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Abstract: This study explores optimizing Synthetic Aperture Radar (SAR) satellite constellation scheduling for

multi-imaging missions in densely targeted areas using an in-house developed Modified Dynamic Programming

(MDP) algorithm. By employing Mixed-Integer Linear Programming (MILP) to define the mission planning

problem, the research aims to maximize observation of high-value targets within restricted planning horizons.

Numerical simulations, covering a wide range of target numbers and satellite configurations, reveal the MDP

algorithm’s superior mission allocation efficiency, enhanced success rates, and reduced revisit times, compared to

the Greedy algorithm. The findings underscore the MDP algorithm’s improved operational efficiency and planning

robustness for complex imaging tasks, demonstrating significant advancements over traditional approaches.

Keywords: optimal scheduling; synthetic aperture radar (SAR); satellite constellation; multi-imaging mission;

high-density regional area; modified dynamic programming (MDP)

1. Introduction

Remote sensing technologies, particularly satellite-based systems, have revolutionized various
sectors, offering unparalleled data for applications like environmental monitoring, urban planning, and
disaster management [1]. A significant advantage of satellite-based Earth observation is its capability
to operate uninhibited by international borders, providing a comprehensive geographical coverage in a
single observational pass. Such an extensive array of applications has led to an ever-increasing demand
for Earth observation missions, driving the projected market value close to 9 billion dollars by 2027
[2]. Synthetic Aperture Radar (SAR) sensors stand out as versatile tools within this domain. Unlike
optical counterparts confined to the visible spectrum, SAR sensors offer a wider range of wavelengths,
enabling high-resolution imaging across varying atmospheric conditions. This versatility allows for
diverse applications, ranging from hydrological mapping to environmental monitoring [3].

A noticeable paradigm shift in satellite deployment focuses on constellations of smaller satellites
instead of a few large platforms [4]. This transition is fueled by diversified mission requirements,
including the demand for higher temporal resolutions like shorter revisit times, and the inherent
advantages of small satellites such as modularity, cost-efficiency, and shorter development cycles.
South Korea aligns well with this global trend, planning to deploy small satellites comprising over 130
units by 2030 [5,6]. Internationally, entities like Finland’s ICEYE and the United States’ Capella Space
have already successfully deployed SAR satellite constellations, underlining the global consensus on
their utility and efficiency.

Following this trend, there is an increased complexity and frequency in mission planning. For
instance, while a sun-synchronous orbiting large satellite may revisit the Korean Peninsula every 12
hours, a constellation of 40 smaller satellites in inclined orbits could accomplish this in intervals as
brief as 30 minutes [7]. This augmented observational capability necessitates a corresponding increase
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in planning intricacy. Traditional approaches of programming each satellite’s mission individually are
becoming impractical due to the required human resources. Furthermore, advancements in satellite
attitude control technologies have led to highly maneuverable platforms, while payload enhancements
enable a diverse range of imaging modes for Earth observation [8].

In addition to the agility of these satellites, advancements in payload sensor technology now
allow for more versatile observational strategies. Previously, focus was placed on observing a single
target or area. However, recent developments enable multiple imaging modes, such as multi-stripmap
or spotlight mode, allowing for the capture of multiple targets in a single pass as shown Figure 1.
These capabilities, combined with the aforementioned advancements, add layers of complexity to
the mission planning process and emphasize the crucial need for optimized strategies for the entire
satellite constellation [9].

Figure 1. Observation comparison between single target and multi-targets.

Literature Review

Optimized mission planning in satellite operations has attracted significant scholarly attention,
leading to a variety of research methodologies. While traditional mathematical models often rely
on Mixed-Integer Linear Programming (MILP) [10] and make use of established solvers like Gurobi,
CPLEX and Xpress, they also explore algorithms such as Branch-and-Bound (BB) [11] and Dynamic
Programming (DP) [12]. These approaches have been tailored to suit different satellite configurations,
including both agile [13] and non-agile types [14], as well as to interact with ground stations [15]. In
addition to MILP-based studies, meta-heuristic methods like Genetic Algorithms (GA) [16–18], Ant
Colony Optimization (ACO) [19], and Particle Swarm Optimization (PSO) [20] have gained traction
for complex scenarios, especially those requiring rapid response, such as natural disasters [21]. With
the rise of Artificial Intelligence (AI), the field has seen a paradigm shift towards utilizing machine
learning algorithms. Deep Reinforcement Learning (DRL) [22–24], in particular, is carving a niche for
itself, offering enhanced capabilities in autonomous mission planning and a wide range of applications
from online scheduling [25] to Agile Earth Observation Satellite (AEOS) planning [26]. In addition,
the research landscape for satellite mission planning has evolved to address the distinctive challenges
presented by satellite clusters. Recent studies have taken steps to optimize mission planning for satellite
constellation, acknowledging their rising significance in space missions. Iacopino et al. [27] introduced
the Mission Planning System (MPS), developed by Surrey Satellite Technology Ltd (SSTL), as a tool
for planning Electro-Optical (EO) imaging tasks for small clusters of satellites. Moreover, Zheng et al.
[28] extended optimization techniques to satellite swarms, specifically for onboard scheduling via a
Hybrid Dynamic Mutation Genetic Algorithm (HDMGA). Furthermore, Cui and Zhang [29] tackled
the problem of scheduling and assigning imaging missions and emergency tasks for clusters of up
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to five satellites with varying target priorities, ranging from 25 to 200. Lewis [30], on the other hand,
utilized weighted-sums optimization algorithms to optimize mission planning for cubesat clusters.

Existing research has provided valuable methodologies for optimizing mission planning for a
limited number of individual satellites, particularly in the context of Earth imaging and communication
objectives. However, there is a relative scarcity of research focused on satellite constellations, aligning
with the recent trend in satellite development. Additionally, the current body of work often relies on
widely used meta-heuristic algorithms [16–21] for mission planning optimization. These algorithms,
while effective in certain scenarios, tend to fall into local optima and lack consistency in producing
identical results in each iteration. Furthermore, the emerging DRL based algorithms [22–26], though
beneficial for their real-time computation capabilities, encounter inherent limitations in untrained
areas, struggling to rectify inappropriate solutions, which poses a challenge for immediate application
in high-robustness required ground station mission planning subsystems. This highlights a significant
gap in the existing research, particularly in addressing mission planning scenarios involving numerous
targets densely distributed within specific regional areas.

Recognizing these limitations, our research offers three contributions that aim to bridge these
gaps. First, it broadens the scope of mission planning optimization to encompass satellite clusters,
with a specific emphasis on South Korea’s emerging small SAR satellite constellation that has been
relatively underexplored in the realm of satellite mission planning research. Second, we employ a
Modified Dynamic Programming (MDP) algorithm, developed in-house [31], that surpasses traditional
methods in adaptability to time-varying conditions and ensures the optimal solutions while effectively
managing dynamic constraints. Lastly, our work uniquely focuses on the optimization of multi-
imaging mission scheduling for high-density target regions with varying levels of significance and
urgency, a challenging scenario in satellite mission planning. In summary, our research offers both a
theoretical framework and practical applications for optimizing complex SAR satellite constellation
operations, delivering actionable insights and robust solutions.

The remainder of this paper is organized as follows: Section 2 provides an overarching framework
of the imaging mission, elaborating on the mathematical models that encapsulate the problem under
study. In Section 3, we developed into the optimization algorithms, with a particular focus on the
MDP algorithm developed by our team. For comparative analysis, this section will also introduce
the widely-utilized Greedy algorithm as the heuristic approach employed in this paper. Section 4
delineates the numerical simulation scenarios and presents the resultant findings. Lastly, Conclusions
5 offer concluding remarks and outlines potential avenues for future research.

2. Problem Definition

2.1. Imaging Mission Description

In this study, the concept of an "Imaging Mission" is expanded to include a comprehensive series
of processes in Earth observation satellite operations. This encompasses not only the remote sensing
tasks where satellites equipped with sensors capture images of designated terrestrial regions, but
also the entire sequence of steps from initial user request to the final delivery of processed images.
This intricate process is initiated with the user’s requirements, which detail the desired area for
observation, level of importance, resolution, and other specifications. These requirements are then
compiled and conveyed to the ground station. At the ground station, an initial Imaging Acquisition
Plan is formulated, taking into account the user’s needs. Following this, a comprehensive review of the
satellite’s orbit and status information is conducted to establish an optimized imaging mission plan.
As depicted in Figure 2, the process flow is represented by various colored lines: the blue line denotes
the flow of user requirements, while the green line indicates the flow of information about the satellite,
such as its orbit and status. These elements are integrated in the Mission Scheduling Subsystem to
develop an optimized imaging mission plan, which is then communicated to the satellite via S-band
telemetry. Once the imaging plan is received, a cluster of satellites executes the mission as per the

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 March 2024                   doi:10.20944/preprints202403.0331.v1



4 of 22

instructions and transmits the raw data back to the ground station using X-band communication,
illustrated by the red line in Figure 2. This data undergoes a series of corrections and post-processing
steps before being rendered as a calibrated image product, ready for delivery to the user. The focus of
this paper is primarily on the integration of user requirements with satellite information to establish
an optimal imaging mission plan for satellite constellation, ensuring that the entire imaging mission is
conducted efficiently, meeting the specific needs of the users.

Figure 2. Schematic illustration of imaging mission flow.

2.2. Problem Modeling

This chapter describes how key subsystems are mathematically modeled for optimal scheduling,
based on the imaging mission flow as depicted in Figure 2. Table 1 summarizes the definitions of the
variables used in the modeling.
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Table 1. Notation.

Variable Definition

i Index number of target candidates, i ∈ {1, ..., |I|}
j Index number of satellites, j ∈ {1, ..., |J|}
k Index number of visible time windows, k ∈

{
1, ...,

∣∣∣Vij

∣∣∣}
l Index number of time intervals, l ∈

{
1, ...,

∣∣∣Tj

∣∣∣}
I Set of target candidates
J Set of satellites

Vij Set of visible time windows of target i by satellite j
Tj Set of time intervals by satellite j

vijk kth visible time window of target i by satellite j
tjl lth time interval by satellite j
xijk Decision variable of target observation in vijk
ts
jl Start time of tjl

te
jl End time of tjl

τs
ijk Start time of observation in vijk

τe
ijk End time of observation in vijk

τo
ijk Observation time duration in vijk

τ
g
j Gap time of satellite j

dj Duty time per pass of satellite j
pi Profit obtained when observing target i
si Significance measure of target i
ui Urgency measure of target i

α, β Weighting factor

2.2.1. User Requests

Satellite imaging missions commence with user requests, and in the scheduling of these missions,
the requirements of the users are the most critical considerations. Therefore, the foremost factor to
prioritize in mission scheduling is the parameters related to the targets requested for imaging by
the users. In this study, "significance (si)" is a measure that reflects the hierarchy of importance of
the targets desired for imaging from the user’s standpoint, while "urgency (ui)" indicates the time
sensitivity concerning the user’s need for images of the target. To enhance our mission scheduling
approach, we adopt the Eisenhower Matrix [32] as a guiding framework in Figure 3. This matrix,
dividing tasks based on their significance and urgency, creates a comprehensive 9-cell grid, each cell
representing a combination of low, medium, and high levels of these two dimensions. The profit (pi)

derived from imaging a target is then determined by combining the target’s significance and urgency
with the weighting factors (α, β). This enables a nuanced prioritization of imaging tasks, facilitating a
strategic allocation of satellite imaging resources to address the most pressing and significant targets
first. This strategic application of the matrix is expressed in the following Eq. (1):

pi = αsi + βui (1)
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Figure 3. Target priority in Eisenhower matrix framework.

2.2.2. Satellite Information

The performance of available satellites and payloads, as well as orbital information, are also
very important considerations in making imaging schedules. In this study, the satellite is a small
satellite under 500kg equipped with an active phased array SAR sensor. The satellite’s orbital motion
is simulated using the J2 Perturbation propagator in the Systems Tool Kit (STK) program, forming a
Walker Delta constellation with a total of 40 satellites. More specific parameters will be mentioned
in Subsection 4.1, Test scenario. There are two assumptions related to the satellite in this study: 1. It
is assumed that communication between the ground station and the satellite for transmission and
reception is out of research scope, and that the satellite has already received the imaging scheduling
command. 2. Contingencies such as functional failures of available satellites are not considered, and it
is assumed that all satellites are operating normally.

2.2.3. Visible Time Window (VTW)

In this study, the concept of a Visible Time Window (VTW) is introduced to define the feasible
opportunities for imaging a target with a specific satellite, based on the user request and satellite
information data. Figure 4 illustrates a scenario where a single satellite aims to capture images of
1,000 targets over a 7-day period. Derived using the STK software, these VTWs serve as crucial
input parameters for optimization algorithms, which are tasked with formulating the most efficient
imaging scheduling strategy. The analysis reveals that, on average, approximately 1,000 VTWs are
generated each day, culminating in nearly 7,000 VTWs over the course of a week. This data suggests a
proportional increase in VTWs with more satellites, a greater number of targets, and longer scheduling
periods. Consequently, the effective application of optimization algorithms becomes increasingly
essential to establish efficient imaging schedules, highlighting their critical role in managing the
growing number of VTWs.
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Figure 4. Example of VTW count (case : single satellite and 1,000 targets during 7 days).

2.2.4. Objective Function

The mission planning problem for satellites is mathematically modeled using the Mixed Integer
Linear Programming (MILP) approach, which has been employed in previous researches [10,11,13,14].
The decision variable is formulated as binary variable, as shown in Eq. (2), where they take a value of 1
if a target is imaged and 0 otherwise. Specifically, xijk represents the variable indicating whether target
i is observed by satellite j during the kth VTW.

xijk ∈ {0, 1} (2)

The objective function of the imaging mission scheduling model, as defined in Eq. (3), aims to
maximize the number of imaged targets, prioritizing targets with higher profits (pi). Therefore, the
focus is on maximizing the total profit of the imaging sequence by strategically selecting targets, rather
than simply capturing a large quantity of images.

maximize ∑
i∈I

∑
j∈J

∑
k∈Vij

pixijk (3)

2.2.5. Constraints

The constraints corresponding to the objective function are defined in Eq. (4) through (8):

nmin
i ≤ ∑

j∈J
∑

k∈Vij

xijk ≤ nmax
i for i ∈ I (4)

∑
i∈I

∑
j∈J

∑
k∈Vij

τo
ijkxijk ≤ ∑

j∈J
dj (5)

ts
jl ≤ τs

ijk and τe
ijk ≤ te

jl for i ∈ I, j ∈ J, k ∈ Vij, l ∈ Tj (6)

τs
ijk + τo

ijk ≤ te
jl and te

jl = ts
jl+1 for i ∈ I, j ∈ J, k ∈ Vij, l ∈ Tj (7)

τe
ijk + τ

g
j ≤ τs

i′ jk for i ̸= i′, i, i′ ∈ I, j ∈ J, k ∈ Vij, l ∈ Tj (8)

- Eq. (4) represents the constraint regarding the minimum and maximum number of times a target
is observed. This constraint is modeled within a range to accommodate multiple imaging of the same
target as per user requirements, and it is not set as a constant to allow for future model scalability.
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- Eq. (5) pertains to the maximum observation time available for a satellite during one pass over
the mission area. Various limitations of the satellite, such as power, thermal balance, and memory
capacity, identified from the satellite development stage, are integrated into a single variable termed
"duty time (dj)". Therefore, this constraint ensures that the actual imaging mission time of the satellite
does not exceed this duty time.

- Eq. (6) is a constraint necessary for the application of the MDP optimization algorithm used in
this study. It relates to each time interval in the sub-problem formation, indicating that the start time
of the time interval should be set before the imaging starts, and the end time of the interval after the
imaging ends.

- Eq. (7), also related to the MDP algorithm, expresses the constraint that the imaging mission
must be completed within each respective time interval. These time intervals serve as a fundamental
criterion for segmenting the total targets within the mission area into several grouped segments. This
segmentation considers the VTW, observation time, and gap time, ensuring that the end of the lth
interval aligns seamlessly with the start of the (l + 1)th interval. Such alignment is critical for the
effective implementation of dynamic programming, which tackles the larger problem by sequentially
addressing these interconnected sub-problems, each defined by its distinct segment.

- Eq. (8) addresses the requirement for a guaranteed gap time between consecutive imaging
targets. This is a critical condition, especially for multi-imaging missions using active phased array
SAR sensors, and is essential in determining the next target post-imaging of the current one.

Figure 5 illustrates the constraints mentioned above, including VTW, observation duration time,
gap time, and time intervals. It visualizes various conditions required during consecutive imaging
missions. In Figure 5, satellite j selects and images the kth VTW of target i, i + 2, and i + 4, ensuring an
appropriate gap time between the targets, as depicted schematically.

Figure 5. A simplified illustration of the constraints.

3. Optimization Algorithm

3.1. Data Preprocessing

Before the optimization, an operation is carried out to place each vijk for Vij within the interval Tj
for each satellite j. Based on the Eq. (6). (7). (8), vijk is placed on each interval tjl . The total length of
Tj is calculated based on the first τs

ijk and the last τe
ijk in Vij. After placing vijk in each tjl , connection

information C among each vijk is generated. Considering the use of active phased array SAR sensors,
it is defined that a pair of vijk in tjl and tjl+1 is connected if their azimuth values fall within a certain
range. The description of above procedure is written on Algorithm 1.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 March 2024                   doi:10.20944/preprints202403.0331.v1



9 of 22

Algorithm 1 Interval Data Preprocessor

Require: Vij (Set of visible time windows of every target and satellite)
Ensure: Set of time intervals by satellite j, Tj, Connection information, C

1: C ← initialize zero value list ▷ List for interval connections
2: τo

ijk ← 20 ▷ Observation duration time
3: nl ← 0 ▷ Current Interval number
4: τ

g
j ← 10 ▷ Gap time

5: cstop ← 0 ▷ Interval Set division count
6: nstop ← 10 ▷ limit for stop iteration
7: lmax ← (VI j.τe

I J −V1j.τs
11)//τo

ijk ▷ maximum number of Tj
8: Tj ← the size is same with lmax ▷ Initialize list for total Interval
9: τbase ← V1j.τs

ijk ▷ Base time set to start time of first target
10: for l ← 1 to Tj do
11: si← initialize empty list ▷ Initialize list for single Interval
12: for vijk in Vij do
13: if τs

ijk ≤ τbase + τo
ijk · j and τe

ijk ≥ τbase + τ
g
j + τo

ijk · j then
14: si.append(vijk)
15: else
16: cstop ← cstop + 1
17: end if
18: if cstop ≥ nstop then
19: cstop ← 0
20: if not si is empty then
21: tjl .append(si)
22: end if
23: si← initialize empty list ▷ Reset single interval
24: end if
25: end for
26: if not si is empty then
27: append si to tjl
28: end if
29: end for
30: for each pair of interval (l, l + 1) in Tj do
31: for each vijk in tjl do
32: for each vijk in tjl+1 do
33: α1 ← tjl .vijk.azimuth ▷ Azimuth of target in l interval
34: α2 ← tjl+1.vijk.azimuth ▷ Azimuth of target in l + 1 interval
35: if abs(α1 − α2) ≤ 50 then
36: C[vij1, vij2]← 1
37: end if
38: end for
39: end for
40: end for
41: return Tj, C

3.2. Modified Dynamic Programming (MDP)

The Modified Dynamic Programming (MDP) algorithm is an advancement developed by our
research team, based on deterministic Dynamic Programming (DP). Recognized for its optimal method-
ology in managing time-varying systems, such as satellite mission planning, DP faces challenges when
the number of variables and the problem space expand, leading to an exponential increase in computa-
tional demand (referred as the curse of dimensionality) [33,34]. To address this, our team developed
the MDP algorithm, which has been successfully implemented in mission planning for multiple agile
satellites equipped with EO/IR payloads [31]. Further refining this approach, the current paper
extends the MDP algorithm’s application to mission planning for satellite constellations carrying SAR
payloads, demonstrating its adaptability and enhanced performance in complex operational contexts.

Utilizing the previously defined variables Tj, C, and Vij, the MDP algorithm embarks on a recur-
sive iteration process from tj1 to tjl+1. This iterative process continues until it meets a predetermined
stopping condition. Once this condition is satisfied, the algorithm captures the value of vijk at tjl
within the MDP_result. Subsequently, it initiates a backward traversal, examining the connectivity
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between vijk at tjl and tjl−1 with reference to C, and accordingly updates the MDP_result with these
interconnected pairs of vijk. Completing this backward recursive journey, the algorithm culminates
by presenting the updated MDP_result, which reflects the highest profit outcome as the definitive
output of the MDP algorithm. The detailed mechanics of this procedure are systematically described
in Algorithm 2, as follows:

Algorithm 2 MDP Algorithm for Optimized Imaging Schedule

Require: Set of time intervals by satellite j, Tj, Connection information C, Set of visible time windows,
Vij, Duty time dj

Ensure: Optimized imaging schedule with MDP, MDP_result
1: l ← 0 ▷ Current Interval number
2: MDP_result← initialize empty list
3: MDP_result← MDP(Tj, C, Vij, dj, l, MDP_result)
4: Sort MDP_result by profit in descending order
5: return MDP_result[ f irst] (the schedule with the highest profit)
6: function MDP(Tj, C, Vij, dj, nl , MDP_result)
7: if l = len(Tj) or l = dj then
8: for each vijk in tjl do
9: MDP_resultschedule ← vijk

10: MDP_resultpro f it ← vijk.pro f it
11: end for
12: else
13: MDP_result← MDP(Tj, C, Vij, dj, l + 1, MDP_result)
14: for each n, vijk in MDP_result do
15: for each vijk in tjl do
16: if C[MDP_result[n]schedule[last].vijk, tjl .vijk] = 1 then
17: schedule← append tjl .vijk to MDP_result[n]schedule
18: pro f it← MDP_result[n]pro f it + tjl .vijk.pro f it
19: append schedule, pro f it to MDP_result
20: end if
21: end for
22: end for
23: end if
24: return MDP_result
25: end function

3.3. Greedy Algorithm

To facilitate a comparative analysis of optimization algorithms, this study adopts the widely
used Greedy algorithm for solving mission planning problems. Drawing inspiration from the Greedy
algorithm outlined by Cho et al. [10], we have refined this approach to suit the mission scheduling of
satellite constellation.

In the case of the Greedy algorithm, it also utilizes Tj, C, and Vij. However, unlike MDP, which
iterate to a certain interval or stopping condition and then performs calculations while backtracking,
Greedy calculates from tj1 to Tj or until a stopping condition is satisfied. In the first interval, it selects
the vijk with the highest pro f it from tj1. After the first, the list vijk in tjl is created based on the last
vijk and Connection information C. the vijk with the highest pro f it is chosen as the last target on the
interval. If there are no connected vijk, no action is taken in that interval and moves on to the next tjl .
The procedure of greedy is described on Algorithm 3 as follow :
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Algorithm 3 Greedy Algorithm for Optimized Imaging Schedule

Require: Set of time intervals by satellite j, Tj, Connection information C, Set of visible time windows,
Vij, Duty time dj

Ensure: Optimized imaging schedule with Greedy, GR_result
1: nl ← 0 ▷ Current Interval number
2: GR_result← initialize empty list
3: schedule← initialize empty list
4: pro f it← 0 ▷ Initialize profit for GR_result
5: targetlast ← null ▷ Initialize target marker
6: for l = 1 to len(Tj) do
7: if l = 1 then
8: Sort tjl by profit in descending order
9: vijk ← target in tjl [ f irst]

10: append vijk to
11: pro f it← pro f it + vijk.pro f it
12: targetlast ← vijk
13: else
14: Ctarget ← initialize empty list
15: for each vijk in tjl do
16: if C[targetlast, vijk] = 1 then
17: Ctarget ← vijk
18: end if
19: end for
20: if Ctarget is not empty then
21: Sort Ctarget by profit in descending order
22: vijk ← target in Ctarget[ f irst]
23: append vijk to schedule
24: pro f it← pro f it + vijk.pro f it
25: targetlast ← selected_target
26: end if
27: end if
28: if nl = dj then
29: break
30: end if
31: end for
32: Gr_resultschedule ← schedule
33: GR_resultpro f it ← pro f it
34: return GR_result

4. Experimental Results

4.1. Test Scenario

The satellite system under consideration is a cluster satellite configuration, specifically a Walker
Delta constellation. This constellation is comprised of 8 planes, with satellites ranging from 1 to 5
per plane, amounting to a maximum of 40 satellites. These satellites orbit at an altitude of 500 km
and are equipped with state-of-the-art active phased array Synthetic Aperture Radar (SAR) sensors.
The orbital trajectories and configuration of this satellite constellation are graphically represented in
Figure 6, providing a clear visual understanding of the spatial arrangement.
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Figure 6. Satellite constellation on 3D map.

Targets are randomly generated within the geographic boundaries of the Korean Peninsula,
between latitude 32− 42◦N and longitude 124− 131◦E, with their count progressively increasing from
100 up to a maximum of 1000 in increments of 100. Figure 7 illustrates the spatial distribution of
these targets within the mission area. Additionally, each target is randomly assigned a urgency and
significance value, chosen from 0.3, 0.6, or 0.9, adding layers of complexity to the target prioritization
process.

Figure 7. Distribution of 1,000 targets in mission area.
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The mission planning period is set from 00:00 on January 1, 2024, to 00:00 on January 8, 2024,
spanning 7 days. The test scenarios involve varying numbers of satellites, from 8 (one per plane) to 50
in total, and targets ranging from 100 to 1,000. This results in 50 unique test cases for the numerical
simulation. Detailed simulation parameters are listed in Table 2.

Table 2. Simulation parameters.

Parameter Value

Scheduling period (day) {1, 2, 3, 4, 5, 6, 7}
Mission area (◦) 32-42N, 124-131E

Number of targets {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}
Walker delta constellation 44.1◦: 40/8/1

Altitude (km) 500
Incidence angle (◦) 25-45

τo
ijk (s) 20

τ
g
j (s) 10

dj (s) 60
nmin

i , nmax
i 1

pi, ui {0.3, 0.6, 0.9}
α, β 0.7, 0.3

The simulation environment is a crucial aspect, primarily focusing on the computing power
and related resources required for the effective execution of the simulation. The specific simulation
environment is provided in Table 3.

Table 3. Simulation environments.

Index Specification

Processor Intel® Core™ i7-11700
Memory (RAM) 32 GB

Orbit analysis tool AGI® STK (Systems Tool Kit)
Implement tool VS Code

Framework Python 3.10

The workflow of our simulation is a multi-step process, initiated with user-inputted target
information and satellite parameters fed into the STK program. Utilizing this input, STK generates
target data and propagates satellite orbit. A critical output of this process is the VTW report, which
becomes the foundational input for the MDP and Greedy algorithms, both written in Python language.
These algorithms are used to derive the solution of the optimal mission scheduling. The entirety of
this workflow, from initial input to final algorithmic processing, is depicted in Figure 8, offering a
comprehensive visual guide to the simulation process.

Figure 8. Simulation Workflow.
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4.2. Mission Allocation

Mission allocation refers to the outcomes produced by optimization algorithms in response to
user-requested mission assignments. In Figure 9, the mission allocation results are depicted over a
single day for all test cases, spanning from 100 to 1000 targets. The scenarios involve different numbers
of satellite constellations (8 to 40) and apply two algorithms, MDP and Greedy. The upper graph
illustrates the number of observed targets, representing the sum of instances where the binary decision
variable xijk is equal to 1. In simpler terms, it reflects the total count of occasions when targets are
successfully observed, excluding the profit (pi) gained from observing a target in the objective function.
Meanwhile, the lower plot corresponds to Eq. (3), revealing the objective function value of total profit
derived from target observation. This calculation includes the profit associated with each target. In
essence, the lower plot provides a comprehensive overview of the objective function value, taking into
account the profits obtained through capturing individual targets.
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Figure 9. Mission allocation results under all test cases.

Figure 9 illustrates an increasing trend in mission allocation results with a growing number of
targets and satellites. Notably, the MDP algorithm consistently outperforms the Greedy algorithm. As
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the number of targets increases, the impact of an increased number of satellites on mission allocation
results becomes more evident, along with the growing disparity between the MDP and Greedy
algorithms. Moreover, when maintaining the same number of satellites, the mission allocation results
tend to converge even as the number of targets increases, suggesting a threshold beyond which adding
more targets has a limited effect on the number of successfully allocated missions. For example, with
8 satellites, the number of missions stabilizes at approximately 180, even as the number of targets
increases to 1000. This phenomenon enables mission planners to determine the optimal number of
satellites required based on the number of targets.

4.3. Mission Success Rate

To evaluate the efficacy of the mission plan in response to user requests, this study employs the
mission success rate, a key concept in mission analysis being utilized by the Korea Aerospace Research
Institute (KARI) [35]. Eq. (9) signifies the ratio of obtained profit to the total profit when successfully
observing all targets. Eq. (10) expresses the ratio of observed targets to the total targets requested by
the user.

Mission success rate for profit (%) =
∑ ∑ ∑ pixijk

∑ pi
× 100 (9)

Mission success rate for target observation (%) =
∑ ∑ ∑ xijk

|I| × 100 (10)

Figure 10a illustrates the mission success rates achieved with 40 satellites and 500 targets over
a day, utilizing both the MDP and Greedy algorithms. The MDP algorithm reached a 100% mission
success rate around 17:50, surpassing the Greedy algorithm, which reached the same rate around
23:50. The efficiency of the mission planning process is highlighted by MDP’s ability to complete
all missions in a shorter timeframe than Greedy, despite having an identical number of targets and
satellites. These findings are further detailed in Figure 10b, depicting outcomes when extending
the mission planning period from 1 day to 7 days. Notably, MDP, after 4 days, attained a profit of
91.0% and target observation of 86.4%, whereas Greedy achieved only 68.3% and 69.2%, respectively.
Furthermore, considering the completion of a 7-day mission plan, MDP realized success rates of 95.2%
and 92.4%, while Greedy demonstrated significantly lower success rate of 75.0% and 76.2%, revealing
an approximately 20% difference in mission success rates.
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Figure 10. Analysis of mission success rate.

Upon examining the correlation between the number of observed targets and resulting profit, it
becomes evident that while Greedy consistently displays an increase in both metrics throughout all
time periods, MDP consistently achieves a higher profit relative to the number of observed targets.
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Starting from the 4th day onward in Figure 10b, the objective function value in the case of the Greedy
algorithm starts to fall below the target observation value. This observation underscores the clear
alignment of MDP with the problem’s objective function, emphasizing the prioritization of high-profit
target observation. This data described in Figure 10 can serve as a valuable reference for analyzing
the completion of user-requested missions within the available satellite resources during the mission
planning phase. To summarize, the outcomes indicate that the quantity of observed targets and
resulting profits depend on the number of satellites and the planning horizon. The efficacy of the MDP
algorithm is demonstrated by its adept implementation of the problem’s objective function. Employing
the mission success rate as a metric proves instrumental in evaluating the efficiency of incorporating
users’ requests into the mission plan.

4.4. Revisit Time

Revisit time is a crucial figure of merit (FOM) in satellite mission planning, representing the
periodicity of a satellite’s return to a designated imaging target or region. In Figure 11, the mean
revisit time is depicted based on the profit associated with each target under a test scenario involving
a constellation of 16 satellites observing 100 targets five times over a 7-day period. Calculated as
the temporal difference between the initiation of the first observation and the conclusion of the fifth,
divided by four intervals. Target profit is determined by Eq. (1), categorized into nine segments.
Figure 11 illustrates that, across all target profit segments, the mean revisit time for the MDP algorithm
consistently outperforms that of the Greedy algorithm. Furthermore, the outcomes of linear regression
fitting, as expressed in Eq.(11) and Eq.(12), indicate that MDP exhibits a steeper slope and a smaller
y-intercept.

Delving into more detailed analysis, the mean revisit time for MDP at the lowest profit of 0.3 is 9.02
hours, compared to 10.56 hours for the Greedy algorithm, and at the highest profit of 0.9, MDP’s mean
revisit time significantly shortens to 3.2 hours versus 5.1 hours for Greedy. This trend demonstrates
that the difference between the two algorithms becomes more pronounced with increasing profit. The
slope of the graph indicates that MDP is more effective at capturing as many high-profit targets as
possible within the constraints of satellite mission planning.

Following this detailed analysis, it becomes pertinent to examine how this research diverges from
prior work. Previous studies [7,36,37] have predominantly aimed at optimizing satellite constellations
and orbits to reduce the mean revisit time to tens of minutes across areas such as the Korean Peninsula,
often treating it as a single, uniform target for system-level performance evaluations. Contrary to this
approach, the present study advances by accurately calculating the mean revisit times for individual
targets within specific regions, thereby offering a more refined analysis. This shift from a broad, areal
focus to a targeted, precise evaluation underscores the novelty and significance of our approach, setting
it apart from earlier methodologies.

MDP Fit Line : y = −9.70x + 11.93 (11)

Greedy Fit Line : y = −9.10x + 13.29 (12)

For a quantitative analysis of the results dataset, we present the mean revisit time using a box
plot in Figure 12, along with key statistical metrics in Table 4. As illustrated in both Figure 12 and
Table 4, the MDP algorithm exceeds Greedy’s performance in all metrics, excluding the minimum
value. Notably, the standard deviation and presence of outlier values are significantly reduced in the
case of the MDP algorithm. This emphasizes that the efficacy of the MDP algorithm is demonstrated in
the satellite mission planning domain where a robust algorithm is essential.
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Figure 11. Target profit vs. Mean revisit time (5 times revisit for 100 targets).
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Figure 12. Box plot of mean revisit time.

Table 4. Statistics of mean revisit time.

Statistic MDP (hour) Greedy (hour)

Mean 6.08 7.80
Standard deviation 3.77 6.00

Minimum 1.48 0.78
25th Percentile 3.20 3.48

Median 5.13 6.25
75th Percentile 8.23 9.49

Maximun 17.84 23.56
The bold text indicates the best parameter values for the two algorithms.

4.5. Computation Time

Figure 13 presents the computation times for the MDP and Greedy algorithms as functions of the
total number of targets, with the data displayed on a logarithmic scale. This visualization underscores
the correlation between increased computation times and the rising numbers of both targets and
satellites. It specifically highlights the exponential growth in computational demand as the number
of satellites increases, a factor that is precisely plotted to illustrate its impact on computational time.
Upon detailed analysis, it becomes apparent that the volume of targets exerts a more substantial impact
on the computational complexity than does the satellite count. This augmented complexity primarily
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arises from the intricacies of generating sub-problems. Specifically, as the target count increases,
the task of calculating each target’s visibility window and the intervals between them necessitates a
significant escalation in computational resources.

A comparative assessment reveals that across all tested scenarios, the Greedy algorithm out-
performs the MDP algorithm in computation time, especially in complex scenarios involving 1000
targets where Greedy’s computation time is merely 101 seconds compared to MDP’s 998 seconds.
This efficiency of Greedy stems from its strategy of optimizing each sub-problem individually for
immediate results, in contrast to MDP, which assesses the overall benefit pathway, leading to a more
thorough optimization at the cost of longer computation times. However, despite its DP-based nature,
MDP manages to complete even the most computationally demanding scenarios within a reasonable
timeframe. With advancements in computing powers such as CPU and RAM, it is feasible to signifi-
cantly reduce computation times, establishing the MDP algorithm’s suitability for satellite constellation
mission planning by providing higher objective function outcomes efficiently. This underscores the
need to balance algorithmic efficiency with optimization potential in computational resource allocation
for complex tasks.

Furthermore, an interesting aspect of the computation times for both the MDP and Greedy
algorithms emerges when considering the interplay between the number of targets and satellites.
While the computation time for the Greedy algorithm increases directly with the number of targets
and satellites, the MDP algorithm displays a more complex pattern of behavior. Specifically, scenarios
with a lower count of satellites have occasionally demanded more computational time than those
with a higher count. This observation is tied to the mission success rates discussed in Subsection 4.3.
For example, an MDP scenario with 40 satellites and 1000 targets reaches a 100% mission success
rate by January 3rd, whereas with only 8 satellites, a 95% success rate is only achieved by January
7th. This indicates that scenarios with fewer satellites, despite their reduced satellite count, incur
greater computational demands due to the prolonged duration required to achieve mission success.
In contrast, scenarios employing the Greedy algorithm for 1000 targets fail to reach a 100% mission
success rate by January 7th, regardless of the satellite count, necessitating ongoing mission planning
throughout the seven-day period. This scenario accounts for the relatively shorter computation times
observed in situations with fewer satellites.
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Figure 13. Computation time comparison of MDP and Greedy algorithms under all test cases.

5. Conclusions

This research utilizes a MDP algorithm, developed in-house [31], aimed at optimizing imaging
mission schedules for SAR satellite constellations. The core of this study lies in addressing the chal-
lenges of scheduling in regions with a high density of targets, showcasing the algorithm’s effectiveness
by contrasting it with the Greedy algorithm, a widely used in existing literature. The formulation of
the problem utilizes MILP to ensure the observation of the maximum number of high-profit targets
within a set planning horizon.

Critical to the mission planning process, parameters such as VTWs, time intervals, and gap times
are calculated through satellite orbit propagation using the STK software. The MDP algorithm, by
segmenting the mission planning into discrete time intervals based on VTWs, strategically schedules
consecutive target imaging. This includes calculating both the observation time duration and gap time
to establish a comprehensive schedule for target imaging across various test scenarios. Additionally,
this study provides a comparative analysis of optimal sequencing strategies for imaging targets,
utilizing both the MDP and Greedy algorithms.

For the numerical simulations, the mission area around the Korean Peninsula is set, with 100
to 1000 targets of various levels of significance and urgency. The satellite constellation, equipped
with SAR sensors, is configured as a Walker Delta constellation comprising 5 inclined orbits, with the
satellite count ranging from 8 to 40, over a 7-day mission planning period. The evaluation of 50 test
scenarios using both the MDP and Greedy algorithms yielded significant findings as follows:

1. In mission allocation analysis, the quantity of satellites significantly impacts the observation
strategy, diminishing the importance of the total number of targets. This highlights the crucial role
of satellite count in enhancing observation efficiency and profitability, despite the limited benefits of
increasing target numbers.
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2. Across all scenarios, the mission success rate for profit surpasses that for target observation,
validating the goal of maximizing profit through prioritizing high-value targets—a strategy effectively
implemented by the MDP algorithm.

3. Analysis of revisit times reveals that targets of higher value benefit from shorter intervals
between observations. Confirmed by box plot analysis, this result highlights the robustness of the
MDP algorithm.

Lastly, the MDP algorithm, despite taking more time than the Greedy algorithm, consistently
achieves better outcomes in mission allocation, success rates, and revisit times. With advancements in
computing power, the computational efficiency of MDP can be enhanced, making it a more suitable
choice for complex satellite mission planning.

For future works, we plan to broaden the optimization scope to encompass both imaging mis-
sions and communication planning with ground stations. As ground stations become more globally
accessible, satellite communication planning emerges as equally vital as imaging scheduling. This
expansion includes integrating tasks such as receiving commands from ground stations, conducting
imaging missions, and then transmitting the raw data back to Earth. By optimizing this whole mission
workflow, we aim to significantly improve the operational efficiency of satellite constellations.
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