α; T).
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Proof. We show the non-negativity of pointwise partial information (∆i∪, f (α, T, t)) in two cases . We
write α− to represent the cover set of α on the synergy lattice and use p = PT(t) as abbreviation:

1. Let α = ⊥SL = {V}. The bottom element of the synergy lattice is quantified to zero (by Equation 32a,
i∪, f (⊥SL, T, t) = 0) and therefore also its partial contribution will be zero (∆i∪, f (⊥SL, T, t) = 0), which
implies Equation A15.

α = ⊥SL =⇒ 0 ≤ ∆i∪, f (α, T, t) (A15)

2. Let α ∈ A(V) \ {⊥SL}, then its cover set is non-empty (α− ̸= ∅). Additionally, we know that no
atom in the cover set is the empty set (∀β ∈ α−. β ̸= ∅), since the empty atom is the top element
(⊤SL = ∅).

Since it will be required later, note that the inclusion-exclusion principle of a constant is the
constant itself as shown in Equation A16 since without the empty set there exists one more subset
of odd cardinality than with even cardinality (see Equation A6).

i f (p, κ(V, T, t)) = ∑
∅ ̸=B⊆α−

(−1)|B|−1i f (p, κ(V, T, t)) (A16)

We can re-write the Möbious inverse as shown in Equation A17.

∆i∪, f (α, T, t) = i∪, f (α, T, t)− ∑
β∈↓̇α

∆i∪, f (β, T, t) (by Equation 32b)

(A17a)

= i∪, f (α, T, t)− ∑
∅ ̸=B⊆α−

(−1)|B|−1 · i∪, f


∧

β∈B

β, T, t


 (by [23], p. 15)

(A17b)

= i∪, f (α, T, t)− ∑
∅ ̸=B⊆α−

(−1)|B|−1 · i∪, f


⋃

β∈B

β, T, t


 (by Corollary A3)

(A17c)

=− i f (p, κ⊔(α, T, t)) + ∑
∅ ̸=B⊆α−

(−1)|B|−1 · i f (p, κ⊔(
⋃

β∈B

β, T, t)) (by Eq. 32a, A16)

(A17d)

=− i f (p, κ⊔(α, T, t)) + ∑
∅ ̸=B⊆α−

(−1)|B|−1 · i f (p,
⊔

S∈(⋃β∈B β)

κ(S, T, t)) (by ∀β ∈ α−.β ̸= ∅)

(A17e)

=− i f (p, κ⊔(α, T, t)) + ∑
∅ ̸=B⊆α−

(−1)|B|−1 · i f (p,
⊔

β∈B

⊔

S∈β

κ(S, T, t)) (A17f)

=− i f (p, κ⊔(α, T, t)) + ∑
∅ ̸=B⊆{κ⊔(β,T,t) : β∈α−}

(−1)|B|−1 · i f (p,
⊔

κ∈B
κ) (A17g)

Consider the non-empty set of channels D = {κ⊔(β, T, t) : β ∈ α−}, then we obtain Equa-
tion A18b from Lemma A6.

i f


p,

l

κ∈{κ⊔(β,T,t) : β∈α−}
κ


 ≤ ∑

∅ ̸=B⊆{κ⊔(β,T,t) : β∈α−}
(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)
(A18a)

i f


p,

l

β∈α−
κ⊔(β, T, t)


 ≤ ∑

∅ ̸=B⊆{κ⊔(β,T,t) : β∈α−}
(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)
(A18b)
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We can construct an upper bound on i f (p, κ⊔(α, T, t)) based on the cover set α− as shown in
Equation A19.

∀β ∈ α−. β ⪯ α (A19a)

∀β ∈ α−. κ⊔(α, T, t) ⊑ κ⊔(β, T, t) (by Lemma 1) (A19b)

κ⊔(α, T, t) ⊑
l

β∈α−
κ⊔(β, T, t) (A19c)

i f (p, κ⊔(α, T, t)) ≤ i f


p,

l

β∈α−
κ⊔(β, T, t)


 (by Lemma A2) (A19d)

By transitivity of Equation A18b and A19d, we obtain Equation A20.

i f (p, κ⊔(α, T, t)) ≤ ∑
∅ ̸=B⊆{κ⊔(β,T,t) : β∈α−}

(−1)|B|−1i f

(
p,
⊔

κ∈B
κ

)
(A20)

By Equation A17 and A20, we obtain the non-negativity of pointwise partial information as
shown in Equation A21.

α ∈ A(V) \ {⊥SL}. 0 ≤ ∆i∪, f (α, T, t) (A21)

From Equation A15 and A21, we obtain that pointwise partial information is non-negative for all atoms
of the lattice:

∀α ∈ A(V). 0 ≤ ∆i∪, f (α, T) (A22)

If all pointwise partial components are non-negative, then their expected value will also be non-
negative (see Equation 34):

∀α ∈ A(V). 0 ≤ ∆I∪, f (α; T) (A23)

Appendix C Scaling f-Information Does Not Affect Its Transformation

Lemma A8. The linear scaling of an f -information does not affect the transformation result and operator:
Consider scaling an f-information measure Ia2(S; T) = k · Ia1(S; T) with k ∈ (0, ∞), then their decomposition
transformation to another measure Ib(S; T) will be equivalent.

Proof. Based on the definitions of Section 3.2, the loss measures scale linear with the scaling of their
f -divergence. Therefore, we obtain two cumulative loss measures, where I∪,a1 and I∪,a2 are a linear
scaling of each other (Equation A24a). They can be transformed into another measure I∪,b, as shown in
Equation A24b.

I∪,a2(α; T) = k · I∪,a1(α; T) (A24a)

I∪,b(α; T) = v1(I∪,a1(α; T)) = v2(I∪,a2(α; T)) (A24b)
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Equation A24b already demonstrates that their transformation results will be equivalent and that
v1(z) = v2(k · z) and k · v−1

1 (z) = v−1
2 (z). Therefore, their operators will also be equivalent as shown

below:
x ⃝± 2 y := v2

(
v−1

2 (x)± v−1
2 (y)

)

x ⃝± 1 y := v1

(
v−1

1 (x)± v−1
1 (y)

)

= v2

(
kv−1

1 (x)± kv−1
1 (y)

)

= v2

(
v−1

2 (x)± v−1
2 (y)

)

= x ⃝± 2 y

Appendix D Decomposition Example Distributions

The probability distributions used in Figure 7 can be found in Table A1. For providing an intuition
of the decomposition result for I∪,TV at the generic example, we visualized its corresponding zonogons
in Figure A2. It can be seen that the maximal zonogon height is obtained from V1 (blue) which equals
the maximal zonogon height of their joint distribution (V1, V2) (red). Therefore, I∪,TV does not attribute
partial information uniquely to V2 or their synergy by Lemma 2.

Table A1. The used distributions from [13] and the generic example from [20]. The example names
are abbreviations for: XOR-gate (XOR), Unique (Unq), Pointwise Unique (PwUnq), Redundant-Error
(RdnErr), Two-Bit-copy (Tbc) and the AND-gate (AND) [13].

Probability
V1 V2 T XOR Unq PwUnq RdnErr Tbc AND Generic
0 0 0 1/4 1/4 0 3/8 1/4 1/4 0.0625
0 0 1 - - - - - - 0.3000
0 1 0 - 1/4 1/4 1/8 - 1/4 0.1875
0 1 1 1/4 - - - 1/4 - 0.1500
0 2 1 - - 1/4 - - - -
1 0 0 - - 1/4 - - 1/4 0.0375
1 0 1 1/4 1/4 - 1/8 - - 0.0500
1 0 2 - - - - 1/4 - -
1 1 0 1/4 - - - - - 0.2125
1 1 1 - 1/4 - 3/8 - 1/4 -
1 1 3 - - - - 1/4 - -
2 0 1 - - 1/4 - - - -
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Figure 11: Visualization of the zongons from the generic example of [20] at state t = 0. The target variable T has two
states. Therefore, the zonogons of its second state are symmetric (second column of Equation 6) and have identical
heights.

Proof. The point of maximal height P∗ that a zonogon Z(κ) reaches above the diagonal is visualized in
Figure 8 and can be obtained as shown in Equation 69, where ∆v⃗ represents the slope of vector v⃗.

P∗ = ∑
v⃗∈{v⃗∈κ : ∆v⃗>1}

v⃗ (69)

The maximal height (Euclidean distance) above the diagonal is calculated as shown in Equation 70, where
P∗ = (P∗

x , P∗
y ).

h∗ =
1
2

∥∥∥
( P∗

x −P∗
y

P∗
y −P∗

x

)∥∥∥
2
=
√
(P∗

x − P∗
y )

2 + (P∗
y − P∗

x )
2 =

√
2(P∗

y − P∗
x ) (70)

The pointwise total variation iTV can be expressed as invertible transformation of the maximal euclidean
zonogon height above the diagonal as shown in Equation E, where v⃗ = (⃗vx, v⃗y).

iTV(p,κ) = ∑
v⃗∈κ

1
2

∣∣∣∣
v⃗x

pv⃗x + (1 − p)⃗vy
− 1
∣∣∣∣ (pv⃗x + (1 − p)⃗vy)

=
1 − p

2 ∑
v⃗∈κ

∣∣⃗vx − v⃗y
∣∣

=
1 − p

2


 ∑

v⃗∈{v⃗∈κ : ∆v⃗>1}
(⃗vy − v⃗x) + ∑

v⃗∈{v⃗∈κ : ∆v⃗≤1}
(⃗vx − v⃗y)




=
1 − p

2

(
(P∗

y − P∗
x ) +

(
(1 − P∗

x )− (1 − P∗
y )
))

(by Equation 69)

= (1 − p)(P∗
y − P∗

x )

= (1 − p)
h∗√

2
(by Equation 70)

Proof of Lemma 4.1 b) from Section 4.1.2:
For a non-empty set of pointwise channel A and 0 ≤ p ≤ 1, pointwise total variation iTV quantifies the join element
to the maximum of its individual channels:

iTV(p,
⊔

κ∈A
κ) = max

κ∈A
iTV(p,κ)

Proof. The join element Z(
⊔

κ∈A κ) corresponds to the convex hull of all individual zonogons (see Equation
7). The maximal height that the convex hull reaches above the diagonal is equal to the maximum of the
maximal height that each individual zonogon reaches. Since pointwise total variation is a liner scaling
of the (Euclidean) zonogon height above the diagonal (Lemma 4.1 a) shown above), the join element is
valuated to the maximum of its individual channels.

33

Figure A2. Visualization of the zongons from the generic example of [20] at state t = 0. The target
variable T has two states. Therefore, the zonogons of its second state are symmetric (second column of
Equation 6) and have identical heights.
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Appendix E The Relation of Total Variation to the Zonogon Height

Proof of Lemma 2 a) from Section 4.1.2:
The pointwise total variation (iTV) is a linear scaling of the maximal (Euclidean) height h∗ that the corresponding
zonogon Z(κ) reaches above the diagonal as visualized in Figure 8 for any 0 ≤ p ≤ 1.

iTV(p, κ) =
1 − p

2 ∑
v∈κ

|vx − vy| = (1 − p)
h∗√

2

Proof. The point of maximal height P∗ that a zonogon Z(κ) reaches above the diagonal is visualized
in Figure 8 and can be obtained as shown in Equation A25, where ∆v⃗ represents the slope of vector v⃗.

P∗ = ∑
v⃗∈{v⃗∈κ : ∆v⃗>1}

v⃗ (A25)

The maximal height (Euclidean distance) above the diagonal is calculated as shown in Equation A26,
where P∗ = (P∗

x , P∗
y ).

h∗ =
1
2

∥∥∥
( P∗

x −P∗
y

P∗
y −P∗

x

)∥∥∥
2
=
√
(P∗

x − P∗
y )

2 + (P∗
y − P∗

x )
2 =

√
2(P∗

y − P∗
x ) (A26)

The pointwise total variation iTV can be expressed as invertible transformation of the maximal euclidean
zonogon height above the diagonal as shown in Equation E, where v⃗ = (⃗vx, v⃗y).

iTV(p, κ) = ∑
v⃗∈κ

1
2

∣∣∣∣
v⃗x

pv⃗x + (1 − p)⃗vy
− 1
∣∣∣∣(pv⃗x + (1 − p)⃗vy)

=
1 − p

2 ∑
v⃗∈κ

∣∣⃗vx − v⃗y
∣∣

=
1 − p

2


 ∑

v⃗∈{v⃗∈κ : ∆v⃗>1}
(⃗vy − v⃗x) + ∑

v⃗∈{v⃗∈κ : ∆v⃗≤1}
(⃗vx − v⃗y)




=
1 − p

2

(
(P∗

y − P∗
x ) +

(
(1 − P∗

x )− (1 − P∗
y )
))

(by Equation A25)

= (1 − p)(P∗
y − P∗

x )

= (1 − p)
h∗√

2
(by Equation A26)

Proof of Lemma 2 b) from Section 4.1.2:
For a non-empty set of pointwise channel A and 0 ≤ p ≤ 1, pointwise total variation iTV quantifies the join
element to the maximum of its individual channels:

iTV(p,
⊔

κ∈A
κ) = max

κ∈A
iTV(p, κ)

Proof. The join element Z(
⊔

κ∈A κ) corresponds to the convex hull of all individual zonogons (see
Equation 7). The maximal height that the convex hull reaches above the diagonal is equal to the
maximum of the maximal height that each individual zonogon reaches. Since pointwise total variation
is a liner scaling of the (Euclidean) zonogon height above the diagonal (Lemma 2 a) shown above), the
join element is valuated to the maximum of its individual channels.
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Appendix F Information Flow Example Parameters and Visualization

The parameters for the Markov chain used in Section 4.2 are shown in Equation A27, where
Mn = (Xn, Yn), Xi = {0, 1, 2}, Yi = {0, 1}, PM1 is the initial distribution and PMn+1|Mn is the transition
matrix. The visualized results for the information flow of KL-, TV-, and χ2-information can be found
in Figure 9, and the visualized results of H2-, LC-, and JS-information in Figure A3.

States (X1, Y1) : (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)

PM1 =
[
0.01 0.81 0.00 0.02 0.09 0.07

] (A27a)

PMn+1|Mn =




0.05 0.01 0.04 0.82 0.02 0.06
0.05 0.82 0.00 0.01 0.06 0.06
0.04 0.01 0.82 0.05 0.04 0.04
0.03 0.84 0.02 0.06 0.04 0.01
0.04 0.03 0.03 0.02 0.06 0.82
0.07 0.04 0.01 0.03 0.81 0.04




(A27b)
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Figure 12: Analysis of the Markov chain information flow (Equation 71). Visualized results for the information
measures: H2, LC, and JS. The remaining results (KL, TV, and χ2) can be found in Figure 9.

35

Figure A3. Analysis of the Markov chain information flow (Equation A27). Visualized results for the
information measures: H2, LC, and JS. The remaining results (KL, TV, and χ2) can be found in Figure 9.
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