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Abstract: This article focuses on the analysis of dynamics emerging in a Network of Hodgkin-Huxley Reaction-
Diffusion equations. The network is forced with three external periodic stimulus input. A synchronization

phenomenon is observed.
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1. Introduction

The main objective of this article is to provide some insights about the qualitative analysis of a
non-autonomous neuronal network of Hodgkin-Huxley (HH) Reaction-Diffusion (RD) equations. The
model under consideration writes as follows

Vit = gnamhi(Eng — Vi) + 8k (Ex — Vi) + GL(EL — Vi) + Vis
+ H;(V, ..., VN) + Li(x, 1), i € {1,..,N}
nip = (Vi) (1= 1) = Bu (Vi) @
mip = (Vi) (1= m;) — B (Vi) m;
hip = ap (Vi) (1 = h;) — Bu(Vi)h

The dynamics of each individual neuron is described by a standard HH equation containing
ionic (sodium, potassium, leakage) fluxes and a spatial diffusion term. We refer for example to [1-3]
and references therein for details about the HH RD systems. Functions and parameters on the above
equation are as follows

(V) = 001 (_5;/ —0?15V) — Bu(V) = O‘mW
am(V) = 0.1@(p (;Vz)j(‘)/) — Bu(V) = 4w

B exp(—(V +65)) _ 1
ay(V) = 0.07——"—55—= (V) = 1+exp(—0.1V —35)

These values correspond to the ones found in [3]. As for the space domain, we consider a
one dimensional interval Q) = (a,b). We assume Neumann boundary conditions. Each neuron is
embedded in a network and receives inputs from its presynaptic neurons trough the coupling term

N
Hi(Vi, ..., VN) = Y cji(x) (S = Vi)T(V;(b — x)), ()
=0
with,
1
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Since I'(V) is a sigmoid function, the presynaptic neurons V; of V; will have an effect only when
they spike. The parameter S is set to
S =100,

which means that when there is enough presynaptic activity, the neuron V; will tend to S; this
corresponds to depolarization and eventually a spike. This means that in our network all neurons
have an excitatory effect. As we deal with spatial extended neurons, we need to specify where the
connectivity arises with respect to the spatial position. We assume that the neurons are connected
from the right-end side of the presynaptic neuron j to the left-end side of the post-synaptic neuron
i. This is to model the fact that action potential travel trough the axon in one direction and kick the
post-synaptic neuron through synaptic connections. As a consequence, the function c is generally set
to zero everywhere but in the left-end part of size [, (a,a + 1) of the neuron. We assume that c has the
following expression
eilx) = { c Vxe(aa+l)
] 0 Vx otherwise,

and we use the term V;(b — x) to express that only the right-end side of the presynaptic neuron j
connects to the left-end side of the neuron i. Finally, the network topology is set as follows. We assume
that there is three levels in the network which separate the network into three sets of neurons. At level
one, the set one contains three neurons which receive periodic input Iy (t), I>(t), Is(t). Each of this three
neurons possesses only one unidirectional connection to a unique neuron in level two. Therefore, the
second set of neurons contains also three neurons, each of which receives an input for a single neuron
of level 1. The neurons in this second set connect to all neurons of level 2 and 3. Finally the last set of
neurons, which correspond to level 3 are connected to all of the neurons of level 2 and 3, but do not
receive any inputs from neurons of level 1. The network topology is represented in Figure 1.
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Figure 1. Network topology in Equation (1). In the graph, vertices represent neurons, and edges
represent connections between neurons. There are three sets of neurons which appear in different
colors. The neurons of set 1 are in blue. These neurons receive periodic input currents (I; , I;, and I;,.
Each of these neurons is connected to a single green neuron. The neurons in green are the neurons of
the set 2. All other neurons are in the set 3. The neurons in sets 2 and 3 are connected in an all to all
manner.

Finally the functions I (x,t) are set to 0 for all but the 3 neurons in the set 1. For these 3 neurons,
indexed by {iy, i1, } a periodic signal is injected at neuron’s left-end as follows,

Iiy(x,t) = Acos(at), I;(x,t) = Acos(at +b), I;, = —I;) — I,
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for x < a+ 1 for some small / and 0 elsewhere. The dynamics of the HH ODE have been widely
studied. For the parameters’ values considered here, it is known from numerical studies that the HH
system undergoes a subcritical Hopf Bifurcation around I = .... For a certain region of I ~~ 7, one can
observe the coexistence of stable limit-cycle and a stable stationary point. In the next section we will
consider a non-autonomous HH ODE system.

The present article is a theoretical and numerical investigation of Equation (1), a mathematical
model which arises in neuroscience context. Aside from the standard HH framewoek, several speci-
ficities of the model, namely periodic stimulation at different locations with specific frequencies, are
indeed inspired by recent studies which are worth to mention here. The topic of brain dynamics mod-
eling has attracted an increasing interest in particular for the therapeutical potential of Non-Invasive
Brain Stimulation (NIBS), see for example [4] for a summary about the Transcranial alternating current
stimulation (tACS) method, its mechanisms, use for cognitive applications, and novel developments
for personalized stimulation. A software, SimNIBS has been developed to simulate NIBS on realistic
domains representing brain geometries, see [5]. SimNIBS is based on finite element methods to solve
time dependent Poisson equations. In the context of EEG data driven modeling, recent studies have
shown the importance of periodic current sources to retrieve real spatiotemporal signals, see [6,7]. HH
neural networks have also been used recently to model the effect of specific frequency stimulation to
help patients suffering from Post-Traumatic Stress Disorder (PTSD), see [8].

2. Forced ODE HH Equations

The aim of this section is to provide some insights about the response of a single HH ODE when
the frequency of a periodic stimulus I(t) is varied. We consider a single HH non-autonomous equation
as follows

Vi = gnam®h(Eng — Vi) + gn* (Ex — Vi) + gL(EL — Vi) + 1(1)
np = an(Ve)(1—n) — Bu(Vi)n
my = o (Ve)(1—m) — B (Ve)m
hy = ap(Vi)(1 —h) — Bp(Vi)h
with I(t) set to:

®)

I(t) = Acos(at)

and a € (0,2). The outputs of simulations are reported in Figure 2, Figure 3 and Figure 4. A careful
analysis of the numerical simulations lead to the following obervations :

¢ When the frequency of the input is very slow (a=0.0001), then the behavior is akin to a au-
tonomous HH with I = 7. For the initial conditions considered here, the system evolves toward
a limit-cycle and the frequency observed is intrinsic to the autonomous HH.

* When the frequency increases, for a range of a € (0.01,0.4), there are two frequencies that play
a role. There is a recurrent pattern with a frequency of 5~ which is imposed by I(t), i.e the
time-periodicity of the global recurrent pattern is given by the periodicity of I(t). Concurrently,
within this period, the dynamics of HH appear. For example, for a = 0.03, the system stays
at an equilibrium which varies with I(¢), but there is no spike. For other values, such as
a € (0.04465,0.3) some spike arise. For some values, one can observe the appearance of the so
called Mixed Mode Oscillations (MMOs), see for example [9-15] and references therein cited.

e It is worth to emphasize the qualitative difference between the output for a=0.0001 and a=0.4.
Although the oscillatory frequency is the same, for a=0.0001, the oscillations correspond to
the intrinsic frequency of the nonautonomous HH. In this case one can clearly observe the
characteristic difference of the trajectories in a slow manifold and a jump, see [16] and references
therein cited. For a=0.4, however the frequency is imposed by I(t).
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Figure 2. Simulations of Equation (3). This figure illustrates the potential V as a function of time as the
parameter 4 is increased from 0 to 2 with a current injection I(t) = 7 cos(at)

e After a = 0.5, the situation change and the period of I(t) becomes smaller than the one of the
output, i.e.: there is a periodic pattern but its period results from a not straightforward interplay
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between the drive I(#) and the dynamics of HH. An analysis of such an interplay was carried out
in [17] in the simpler case of a FitzHugh-Nagumo system kicked periodically. For some values of
the frequency, the behavior is more complicated and difficult to predict. The neuron can in this
case spike or not in an erratic way. This is the case for example for a=1.156. see also Figure 4 in
which the solution is represented in the (V/, m, h) phase space. In this case, the behavior is difficult
to predict: the trajectories can switch between small and large oscillations in an unpredictable
manner. This picture illustrates a geometry appearing in some slow-fast systems in which the
switching between small and large oscillations occur as canard solutions and in a tiny space
region. We refer to [11,13] for such systems derivated from the FitzHugh-Nagumo system and
with three time scale. Although there is no small parameter in the HH equation, its hidden
slow-fast nature has been studied for a long time, see [18-20].
¢ when the frequency is to high, for example for 2 = 2, only small oscillations persist.
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Figure 3. Simulations of Equation (3). This figure illustrates the potential V as a function of time as the
parameter 4 is increased from 0.02 to 0.3 along with the injected current I(t) = 7 cos(at). It emphasizes
how the injected current imposes its frequency.
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Figure 4. Solution of Equation (3) in the (V, m, I) phase space for a = 1.159. For this value of 4, the
behavior is difficult to predict: the trajectories can switch between small and large oscillations in an
unpredictable manner. Of note, this picture illustrates a geometry appearing in some slow-fast systems
in which the switching between small and large oscillations occur as canard solutions and in a tiny
space region. We refer to [11,13] for such systems derivated from the FitzHugh-Nagumo system and
with three time scale system. Although there is no small parameter in the HH equation, its hidden
slow-fast nature has been studied for a long time, see [18-20].

3. Theoretical Framework and Analysis

In this section, we provide some theoretical results. We start we the existence of solutions in an
appropriate functional space. Let X = C([a, b]) the space of continuous functions defined on the real
interval [a, b]. The following result holds.

Theorem 1. Assume that (V;(0),n;(0),m;(0),h;(0)) € X*N, and that for all x € [a,b],n;(0,x),m;(0,x)
and h;(0,x) € (0,1). Then,

1. There exists a unique solution of Equation (1) in C([0, o0, X4N).
2. Forall x € [a,b], forall t € [0, +00) n;(t, x), m;(t,x) and h;(t,x) € [0,1],
3. sup |Vi(t, x)| < +o0.

te[0,400),x€[a,b]

Proof. The proof is based on the semigroup generated by the operator u — u” with NBC and the fact
that HH ODE has a an invariant region. We refer to [3] in which the details have been provided for a
similar system. O

Let (U; = (V;, n;, m;, h;), and let Ly denotes the set of indices of level 3 in the network. The next
proposition emphasizes that U; = U;Vi, j € Ls is a solution of Equation (1)

Proposition 1. We assume that at t = 0, U;(x,0) = U;(x,0)Vi,j € Lg, then

Vi,j € L3, Vt >0, U;(x,t) = Uj(x, t).

Proof. Since for neurons in level 3 the network topology is of all to all type, each single neuron receives
the same inputs. O

What is more striking for this non-autonomous network, is that the synchronizes solution attracts
other solutions. The next result provides mathematical insights about this fact. It indicates that the
coupling practically implies an "energy" decrease. Let

HijZ/Q(Vi—Vj)ZJF/Q(”i—ﬂj)2+/0(mi—mj)2+/0(hi—hj)Z



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 March 2024 d0i:10.20944/preprints202403.0299.v1

7o0f 11
Theorem 2. The following inequality holds:
LEYS < — (N =3)cT / |V; — Vi|?dx
4t = m la,a+1] i i
4 [y STV =2)) = TV~ X)) (Vi(x) = Vi(x))x
T(Vi(b—x)) Vi(x)
e Vi — Vj)dx
wasg TV(b—x)) V()|
—A/ ni—nj Z—B/ (mi—mj)z—C/ (hi—h]‘)2
Q
+D/ =) (Vi — V) dx—l—E/ i — mj) (Vi — V;)dx
+F/ )(V; — V;)dx
where A, B, C, D, E, F are positive constants.
Proof. Leti,j € ;. We compute
d
dt/VV+/ i— 1) +/ m; —m;) +/
We have
d
dt (V V) =F (‘/1/ ni, mirhi) - F(V/ nj, m]rh) + Viex — ijx (4)
+ ) ai(x) T(Vi(b—x)) = ) aj(x) (S — V)T (Vie(b — x)) ®)

k#i k#j

where F; denotes the classical reaction term in the first equation of HH. Note that k ¢ Ly, we ommit
that part for simplicity. We consider different terms successively.

Y ai(x) (S = V)TV, — Y i (x)(S = V)T (Vi(b — x))
ki k#j
= Y () (=Vi+ V)T (Vi(b—x))

kiR

+¢ji(x) (S = V)T (Vj(b — x)) — ci(x)(S — V)T (Vi(b — x))

Next, note that

B o U IO )= )

- - T Vi—V: 2d
(N —3)c m/[MHH Vi Pdx
Also, we have,
/[a STV =) = TV =) (V(x) = V()

< Z\ﬁCSHVi o V]'||L2(a,u+l)
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and
/[a Hl]c(—Vi)T(Vj(b —x)) + Vi (Vi(b — x))(V; = V))
= T(Vi(b—x) Vi(x)|,., -,
= C/[a,u—H] F(‘/j(b —x)) V](x) (Vi V])dx
= Z@CHVZ B Vj“ﬂ(u,nﬂ)
O

4. Synchronization in the Forced Network of PDE HH Equations

This section focuses on the illustration of numerical results obtained from simulation of Equa-
tion (1). Simulations were carried out using our own C++ program, with a finite difference scheme in
space and a Runge-Kutta 4 method in time. The time step was 0.01 and the space step was 1. The space
domain was () = (0,100), and !/ = 10. Figure 5 illustrates the time evolution of the potential for three
neurons at three distinct location. The first row, in blue, corresponds to a neuron of level 1. It receives
a periodic input I(t). The second row, in green corresponds to the unique neuron connected to the first
one. Finally, the third row, in red, corresponds to a neuron in level 3. The first column corresponds
to x = 0, the second column corresponds to x = 10, the last column corresponds to x = 12. This
illustrates how the signal is propagated from left to right and how small oscillations in the left of the
neuron are filtered. The colors as those in Figure 1.

x=0 x=10 x=12

.
x=0 X:
- 100 w00
w0 w w
w0 w w0
- > N
o w0 o
2 20 2
o {—1//ANIE [ o [/ ‘Ul\ \H { | | of |~ H ‘

VWAV / hU
of |/— | I
{ ‘vl “ iy H “ /

o 100 200 400 500 o 100 200 300 400 500 o 100 200 300 400 500

5

Figure 5. Simulation of Equation (1). This figure illustrates the time evolution of the potential for three
neurons at three distinct locations. The first row, in blue correspond to a neuron of level 1. It receives a
periodic input I(t). The second row, in green correspond to the unique neuron connected to the first
one. Finally, the third row correspond to a neuron in level 3. The first column corresponds to x = 0, the
second column corresponds to x = 10, the last column corresponds to x = 12. This illustrates how the
signal is propagated from left to right and how small oscillations in the left of the neuron are filtered.
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Figure 6 and Figure 7 illustrate the synchronization phenomenon for neurons in level 3. Although,
initial conditions were different, asymptotically they are the same: the synchronized manifold attracts
some solutions. Figure 6 illustrates the time evolution of the potential for different neurons at fixed
spaces. In each panel, two neurons are represented. The curves are almost indistinguishable to the
naked eye emphasizing the synchronization phenomenon.
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Figure 6. Simulation of Equation (1). This figure illustrates the time evolution of the potential for
different neurons at fixed spaces. In each panel, two neurons are represented. The curves are almost
indistinguishable to the naked eye emphasizing the synchronization phenomenon.

In our neural network, when we exclude from the network the neurons we have stimulated(blue)
and the neurons that are unidirectionally connected to the stimulated neurons(green), we observe that
the rest of the network synchronizes(red). In Figure 7, even if we perturb the initial conditions, we

observe identical synchronization.
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Figure 7. This figure illustrates a comparison between the seven neurons of level 3. It plots the value V;
vs V;. Equation (1) was simulated on the time interval (0,2000), the time interval (0,100) was cut off.
The picture illustrates that after t = 100, the system evolves in a identically synchronized state.
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