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Abstract: Semantic segmentation of high-resolution remote sensing images provides detailed and precise feature

information, playing a pivotal role in decision-making and analysis in sectors such as water management,

agriculture, military, and environmental protection. However, most methods merely combine features from

various branches directly, without a mechanism for spatial location feature screening, and treat all extracted

features as equally important. To overcome these limitations, we introduce a novel spatially adaptive interaction

network (SAINet) for dynamic interaction across different features in remote sensing semantic segmentation

task. Specifically, we propose a spatial refined module that leverages local context information to filter spatial

locations and extract salient regions. Following this, we introduce an innovative spatial interaction module that

uses a spatial adaptive modulation mechanism to dynamically select and allocate spatial position weights. This

facilitates interaction between local salient areas and global information, allowing the network to focus more

on relevant regions. This flexible approach enables the network to capture more informative features, thereby

enhancing segmentation accuracy. Experiments conducted on the DeepGlobe, Vaihingen, and Potsdam public

datasets confirm the effectiveness and capability of SAINet. Our code and models will be publicly available..

Keywords: remote sensing; spatially adaptive; semantic segmentation; high-resolution; interaction

1. Introduction

With the increasing prevalence of high-resolution remote sensing satellites in global Earth obser-
vation missions, high-resolution remote sensing data has become abundant and the primary source for
Earth observation. Semantic segmentation of high-resolution remote sensing images [1–5] plays a vital
role in understanding the distribution of ground object features, enabling refined urban management,
environmental monitoring, natural resource assessment, crop analysis, precise surveying, and mapping.
High-resolution remote sensing images possess distinct characteristics, including complex background
information, dense targets, and rich ground object features. Consequently, effectively leveraging
global and local features of targets amidst complex backgrounds and bridging the differences between
various features becomes crucial for enhancing the accuracy of semantic segmentation.

Semantic segmentation of high-resolution remote sensing images [6–8] can be broadly categorized
into two types: single-branch segmentation networks and dual-branch networks. Figure 1a illustrates
the single-branch segmentation networks [9–11], which employ pure convolutional neural networks
(CNNs) to enhance feature extraction capabilities. These single-branch architectures typically consist of
well-known backbone networks such as FCN [12], UNet [13], DeepLabV3 [14], and their combinations.
However, these methods often overlook the effective interaction between global and local features of
target objects within the complex backgrounds of high-resolution remote sensing images. Moreover,
these approaches commonly involve downsampling the high-resolution remote sensing images before
feature extraction, leading to the loss of either high-resolution details or spatial contextual information.
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Figure 1. Comparison of SAINet with other networks in semantic segmentation of high-resolution
remote sensing images: (a) Single-branch networks, typically train on downsampled images, resulting
in insufficient capability to extract local detailed information. (b) Dual-branch networks, train with
both global and local branches, fuse all the information from different branches, and treat each feature
equally. (c) Our proposed SAINet, dynamic interaction of information across different features

In recent years, the dual-branch structure has gained significant attention and achieved remarkable
advancements in semantic segmentation. Figure 1b illustrates these methods [15–18], which consist of
two branches dedicated to extracting global and local features, respectively. The final segmentation
is generated by aggregating high-level feature maps from both branches. This network architecture
greatly enhances segmentation performance and effectively demonstrates the efficacy of extracting
different features through separate branches. However, previous methods fused all the information
from different branches without a mechanism for selectively incorporating spatial and positional
features, treating each feature equally. Additionally, the fusion of global and local information was
achieved through explicit interactions, such as simple concatenation or addition, lacking an adaptive
mechanism.

In this paper, we propose a novel spatially adaptive interaction network (SAINet) for the dynamic
interaction of information across different features. As shown in Figure 1c, SAINet concatenates the
entire network through the spatial refined module (SRM) and spatial interaction module (SIM). To be
specific, the whole image is first input to the backbone network to obtain coarse segmentation results.
To ensure the coarse regions and enhance the segmentation accuracy, SRM is used to select local
patches that are difficult to be segmented by the backbone network. Then crop the patches and they
are input to the backbone network to obtain fine local features. To further enhance the segmentation
accuracy, SIM is used to facilitate interaction between local salient areas and global information. As
a result of integrating local and global information, it is possible to capture contextual information
adaptively from multiple perspectives. To evaluate the effectiveness of the model, we conducted
extensive experiments demonstrating that our proposed model outperforms state-of-the-art methods
on the publicly available high-spatial-resolution image datasets DeepGlobe, Vaihingen, and Potsdam.

Our main contributions are summarized as follows:

1. We propose a novel spatially adaptive interaction network (SAINet) for filtering and dynamic
interaction among different spatial features in the remote sensing semantic segmentation task.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2024                   doi:10.20944/preprints202403.0833.v1



3 of 20

2. We present a new spatial refined module that uses local context information to filter spatial
positions and extract salient regions.

3. We devise a spatial interaction model to adaptively modulate mechanisms to dynamically select
and allocate spatial position weights to focus on target areas.

4. We demonstrate the effectiveness of our approach by achieving state-of-the-art semantic segmen-
tation performance on three publicly available high-resolution remote sensing image datasets.

2. Related Works

2.1. Semantic Segmentation

The Fully Convolutional Network (FCN) [12] pioneered the use of end-to-end convolutional
networks for semantic segmentation, laying the foundation for this field. FCN eliminated connected
layers, making it adaptable to inputs of any size. It utilized simple bilinear interpolation for initializa-
tion and employed deconvolution layers to upsample the feature maps from the final convolutional
layer, preserving spatial positional information for pixel-wise predictions. Optional application of
Conditional Random Fields (CRF) [19] improved classification mapping and segmentation results.
The encoder-decoder framework was subsequently introduced with influential models like UNet
[13] and SegNet [20]. UNet, structured as a U-shape, employed deconvolutional upsampling and
feature map concatenation from corresponding scales in preceding layers. It achieved high speed
and became a baseline network for medical image segmentation tasks. SegNet, although not the first
encoder-decoder structure, successfully generalized the architecture, balancing memory (parameters)
and accuracy. It utilized unspooling for feature map upsampling, reducing parameters and preserving
high-frequency information. The concept of dilated convolutions [21] introduced background modules
that used dilated convolutions for multi-scale aggregation, achieving dense prediction results without
increasing parameters. Deeplabv2 [22] proposed the pyramid-like atrous spatial pyramid pooling
(ASPP) technique, employing multiple parallel atrous convolution layers with different sampling
rates for effective multi-scale processing. EMRN [23] proposes a multi-resolution features dimension
uniform module to handle dimensional features from images of varying resolutions. PSPNet [24]
enhances the ResNet [25] structure using atrous convolutions and incorporates a pyramid pooling
module to capture contextual information at different scales. Deeplabv3 [14] improves spatial ASPP
by cascading multiple atrous convolution structures and introduces batch normalization after each
parallel convolutional layer. In 2018 [9], DeepLabv3 is adopted as an encoder architecture with an
effective decoder module. It also explores the use of improved Xception and depth-wise separable
convolutions to enhance the model’s performance in semantic segmentation tasks.

Recently, attention mechanism methods [26–30] have been introduced to semantic segmentation.
Transformer mechanisms and self-attention mechanisms [31] were initially introduced in the field of
natural language processing and later sparked widespread research interest in the field of computer
vision [32–35]. The pioneering work, Vision Transformer (ViT) [36], utilizes multiple Transformer
blocks to process non-overlapping image patches, establishing a convolution-free image classification
model. PVT (Pyramid Vision Transformer) [37] draws inspiration from the pyramid structure of
convolutional neural networks. It gradually reduces feature resolution by segmenting the input image
into blocks of different scales. Transformer encoding blocks are then applied to each scale for feature
extraction. This approach empowers PVT to handle features at various levels, resulting in remarkable
performance across diverse image classification tasks. CFIL [38] proposes a frequency-domain feature
extraction module and feature interaction in the frequency domain to enhance salient features. MFC
[39] proposes a frequency-domain filtering module to achieve dense target feature enhancement. To
avoid excessive attention computation, Swin Transformer [40] employs window-based local attention
to confine attention within local windows. To fully leverage the advantages of Convolutional Neural
Networks (CNN) in local feature extraction and the capabilities of Transformers in global relationship
modeling, [41–46] combining these two methods allows for the simultaneous capture of image details
and overall context. This integration aims to enhance image analysis and understanding and has the
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potential to yield improved results across various computer vision tasks. In certain situations, different
regions may possess varying degrees of importance. Deformable attention [47] enables models to
dynamically adjust their focus on different regions of an image based on object shapes and positions.
This adaptive tuning allows the model to more accurately emphasize important object-related areas,
thus enhancing its performance in image processing tasks. Recently, to reduce computational costs,
researchers have introduced a coarse-fine-grained Visual Transformer (CF-ViT) [48] to alleviate the
computational burden while maintaining performance.

2.2. Dual-Branch Architecture

In visual tasks involving natural images [49–52], remote sensing images [15,17,53,54], and visible
light images [55–59], a substantial body of work has sought to address the subjectivity issue in
balancing this trade-off by learning to integrate multi-scale information. Specifically, these approaches
learn representations from multiple parallel networks and then aggregate information across different
scales before making the final predictions. Taking the remote sensing domain as an example, GLNet
[15] consists of a global branch and a local branch, tailored to address both global downscaled images
and localized cropped image blocks. GLNet achieves high-quality segmentation outcomes, effectively
balancing precision and memory consumption. UHRSNet [16] enhances and streamlines the local and
global feature fusion approach of GLNet, enabling small blocks to gather information from surrounding
ones. This effectively addresses the challenges posed by cropping and downsampling. HPGN [60]
proposes a novel pyramid graph network targeting features, which is closely connected behind the
backbone network to explore multi-scale spatial structural features. To fully harness the potential of the
multi-branch architecture, MBNet [17] introduces a scaling module. The Zoom module relinquishes
the prior L2 normalization before feature concatenation, instead exploiting the acquired attention to
fuse distinct features. This approach maximizes the advantages of multi-resolution capabilities. The
existing dual-branch architectures have shown promising results by seamlessly integrating patches and
downsampled images during training. However, these approaches have primarily focused on merging
information from different branches without considering the importance of spatial location features.
They treat all extracted features uniformly, resulting in direct interactions (such as concatenation or
addition) without an adaptive mechanism.

3. Method

We propose a spatially adaptive interaction network to utilize both global and local information
better and achieve effective interaction between local saliency regions and global information: spatially
adaptive interaction network, SAINet, a segmentation network based on high-resolution images. In
Section 3.1, we first give an overview of the network. From Section 3.2 to Section 3.3, we further
introduce the composition of the network, including the backbone network, spatially refined module
(SRM), and spatial interaction module (SIM).

3.1. Overview

SAINet network, as shown in Figure 2, consists of the following parts: (1) Extracts global informa-
tion from downsampled images; (2) Introduces a simple yet effective spatial refinement module, which
utilizes local contextual information for spatial position filtering, extracting salient regions and their
indices; (3) Extracts local detailed information; (4) Utilizes a spatial adaptive modulation mechanism
for dynamically selecting and allocating spatial position weights, achieving the interaction of local
salient regions and global information. The global feature extraction and local feature extraction are
performed using the ResNet50-based FPN (Feature Pyramid Network), with the parameters of the two
backbone networks shared.
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Figure 2. An overview of the proposed SAINet. SAINet first downsamples the input image and then
puts it into the backbone network extracting global features. The spatial refined module (SRM) extracts
salient regions within the global features and obtains the salient regions index (SRI). The local features
are extracted from crop patches. The spatial interaction module (SIM) performs the spatially adaptive
interaction between global features and local features.

Specifically, the proposed approach first uses the backbone network to extract features from the
input image X, generating the global feature map Fg. It then uses the spatial refine module to obtain
the saliency regions and their indices SRI. Subsequently, SAINet uses SRI to crop the original image,
obtain the cropped image block Xc, and apply the same backbone network to extract features from
Xc, resulting in the local feature map Fl . To facilitate more effective interaction between the global
feature Fg and the local feature Fl , we introduce the spatial interaction module (SIM), a novel attention
mechanism that combines linear attention and softmax attention. Our network can be formulated as:

Fg = BRA(R(X)) (1)

where the matrix X represents the input image, R(·) denotes the resize operation, and BRA is the
backbone network, using the Feature Pyramid Network (FPN) with ResNet50. Fg is the global feature
map with coarse extraction results.

SRI = SRM
(

Fg
)

(2)

where SRI represents the saliency region index, and SRM denotes the spatial refine module, with
details shown in subsection 3.2.

Fl = BRA(Xc) = BRA(SRI(X)) (3)

where SRI(·) denotes the cropping operation with SRI. The matrix Xc represents the cropped image.
BR(·) is the backbone network the same as formula 1. Fl denotes the local feature map with more
detailed information.

Fi = SIM
(

Fg, Fl
)

(4)

where Fi signifies the newly obtained features through interaction, and SIM(·) stands for the spatial
interaction module, with operational details in subsection 3.3.

3.2. Spatial Refine Module

Not all the extracted global features from down-sampled images are inaccurate, meaning not
every local area needs enhancement. Especially in high-resolution remote sensing images, some objects
are often continuous and occupy a large proportion of the entire image. Therefore, we have introduced
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a spatial refinement module that utilizes local context information to screen spatial positions and
extract salient regions.

As shown in Figure 2, the global features FGlobal ∈ RH×W× Class are first passed through the
spatial refinement module, followed by a softmax operation, and then a 1x1 convolution is employed
to obtain the saliency level on the channel dimension, denoted as Pij ∈ (0, 1). Hence, the confidence
level of the global image is noted as SGlobal ∈ RH×W×1, and Equation (2) presents the calculation
formulas.

Sglobal = Conv1×1
(
soft max

(
Fg
))

=


p11 p12 · · · p1j
p21 p22 · · · p2j

...
...

. . .
...

pi1 pi2 · · · pij

, 1 ≤ i ≤ H, 1 ≤ j ≤ W (5)

To further enhance the expressiveness of salient regions, a sliding window is used to calculate the
local region scores, resulting in the ScoreMap. In this paper, the appropriate sliding window size of
3x3 was determined through subsequent ablation experiments. The final window size s is set to 3x3.
The threshold for determining salient regions denoted as T, is determined using the formula:

T = t × logµ
2 (6)

In this study, the values of t and µ are set to 0.08 and 7, respectively. Areas of the ScoreMap with scores
below the threshold T are considered salient regions (SR) along with their corresponding index (SRI),
where  SR = 1

s×s ∑1<i≤s
1<j≤s

Pij

SRI, SR ≤ T
(7)

Subsequently, the original image is cropped using the SRI to determine local crop patches. The weight
matrix of the salient region WS is learned by the spatial interactive module, for details see section 3.3.

3.3. Spatial Interaction Module

Traditional feature fusion involves merging global and local features entirely, and the fusion
method is merely a simple addition or concatenation. This is not only inefficient but also results
in insufficient fusion. We all know that the large and sometimes even global, receptive field of the
Transformer model gives it superior representational abilities compared to its CNN counterparts,
especially in terms of understanding global context. Therefore, this paper presents a fusion method
based on Transformer. However, simply enlarging the receptive field can also lead to some issues.
On the one hand, using dense attention in ViT can result in excessive memory and computational
costs, and the features may be affected by irrelevant parts beyond the region of interest. On the other
hand, the sparse attention adopted in PVT or Swin Transformer is data-agnostic and may limit the
ability to model distant relationships. Therefore, this paper proposes a novel interactive attention
mechanism, where the interactive positions are selected in a data-dependent manner. This flexible
attention mechanism can focus on relevant areas and integrate more informative features.

As shown in Figure 2, our spatial interaction module (SIM) is an innovative mode of attention that
integrates the powerful Softmax attention with the efficient linear attention, represented as a quadruple
(Q, S, K, V). With two inputs of N tokens represented as Fg, Fl ∈ RN×C, Fg and Fl are obtained from
Eq.(1) and Eq.(3) respectively. So self-attention can be formulated as follows in each head:

Q = FgWQ, K = FlWK, V = FlWV ,

Oi =
N

∑
j=1

Sim
(
Qi, Kj

)
∑N

j=1 Sim
(
Qi, Kj

)Vj,
(8)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2024                   doi:10.20944/preprints202403.0833.v1



7 of 20

where WQ/K/V ∈ RC×d denote projection matrices, C and d are the channel dimension of the
module and each head, and Sim(·) represents the similarity function. When using Sim(Q, K) =

exp
(

QKT/
√

d
)

in Eq.(8), it becomes Softmax attention [31]. So Softmax attention can be abbreviated
as:

Oσ = σ
(

QKT
)

V ≜ Attnσ(Q, K, V) (9)

Where WQ/K/V ∈ RC×d denote query, key, and value matrices and σ(·) represents Softmax function.
When similarity is measured as Sim(Q, K) = ϕ(Q)ϕ(K)T in Eq.(8), it becomes Linear attention [61]. So
linear attention can be abbreviated as:

Oϕ = ϕ(Q)ϕ(K)TV ≜ Attnϕ(Q, K, V) (10)

Softmax and linear attention suffer from either excessive computation complexity or insufficient
model expressiveness. So this paper introduces a set of additional saliency region tokens S,∈ Rd×Cinto
the traditional attention module. As shown in Figure 2, our interaction module consists of two Softmax
attention operations. We initially treat tokens S as queries and perform attention calculations between
S, K and V to aggregate local salient features OVS :

OVS = σ
(

SKT
)

V ≜ Attnσ(S, K, V) (11)

The saliency region tokens S first act as intermediaries for the query tokens Q, aggregating
information from K and V, and then broadcasting the information back to Q. The number of saliency
region tokens is determined by the RM module and is far less than the number of query tokens. The
saliency region attention is notably more efficient than the widely used Softmax attention, while still
preserving the global context modeling capability.

Subsequently, we utilize S as keys and OVS as values in the second attention calculation with the
query matrix Q, interactions the global information and local salient information to obtain the final
output OS:

OS = σ
(

QST
)

OVS

= ϕq(Q)ϕk(K)TV

= Attnϕq/k(Q, K, V)︸ ︷︷ ︸
Generalized Linear Attn

,
(12)

Then our attention used in the interaction module can be written as:

OS = Attnσ(Q, A, Attnσ(A, K, V)︸ ︷︷ ︸
Local Salient Information

)

︸ ︷︷ ︸
Information Interaction

(13)

3.4. Loss

In the first training phase, we employ cross-entropy loss as a loss function to measure the
difference between the prediction results of the backbone network and the ground truth data.

Loss = −y log(p)− (1 − y) log(1 − p) (14)

where p is the prediction result, and y is the ground truth data.
In the second training phase, We use the Focal Loss [62] with τ = 6 as the optimization target.

FocalLoss(pt) = −αt(1 − pt)
τ log(pt) (15)
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where pt represents the probability that the second backbone network predicts for a certain category;
αt is used to balance the number of positive and negative samples, with a smaller αt value assigned to
categories with more samples and a larger αt value to those with fewer samples; τ is used to adjust the
imbalance between hard-to-separate and easy-to-separate samples. In this paper, we take τ = 6 to
reduce the loss of easy-to-separate samples with a power function.

4. Experiment

We conduct experiments on three datasets to verify the effectiveness of our proposed method.
DeepGlobe dataset, which primarily focuses on rural areas, and the Vaihingen and Potsdam datasets,
which emphasize urban regions.

4.1. Datasets

Table 1. Three public semantic segmentation datasets of ultra-high-resolution (UHR) remote sensing
images are used in this paper.

Dataset Max Size Number of Classes %of 4K UHR Image #Image

DeepGlobe [63] 6M pixels (2448×2448) 7 100% 803
Vaihingen * 28M pixels (2494×2064) 6 100% 33
Potsdam * 103M pixels (6000×6000) 6 100% 38

* http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html.

Figure 3. Image sample and corresponding ground truth of(a) DeepGlobe and (b) Vaihingen and
(c) Potsdam. The mask of DeepGlobe is an RGB image with seven classes following the Anderson
Classification. Label colors are given at the bottom left of Figure 3. The labels of Vaihingen and Potsdam
challenges include six categories; they are given at the bottom right of Figure 3.
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The DeepGlobe Land Cover Classification dataset is the first publicly available benchmark that
offers high-resolution sub-meter satellite imagery with a focus on rural regions. DeepGlobe provides
real pixel masks for seven classes: urban in blue, agriculture in yellow, rangeland in purple, forest in
green, water in blue, barren in white, and unknown. It consists of 1146 annotated satellite images, all
sized at 2448×2448 pixels. Compared to previous land cover classification datasets, DeepGlobe has a
much higher resolution and is more challenging.

The Vaihingen dataset comprises thirty-three images with a spatial resolution of 9 cm and an
average image size of 2494 × 2064 pixels. Each image consists of three channels: red, green, near-
infrared (NIR), and their corresponding digital surface model. The Vaihingen dataset contains six
classes: impervious surfaces, buildings, low vegetation, trees, cars, and background. Sixteen images
with ground truth are used for network training and validation, while the remaining seventeen images
are reserved for testing. It’s worth noting that the digital surface model was not utilized in our
experiments.

The Potsdam dataset consists of twenty-eight images, all of which have the same dimensions of
6000×6000 pixels, with a spatial resolution of 5cm for both the top-level imagery and DSM. Similar to
the Vaihingen region, this dataset includes remote sensing TIFF files with three bands and a single-
band DSM. Each remote sensing image covers the same geographic area, ensuring that both the
images and DSM are defined within the same reference system (UTM WGS84). Additionally, each
image is accompanied by an affine transformation file, enabling the decomposition of the image into
smaller sections as needed. All images are densely labeled with the same six classes as the Vaihingen
dataset. Twenty-four images, each containing ground truth data, are utilized for network training
and validation, while the remaining fourteen images are reserved for testing purposes. To streamline
computation, we chose not to utilize the DSM in our experiments. It is noteworthy that only the red,
green, and blue channels were employed in our experiments.

4.2. Experimental Settings

To validate the performance of the proposed method, we compared SAINet with widely used
single-branch networks and GLNet-based segmentation networks on the DeepGlobe, Vaihingen,
and Potsdam datasets. In all the experiments, none of the networks utilized pre-trained weights.
To demonstrate that our fusion method is more effective than GLNet’s fusion approach, both the
downsampled global image and the cropped local patches share the same size as GLNet, 500×500 pixels.
Neighboring patches have a 50-pixel overlap to avoid boundary vanishing for all the convolutional
layers.

The experiments were implemented under the Pytorch framework, with Python version 3.8, and
using an NVIDIA Geforce RTX2080Ti 11-GB GPU. To accelerate convergence during model training,
we use the Adam optimizer (β1 = 0.9, β2 = 0.999) and set the momentum to 0.9 and weight decay
to 1 × 10−4 for training the global branch, and 2 × 10−5 for the local branch. The number of training
epochs was set to 150, and a minibatch size of 6 for all training. We used an early stopping mechanism
in the training process to terminate the training when the performance of the test dataset did not
increase in 10 epochs.

4.3. Evaluation Matrix

To evaluate the performance of the algorithm in this paper, four evaluation common metrics are
used: the overall accuracy (OA), the F1 score, the mean of classwise intersection over union (mIoU),
and the accuracy of foreground categories (Acc). The OA is used to assess the proportion of correctly
classified pixels to the total pixels. (OA) is defined as:

OA =
TP + TN

N
(16)
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where TP(True Positive): the prediction result is a positive example, and the actual value is also
a positive example, the prediction is correct, it is true; TN(True Negative): the prediction result is
negative, the actual value is positive, and the prediction error is false.

For each category, the F1 score can be computed by:

F1 =
(

1 + β2
)
· Precision · Recall

β2 · Precision + Recall
(17)

where β is the equivalent factor of the precision rate and recall rate and is set to one.
We use the pixel-wise Intersection over Union (IoU) score as our evaluation metric. It was defined

slightly differently for each class, as there are multiple categories. Assuming there are n images, the
formulation is defined as:

IoUj =
∑n

i=1 TPij

∑n
i=1 TPij + ∑n

i=1 FPij + ∑n
i=1 FNij

(18)

where TPij is the number of pixels in image i that are correctly predicted as class j, FPij is the number
of pixels in image i that are wrongly predicted as class j, and FNij is the number of pixels in image FPij
that are wrongly predicted as any class other than class j. Note that we have an unknown class that is
not active in our evaluation (i.e., the predictions on such pixels will not be added to the calculation and
thus do not affect the final score). Assuming there are k land cover classes, the final score is defined as
the average IoU among all classes as in Eqn. (18).

mIoU =
1
k

k

∑
j=1

IjUj (19)

4.4. Results

To demonstrate the superiority of our proposed algorithm, we compared it with traditional
semantic segmentation algorithms and the dual-branch GLNet network. Our network, as well as the
single-branch networks, can only produce prediction results for patches. Therefore, we combine these
patches to obtain the overall prediction result for the entire image. GLNet offers two methods to obtain
predictions for the entire image, and we have chosen the combination method, which yields better
results.

4.4.1. Results on DeepGlobe

To verify the performance of SAINet, we compare the model with other CNN-based and GLNet-
based semantic segmentation networks on the DeepGlobe dataset. GLNet only computed the mIoU, so
we are consistent with it here. The specific results are shown in Table 2. The results show that double-
branch GLNet-based methods outperform single-branch CNN-based methods on the DeepGlobe
dataset. SAINet has a significant performance improvement compared to other networks. Compared
to GLNet [15] and MBNet [17], the mIoU of SAINet is improved by 6.2% and 5.2%, respectively.
Compared to DeepLabv3+ [9], the top-performing single-branch network, the mIoU of SAINet is
improved by 20.7%. Hence, our network achieves optimal results in all classes and the mIoU matrix,
indicating that our model outperforms GLNet, UHRSNet [16], and MBNet. As UHRSNet and MBNet
are based on improvements to GLNet, our experiments on the DeepGlobe dataset include an extended
range of experiments incorporating UHRSNet and MBNet.

We also compared the inference speed of the networks. For SAINet and GLNet, the prediction
time is for the entire original image. However, for single-branch networks like DeepLabv3+, ICNet
[64], and PSPNet [24], the prediction time is the sum of the prediction time for all the smaller patches
obtained by cropping the original image. As shown in Figure 5, our method and GLNet demonstrate
superior inference speed compared to single-branch networks. Thanks to the design of the spatial refine
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module and spatial interaction module, our network achieves faster inference for the entire original
image while maintaining accuracy, outperforming GLNet by 105.24 seconds. While DeepLabv3+
achieves high accuracy, its inference efficiency is compromised. Although ICNet improves inference
efficiency, it struggles to maintain high accuracy. PSPNet, on the other hand, increases accuracy but at
the cost of significantly longer inference time.

4.4.2. The Result on the Vaihingen Dataset

Table 2. Comparison on the DeepGlobe Dataset.

Method Barren Rangeland Forest Water Urban Agriculture mIoU (%)

ICNet[64] 35.2 31.3 24.2 42.1 24.3 69.2 37.7
FCN[12] 36.1 36.4 35.5 38.9 26.2 72.3 40.9
U-Net[13] 34.1 33.5 28.2 45.1 26.1 71.7 39.8
PSPNet[24] 39.3 36.9 53.6 64.2 48.2 74.7 52.8
SegNet[65] 43.1 38.2 54.8 67.8 53.1 75.2 55.4
DeepLabv3+[9] 44.1 42.2 56.3 68.4 54.1 77.3 57.1
UHRSNet[16] 81.2 61.3 72.3 70.1 78.9 68.4 72.0
MBNet[17] 64.1 87.3 41.5 80.6 83.1 78.9 72.6

Baseline[15] 63.6 38.6 79.8 82.6 78.1 86.8 71.6
SAINet 86.5 46.1 83.1 84.4 79.2 87.3 77.8

Figure 4. Inference time on the DeepGlobe dataset.

To verify the robustness of SAINet, we conducted comparative experiments on the Vaihingen
dataset. The results are shown in Table 3 where SAINet yields mean F1 of 90.7%, OA 91.9%, mIoU 82.5%
respectively and is quantitively superior to other methods. Specifically, compared with the second
method, the proposed SAINet improvement in mean F1 is 0.9%, OA 1.3%, and mIoU% respectively.
The "Building" class gains the highest classification accuracy of 96.5%. Especially in high-resolution
remote sensing images, the Car, as a relatively small object, is difficult to identify in the Vaihingen
dataset. Even so, the proposed SAINet reached 89.4% of the F1 score, significantly exceeding the
secondary method. The experimental results show that SAINet maintains stable performance on the
Vaihingen dataset, which indicates that SAINet has a better practical generalization ability.
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Table 3. Quantitative comparison results on the Vaihingen Dataset with state-of-the-art methods. Best
results are in bold.

Method Impervious
Surface Building Low

Vegetation Tree Car mean F1 OA mIoU

DeepLabv3+[9] 91.4 94.7 79.6 87.6 85.8 87.8 89.9 79.0
PSPNet[24] 90.6 94.3 79.0 87.0 70.7 84.3 89.1 74.1
FSFNet [66] 91.9 94.8 82.5 89.0 85.4 88.7 89.8 -
CLANet [67] 91.5 94.6 82.9 89.5 87.3 89.2 89.8 80.7
CTFNet [68] 90.7 94.4 81.7 87.3 82.7 87.4 88.6 77.8
MFANet [69] 92.7 95.8 84.2 89.3 84.7 89.3 90.6 81.6
BGFNet [70] 92.9 95.5 84.4 89.6 86.7 89.8 90.6 81.7

Basaeline[15] 88.3 93.0 79.7 87.1 83.3 89.0 86.3 78.7
SAINet 92.5 96.5 85.9 89.3 89.4 90.7 91.9 82.5

4.4.3. Results on Potsdam

From the Table 4, it can be seen that the SAINet proposed in this paper also outperforms previous
segmentation methods on the Postdam dataset. In detail, compared with BGFNet, SAINet obtains
increments of 0.4% and 0.3% in mean F1 and OA, respectively. Notably, our method scored 96.2% on F1
in the “Car” category, outperforming other networks by more than 0.65%. Compared to the DeepGlobe
dataset, our algorithm exhibits a slightly smaller improvement in the Vaihingen and Potsdam datasets.
This is primarily because the Vaihingen and Potsdam datasets are already mature and well-established.
As shown in Figure 3, relative to the DeepGlobe dataset, the Vaihingen and Potsdam datasets primarily
focus on urban areas, characterized by well-defined boundaries and intricate details.

Table 4. Quantitative comparison results on the Potsdam Dataset with state-of-the-art methods. Best
results are in bold.

Method Impervious
Surface Building Low

Vegetation Tree Car mean F1 OA mIoU

DeepLabv3+[9] 91.3 94.8 84.2 86.6 93.8 90.1 89.2 73.8
PSPNet[24] 90.7 94.8 84.1 85.9 90.5 89.2 88.7 71.7
FSFNet [66] 92.2 95.0 85.2 87.2 95.5 91.0 89.3 -
CLANet [67] 92.1 96.3 86.8 88.4 95.4 91.8 90.3 85.1
CTFNet [68] 91.5 96.3 86.0 87.2 92.5 90.7 89.4 83.2
MFANet [69] 93.1 96.6 87.0 88.0 94.9 91.9 90.9 88.3
BGFNet [70] 95.3 96.3 88.8 88.6 95.6 92.9 92.2 86.9

Basaeline[15] 90.3 94.5 79.4 87.2 84.4 89.5 87.6 79.3
SAINet 95.4 96.7 89.5 88.6 96.2 93.3 92.5 88.3

4.5. Ablation Studies and Analysis

In the previous subsection, we have shown the superiority of SAINet by comparing it to state-of-
the-art methods. In what follows, we comprehensively analyze intrinsic factors that lead to SAINet’s
superiority in the dataset, including: (1) The role of SRM and SIM. (2) The effectiveness of variant SRM.
(3) The impact of variant SIM. (4) Compared with different attention modules.

The role of SRM and SIM. It can be observed from Table 5 that the two modules significantly
influence the performance of the algorithm, and their effects on different datasets are consistent: the
effect of using SIM alone is better than using SRM alone, while the best performance is achieved when
both are used simultaneously. When SRM is used alone, the algorithm adopts the simplest addition
operation to interact with the global and local features, which leads to less improvement compared to
GLNet, as GLNet performs more complex interactions between all global and local features. However,
there is still an improvement in mIoU compared to using a single-branch network. When SIM is used
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alone, it interacts with all features, resulting in some improvement, although not significant, as not all
features require interaction, and excessive interaction may have a detrimental effect. Only when both
SAM and SIM are used together, the network in this paper can achieve the best performance.

Table 5. The role of SRM and SIM of our method on the results.

Dataset Model Spatial Refine Module Spatial Interation Module mIoU

DeepGlobe

Baseline × × 71.6

Ours
✓ × 65.7
× ✓ 72.4
✓ ✓ 77.8

Vaihingen

Baseline × × 78.7

Ours
✓ × 75.6
× ✓ 78.9
✓ ✓ 82.5

Postdam

Baseline × × 79.3

Ours
✓ × 70.3
× ✓ 79.6
✓ ✓ 88.3

Figure 5. The effectiveness of variant window size of SRM.

The effectiveness of variant window size of SRM. To explore which window size of SRM gives
the best performance boost, we set the window size to 3 × 3, 5 × 5, 7 × 7 respectively, and select mIoU
as the evaluation metric. As shown in Figure 5, when the window size is 3 × 3, the segmentation
results are the best. With a window size of 5 × 5, the segmentation results are slightly worse, and with
a window size of 7 × 7, the segmentation results are inferior. The size of the window of SRM is an
important parameter when filtering spatial locations and extracting salient regions. According to the
results, the segmentation results are best when the window size is 3 × 3. This is because global features
have already been extracted before the first backbone network. Therefore, a 3 × 3 window is already
quite large, and increasing the window size further would only introduce unnecessary interference or
noise without improving the results. Hence, choosing a 3 × 3 window size is wise in this scenario, as it
provides the best segmentation results.

Compared with different attention modules. To further demonstrate the capability of our
proposed spatial interaction module in understanding spatial relationships in data, we replaced the
spatial interaction module with another attention mechanism and calculated the mIoU on three datasets.
From Table 6, it can be seen that replacing our spatial interaction module with the convolutional block
attention module results in a better mIoU on all three datasets compared to replacing it with the
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channel attention module and spatial attention module. The best results obtained after replacing with
the channel attention module and spatial attention module are close, with differences of 0.4%, 0.3%,
and 0.1% on the DeepGlobe dataset, Vaihingen dataset, and Potsdam dataset, respectively, indicating
that the channel attention module and spatial attention module focus on important features to a similar
extent. The convolutional block attention module, which concatenates the channel attention module
and spatial attention module, further enhances the capability to focus on local information. The results
of the proposed spatial interaction module on the three datasets are respectively 5.5%, 3.4%, and
8.6% better than the results of the convolutional block attention module on the three datasets. This is
because our designed spatial interaction module is more compatible with the proposed spatial refine
module, and it better achieves the interaction between global and local information.

(1)

(2)

(3)

(4)

(5)

Postdam Label GLNet OursDeeplabV3+

Low Vegetation Car Clutter Tree Building Impervious Surface

Figure 6. Visualization results on the Postdam dataset. In each column from left to right, the original
image, label, prediction result from Deeplabv3+, prediction result from GLNet, and prediction result
from SAINet are displayed, respectively. The first three rows represent complex scenes, while the
fourth and fifth rows depict simple scenes.
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Table 6. Compared with different attention modules.

Method Dataset
DeepGlobe Vaihingen Potsdam

CAM [71] 71.9 78.6 79.0
SAM [72] 71.5 78.3 78.9

CBAM [73] 72.3 79.1 79.7
Ours 77.8 82.5 88.3

The correlation between segmentation accuracy and patch size. As can be seen from Table
7, our network’s segmentation accuracy remains relatively stable despite variations in patch size.
The highest and lowest segmentation accuracies of GLNe across different patch sizes differ by 7%,
whereas the difference between the highest and lowest segmentation accuracies of our network across
different patch sizes is only 3.5%. This is attributed to our proposed Spatial Refine Module and Spatial
Interaction Module, which adapt better to features of different sizes. This stability allows the network
to be trained with smaller patches, consequently reducing the hardware requirements.

Vaihigen Label GLNet OursDeeplabV3+

(1)

(2)

(3)

(4)

(5)

Low Vegetation Car Clutter Tree Building Impervious Surface

Figure 7. Visualization results on the Vaihigen dataset. In each column from left to right, the original
image, label, prediction result from Deeplabv3+, prediction result from GLNet, and prediction result
from SAINet are displayed, respectively.
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Table 7. Results with different patch sizes on DeepGlobe.

Method PatchSize
500×500 400×400 256×256 128×128

GLNet 71.6 70.6 66.4 64.6
Ours 77.8 77.1 75.7 74.3

4.6. Visual Results and Analysis

To further evaluate the performance of our algorithm on different datasets and highlight its
advantages, we selected five representative image samples from both the Vaihingen dataset and the
Postdam dataset. We analyzed and compared the prediction results using visualizations. For the
single-branch network, we chose Deeplabv3+ as the representative, and for the multi-branch network,
we selected GLNet.

From the visualization results in Figure 6, it can be seen that our algorithm shows a remarkable
improvement on the Postdam dataset. Compared to the prediction results of other algorithms, our
algorithm outperforms in predicting buildings, clutter, and low vegetation. In Figure 6-(1), the area
of low vegetation within the black dashed box is small. Deeplabv3+ fails to segment it accurately,
and although GLNet identifies low vegetation, it is not very precise and falsely classifies a small
portion as clutter. In contrast, our algorithm yields the correct segmentation result, resembling the true
label. In Figure 6-(2) and Figure 6-(3), it is evident that Deeplabv3+ and GLNet easily confuse clutter
and low vegetation, whereas our algorithm in this paper can better discriminate between these two
categories. For simple scenes like Figure 6-(4) and (5), while other algorithms can correctly segment it,
our algorithm can extract more detailed segmentation. In Figure 6-(5), the small red clutter within the
black dashed box is incorrectly classified as a car by Deeplabv3+. However, GLNet and our algorithm
can accurately segment it, highlighting the advantage of the dual-branch network. The global branch
in the dual-branch network takes the entire original image as input, enabling correct segmentation of
clutter.

Figure 7 compares segmentation results using different algorithms on the Vaihingen dataset. It
can be seen that our algorithm overall performs better, especially in building segmentation, where
it produces more complete results with more accurate edges. This indicates that our algorithm
can accurately separate buildings from other areas and produce clearer outlines. Additionally, our
algorithm exhibits greater accuracy in segmenting smaller objects. Our algorithm can effectively
identify and segment smaller targets, leading to more precise segmentation results.

5. Conclusions

In this paper, we propose a novel spatially adaptive interaction network (SAINet). By addressing
the limitations of the previous methods from focus salient regions and spatial adaptive interaction,
our module achieves an impressive result. Incorporating this adaptable method empowers the
dual-branch network to prioritize pertinent regions, enhancing the network’s capacity to encompass
richer informative features. Consequently, this refinement contributes to heightened segmentation
accuracy. Extensive experiments demonstrate the effectiveness of our model over competitive baselines.
Although a complete analysis model has been established, there are still several limitations: first, in the
comparative experiments on the Vaihingen dataset, our method achieves slightly lower segmentation
F1 scores for the categories "Impervious Surface" and "Tree" compared to the best-performing algorithm.
Second, We only conducted comparative experiments on high-resolution remote sensing images and
lacked comparative experiments on high-resolution images in other scenarios. In future work, we
aim to further improve segmentation accuracy while also conducting comparative experiments on
high-resolution images in other scenarios.
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