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Abstract: With the rapid development of tumor immunotherapy, nanoparticle vaccines have 
attracted much attention as a potential therapeutic strategy. The potential role of the mannose-
modified lipid calcium phosphate nanoparticle vaccine in enhancing the anti-tumor immune 
response was investigated. The aim of this study was to investigate the effect of mannose 
modification on the immune response of nanoparticles in regulating the tumor microenvironment 
through systematic review and analysis and to explore its potential clinical application in tumor 
therapy. Currently, despite the potential advantages of nanoparticle vaccines in immunotherapy, 
achieving an effective immune response in the tumor microenvironment remains a challenge. 
Tumor immune escape and overexpression of immunosuppressive factors limit its clinical 
application. Therefore, this study will explore how to intervene in the immunosuppressive 
mechanism in the tumor microenvironment through mannose-modified lipid calcium phosphate 
nanoparticle vaccines so as to improve the immunotherapy effect of tumor patients and provide 
new ideas and strategies for the field of tumor therapy. 

Keywords: nanoparticle vaccine; anti-tumor immune response; calcium phosphate (CaP); tumor 
microenvironment; review 

 

1. Introduction 

In the current medical field, tumor immunotherapy, as a revolutionary treatment, has brought 
new hope for tumor patients[1–3]. However, despite some success, tumor immunotherapy still faces 
a number of challenges and limitations[4]. 

The core idea of tumor immunotherapy is to activate the body's own immune system to attack 
and eliminate tumor cells[5]. However, the presence of the tumor microenvironment seriously affects 
the activity and function of immune cells, thus weakening the effectiveness of immunotherapy[6–10]. 
The tumor microenvironment includes tumor cells, immune cells, blood vessels, interstitial cells, and 
other components, which interact with each other in a complex way, forming a situation of 
immunosuppression[11]. The overexpression of immunosuppressive factors, the existence of 
immune escape mechanisms, and the immunosuppressive effect of tumor cells are some of the main 
challenges facing tumor immunotherapy[12]. To overcome these challenges, in recent years, scientists 
have focused on finding new strategies and methods to improve the effectiveness of tumor 
immunotherapy[13–16]. As a new therapeutic strategy, nanoparticle vaccines have attracted much 
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attention[17]. Compared with traditional vaccines, nanoparticle vaccines have better biological 
stability, higher drug loading capacity, and stronger targeting, which can effectively improve the 
effect of immunotherapy[18–20]. 

As a new nanoparticle carrier, the mannose-modified lipid calcium phosphate nanoparticle 
vaccine has unique advantages and potential application prospects[21–25]. Mannose modification 
can make it easier for nanoparticles and tumor cells to be recognized and taken up[26]. This can 
increase the amount of vaccine that is enriched in tumor tissues, which improves the effectiveness of 
tumor immunotherapy[27–30]. In addition, mannose modification can also regulate the expression 
of immunosuppressive factors in the tumor microenvironment, destroy the interaction between 
tumor cells and immune cells, and further enhance the effect of immunotherapy[31–33]. 

In conclusion, the mannose-modified lipid calcium phosphate nanoparticle vaccine has great 
potential and broad application prospects as a new type of tumor immunotherapy. In this paper, we 
will systematically review and analyze the research progress of this vaccine in enhancing the anti-
tumor immune response and regulating the tumor microenvironment, so as to provide a theoretical 
basis and practical guidance for further research in this field. 

2. Regulation and Influence of Tumor Microenvironment 

2.1. Characteristics of Tumor Microenvironment and Immunosuppressive Mechanism 

The tumor microenvironment is an important part of tumor growth and development, and its 
characteristics are closely related to the immunosuppressive mechanism[34–36]. There are a lot of 
immunosuppressive factors, like transforming growth factor β (TGF-β) and interleukin-10 (IL-10), in 
the area around the tumor[35]. These can stop immune cells from doing their job and make it harder 
for them to find and kill tumor cells. A lot of immunosuppressant molecules are made by tumor cells 
and the cells that surround them, like programmed death ligand-1 (PD-L1), acidic extracellular 
matrix protein (TSP), and others[36–40]. These molecules work with ligands on the surface of immune 
cells to make the immune system tolerate and escape. In addition, the highly acidified and hypoxic 
environment in the tumor microenvironment is also an important factor in immunosuppression, 
which not only affects the activity and function of immune cells but also induces apoptosis and 
functional abnormalities in immune cells[41–44]. The inflammatory response and immune cell 
infiltration in the tumor microenvironment are also closely related to immunosuppression[45–48]. 
The inflammatory response can promote the activation and infiltration of immune cells, but it can 
also lead to the functional polarization and immune escape of immune cells[49]. The tumor 
microenvironment provides favorable conditions for tumor escape by regulating the activity, 
function, and quantity of immune cells and changing the local physiological environment, thereby 
inhibiting the immune response[50]. 

The combined application of bio-3D printing technology and bio-nanocarrier technology has 
constructed a new tumor treatment platform[51–54]. 3D bioprinting can accurately manufacture 
complex three-dimensional structures, while bionanocarrier technology can effectively deliver drugs 
or genes[55]. This combined application platform can enable customized tumor treatment programs, 
targeting drugs or gene carriers to the tumor site to improve treatment effectiveness[56]. In addition, 
the combination of these two technologies can improve the tumor immune microenvironment[57–
60]. The tumor immunosuppressive microenvironment can be controlled by releasing nanocarriers 
carrying specific immunomodulators. It can also boost the activity of immune cells, help tumor cells 
die and immune cells invade, and improve the immune response of patients[61]. This combined 
application platform provides a new way for personalized and precise tumor therapy and has 
important clinical application prospects(Figure 1). 
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Figure 1. Bio-3D printing technology and nanocarriers combined application platform. 

2.1.1. Cell Interaction with Tumor Stroma 

Cell interactions in the tumor microenvironment are closely related to tumor mesenchyma and 
have important effects on the immune response[62–64]. The tumor stroma is composed of tumor cells, 
stromal cells, and stroma, and its complex cellular interactions affect the characteristics of the tumor 
microenvironment and the mechanism of immunosuppression[65]. Tumor cells influence the 
behavior of surrounding cells by secreting cytokines and chemokines, such as vascular endothelial 
growth factor (VEGF) and tumor necrosis factor (TNF), and regulating tumor stromal formation and 
function[66]. Mesenchymal cells, including tumor-associated macrophages (TAMs) and tumor-
associated fibrocytes (CAFs), interact with tumor cells by secreting cytokines and molecules, such as 
TGF-β and IL-6, to promote tumor growth, invasion, and metastasis and inhibit the activity of 
immune cells[67–70]. 

The pharmacokinetic study of carrying antitumor drugs with nanoparticles as carriers has 
shown remarkable effects[71]. In a mouse tumor-forming model, the nanocarrier can effectively 
improve the bioavailability and stability of the drug in vivo, thereby prolonging the plasma half-life 
of the drug and enhancing the sustained release effect of the drug in vivo[72]. At the same time, in 
terms of brain metastases, this nanoparticle shows excellent ability to penetrate meninges and target 
tumors, so that anti-tumor drugs can effectively cross the blood-brain barrier to reach brain tumor 
foci and then exert anti-tumor effects(Figure 2). 
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Figure 2. Nanoparticle carrier penetrates meninges to target and kill tumors in mouse brain metastatic 
tumor model. 

2.1.2. Immune Escape and Tumor Suppressor Cells 

Immune escape and tumor suppressor cells in the tumor microenvironment are important 
reasons for the hindered immune response[73–75]. Tumor cells and their surrounding cells and 
molecules work together in the tumor microenvironment to form a pattern of immune escape[76]. 
Tumor cells make too many immunosuppressive molecules, like PD-L1 and PD-L2, and 
immunosuppressive factors, like TGF-β and IL-10. These stop immune cells from working and make 
it harder for them to find and kill tumor cells[77]. To add to this, tumor suppressor cells in the area 
around the tumor, like TAMs and Tregs, control the immune response and help the tumor grow and 
spread by releasing immunosuppressive substances like IL-10 and TGF-β[78–80].  

The photoacoustic imaging process of the mannose-modified lipid calcium phosphate 
nanoparticle vaccine in tumor mouse models(Such as Hepatocellular carcinoma, HCC) consists of the 
following steps: Related study establish the mouse tumor model by selecting suitable cancer cell lines. 
The mannose-modified lipid calcium phosphate nanoparticle vaccine was injected into mice to 
evaluate its effect on regulating the tumor microenvironment. Next, the study used ultrasound 
imaging technology to image the tumors in the mice, observing the vaccine's distribution and the 
state of tumor growth[81]. In imaging data processing, photoacoustic signals need to be unmixed and 
oxygen saturation (StO2) calculated to assess the oxygenation level of tumor tissue. Additionally, we 
must stain the tumor tissue to identify angiogenesis, hypoxia, and molecular markers linked to tumor 
immune escape[82]. Through this process, the anti-tumor immune effect of the mannose-modified 
lipid calcium phosphate nanoparticle vaccine in mice can be comprehensively evaluated, which 
provides an important reference for further clinical research(Figure 3). 
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Figure 3. Photoacoustic imaging (PAI) process of mannose modified lipid calcium phosphate 
nanoparticle vaccine in mouse model. 

2.2. Role of Nanoparticles in the Immune System 

2.2.1. Structure and Function of Lipid Calcium Phosphate Nanoparticles 

Lipid calcium phosphate nanoparticles are important nanocarriers that have the potential to 
modulate anti-tumor immune responses in the immune system[83]. These nanoparticles are 
structurally designed to improve vaccine stability, biocompatibility, and immunogenicity. 
The core of the lipid calcium phosphate nanoparticles is a kernel composed of calcium phosphate 
that can stably coat vaccine antigens[84]. Its surface is often modified with molecules such as 
mannose, which are used to enhance the specific recognition of antigens and promote antigen 
presentation and uptake by immune cells[85]. Moreover, the lipid envelope of nanoparticles can 
improve the stability of the vaccine, prolong its circulation time in the body, and enhance the targeted 
delivery of immune cells[86]. These lipid calcium phosphate nanoparticles can interact with antigen-
presenting cells in the immune system to help process and present antigens more effectively. This 
makes T cells and B cells respond more strongly. The nanoparticles can also mimic the structure and 
appearance of the virus. This makes the immune system react strongly, which improves the body's 
ability to find and destroy tumor cells[87]. In general, as an effective vaccine carrier, lipid calcium 
phosphate nanoparticles play an important role in the immune system, enhancing the anti-tumor 
immune response by promoting antigen presentation and immune cell activation, and providing new 
strategies and hopes for tumor treatment. 

Our study can use photoacoustic imaging (PA) to measure oxidative stress in lipid calcium 
phosphate nanoparticles. Lipid calcium phosphate nanoparticles were injected into the tumor site to 
locate the targeted organs and tumor sites in vivo, and the distribution and signal intensity of lipid 
calcium phosphate nanoparticles were monitored in real time by photoacoustic imaging technology, 
and the intensity of the PA signal reflected the degree of oxidative stress[88]. During the observation 
process, we can infer the degree of oxidative stress in the tumor microenvironment from the changes 
in signal intensity, and further evaluate the role of lipid calcium phosphate nanoparticles in 
modulating the tumor immune response[89]. This process effectively combines lipid calcium 
phosphate, nanoparticle technology, and photoacoustic imaging technology to provide a feasible, 
non-invasive measurement method for the study of oxidative stress in the tumor microenvironment 
and provides an important reference for the optimal design of anti-tumor immunotherapy(Figure 4). 
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Figure 4. Schematic illustration of lipid calcium phosphate nanoparticles measuring oxidative stress 
using photoacoustic imaging (PA). 

2.2.2. Immune System Interaction with Nanoparticles 

The role of nanoparticles in the immune system is an important research area, and their 
interaction with the immune system has an important impact on the anti-tumor immune 
response[90–94]. Nanoparticles can act as effective carriers for vaccines, delivering antigens stably to 
the immune system. By changing their surface in the right way, nanoparticles can better recognize 
antigens and deliver them to immune cells more precisely, which helps activate immune cells and 
present antigens[95]. The size, shape, and surface properties of nanoparticles can regulate their 
absorption, distribution, and metabolism in the immune system, affecting their recognition and 
response to immune cells[96]. In particular, the specific structural design of nanoparticles can mimic 
the characteristics of pathogens, inducing the immune system to produce a specific and persistent 
immune response[97]. Nanoparticles can also regulate the immunomodulatory role of the immune 
system by stimulating the activity of immune cells and secreting immunomodulatory factors, 
enhancing the immune response[98]. The tumor MRNA-LNPS vaccine uses nucleic acid nanocarrier 
technology to deliver mRNA encoding tumor-associated antigens to body cells, prompting the 
synthesis of corresponding antigen proteins in cells, thus triggering specific immune responses[99]. 
The interaction mechanism between the vaccine and the immune system mainly includes two aspects: 
one is to promote antigen expression through the imported mRNA, activate antigen-presenting cells, 
and initiate the autoimmune response; the second is to stimulate the body's natural immune response 
by simulating virus infection[100]. These mechanisms are similar to the action principle of the 
COVID-19 nucleic acid vaccine, which stimulates the immune system to produce targeted antibodies 
and cellular immune responses through the antigen encoded by nucleic acid. In addition, the 
association between the tumor mRNA-LNPs vaccine and tumor immunity lies in the fact that by 
inducing immune cells to recognize and attack tumor cells, the tumor microenvironment is changed, 
thus enhancing the anti-tumor immune response[101–104]. The mechanism of this vaccine is similar 
to that of the COVID-19 vaccine, but it targets tumor antigens, which is expected to bring new 
breakthroughs in tumor immunotherapy(Figure 5). 
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Figure 5. Schematic diagram of interaction mechanism between Tumor mRNA-LNPs Vaccine and 
immune system. 

3. Design and Preparation of Mannose Modified Lipid Calcium Phosphate Nanoparticle Vaccine 

3.1. Techniques and Principles of Mannose Modification 

The design and preparation of mannose-modified lipid calcium phosphate nanoparticle vaccine 
is a critical and complex process, and its successful realization depends on various techniques and 
principles[105]. Mannose modification technology is to chemically covalently bind mannose to the 
surface of lipid calcium phosphate nanoparticles to endow vaccine with good biocompatibility and 
stability[106]. The core of this step is to control the modification reaction conditions to ensure 
adequate modification of mannose and avoid the occurrence of side reactions[107–109]. The 
preparation of lipid calcium phosphate nanoparticles is based on the principle of nanotechnology, 
and the raw materials such as lipid calcium phosphate are prepared into nanoparticles with a certain 
size and shape by a suitable method. The key to this step is the selection of appropriate materials and 
process parameters, as well as characterization and optimization of the properties of the 
nanoparticles[110]. A comprehensive consideration of mannose modification technology and 
nanoparticle preparation principle can achieve accurate design and effective preparation of lipid 
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calcium phosphate nanoparticle vaccine, providing a reliable experimental basis for subsequent anti-
tumor immune response research. 

3.1.1. Mannose Modification and Immune Response 

The design and preparation of a mannose-modified lipid calcium phosphate nanoparticle 
vaccine is a key research task. Using mannose modification technology, mannose can be added to the 
surface of nanoparticles to make them more biocompatible and stable in living cells. They may also 
be able to change the immune system[111–114]. This modification can change the surface charge and 
structure of the nanoparticles, thus affecting the recognition and response of immune cells. 
Furthermore, mannose-modified nanoparticles can regulate the tumor microenvironment through 
immune induction against tumor-associated antigens and promote the occurrence and enhancement 
of anti-tumor immune responses[115]. Therefore, this design and preparation process not only 
considers the stability and biocompatibility of the vaccine but also integrates the strategy of immune 
regulation, providing a new idea and method for enhancing the anti-tumor immune response[116–
118]. Mannose is a kind of natural polysaccharide. In the process of purification, acid hydrolysis, 
alkali precipitation, and gel filtration are often used to obtain high-purity mannose[119]. In terms of 
biotransformation, microbial fermentation techniques, such as Escherichia coli or yeast, are usually 
used to introduce target genes into the host through genetic engineering methods to synthesize 
mannose[120]. Mannose modification technology is used to covalently connect mannose to the 
surface of lipid calcium phosphate nanoparticles, which is often achieved by chemical crosslinking 
or enzyme catalysis. The development of these technologies has provided researchers with effective 
means to improve the biological activity and drug delivery performance of nanoparticles, thus 
playing an important role in tumor immunity vaccine research(Figure 6). 

 
Figure 6. Schematic diagram of mannose purification, biotransformation and covalent modification 
techniques. 

3.1.2. Effect of Mannose Modification on Vaccines 

Mannose modification can confer good biocompatibility and immunological activity on 
nanoparticle vaccines[121]. Mannose modification can improve the stability of the vaccine and 
increase its circulation time in the body. In addition, mannose-modified nanoparticles can bind 
specifically to immune cells to improve the cellular uptake rate and antigen delivery efficiency of the 
vaccine[122–124]. Mannose modification can also turn on certain immune signaling pathways and 
improve the ability of antigen-presenting cells to show antigens, which makes the immune response 
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of antigen-specific T cells stronger[125–128]. In the design and preparation of the mannose-modified 
lipid calcium phosphate nanoparticle vaccine, the influence of mannose modification on the vaccine 
is reflected in the aspects of improving stability, enhancing immune activity, and promoting antigen 
presentation, which provides strong technical support for tumor immunotherapy[129]. 

Mannose-modified lipid calcium phosphate nanoparticles have demonstrated a potentially 
revolutionary role in cancer therapy, and their ability to target cancer-causing long non-coding Rnas 
has brought new hope for cancer therapy[130]. By regulating the tumor microenvironment, the 
nanoparticles can not only inhibit the growth and spread of tumor cells but also enhance the body's 
anti-tumor immune response[131]. At the same time, combined with the research progress on tumor 
immunity, mannose-modified lipid calcium phosphate nanoparticles are not only a means of direct 
attack against tumor cells but also an innovative strategy to promote the body's immune system to 
participate in the anti-tumor process(Figure 7). 

 
Figure 7. Mannose-LNP-CaP nanoparticles target carcinogenic long non-coding RNA for cancer 
therapy. 

3.2. Design and Preparation of Lipid Calcium Phosphate Nanoparticles 

3.2.1. Preparation Method and Structural Advantages 

Lipid calcium phosphate (CaP) nanoparticles have attracted much attention due to their unique 
advantages in vaccine delivery systems. Its design and preparation are essential for improving the 
bioavailability and immunological efficacy of vaccines[132–135]. Usually, the preparation process 
includes the solvent precipitation method and the co-precipitation method[136]. In solvent 
precipitation, the addition of phosphate and calcium ions causes the formation of calcium phosphate 
nanoparticles in solution. The co-precipitation of the drug and calcium phosphate is typically how 
the co-precipitation method produces the drug's carrier[137–140]. In addition, mannose-modified 
lipid calcium phosphate nanoparticles have attracted much attention in recent years[141]. The 
preparation methods include pre-modification synthesis and post-modification synthesis. In pre-
modification synthesis, the mannose group reacts with calcium phosphate nanoparticles at the same 
time to form mannose-modified nanoparticles[142–145]. In post-modification synthesis, calcium 
phosphate nanoparticles are first synthesized and then chemically or physically bound to mannose 
groups[146]. The mannose modification makes the nanoparticles more biocompatible and helps them 
target better, which makes the vaccine more effective at delivering antigens in living organisms[147–
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150]. The design and preparation of lipid calcium phosphate nanoparticles is the key link in the 
research. Their structural advantages provide a good platform for vaccine delivery and lay the 
foundation for regulating the tumor microenvironment and enhancing the anti-tumor immune 
response. 

3.2.2. Stability and Biocompatibility of Nanoparticles 

Lipid calcium phosphate (CaP) nanoparticles are an important vaccine delivery system and have 
potential applications in anti-tumor immunotherapy[151]. Their design and preparation need to take 
into account the stability and biocompatibility of nanoparticles, which are essential to improving 
vaccine effectiveness and safety[152–154]. The stability of nanoparticles can be achieved by adjusting 
preparation methods and adding surface modifiers. In the preparation process, the size, morphology, 
and dispersion of nanoparticles can be controlled by solvent precipitation or the co-precipitation 
method to ensure their stability[155]. Also, using the right surface modifiers, like 
polyvinylpyrrolidone (PVP), can make nanoparticles more stable and stop them from being cleared 
out of the bloodstream and breaking down in living things[156]. 

Biocompatibility is one of the important indicators to evaluate the application of 
nanoparticles[157]. Mannose-modified lipid calcium phosphate nanoparticles have received much 
attention due to their good biocompatibility[158]. Mannose, as a kind of natural sugar in the human 
body, has good biocompatibility and biodegradability, which can reduce the immune response and 
toxic side effects on the body[159]. Mannose-modified nanoparticles can effectively avoid the 
clearance and decomposition of nanoparticles caused by immune responses, thus extending their 
circulation time in the body and increasing their accumulation in tumor tissues[160]. Additionally, 
changing the mannose can improve the specific binding between nanoparticles and tumor cells, 
allowing for more precise targeted delivery and a better immune response against the tumor in the 
vaccine[161–165]. 

In general, the stability and biocompatibility of lipid calcium phosphate nanoparticles are the 
problems that need to be paid attention to and solved in the research. Through rational design and 
preparation methods and the introduction of biocompatible modifications such as mannose, the 
application effect of nanoparticles in anti-tumor immunotherapy can be effectively improved, 
providing strong support for regulating the tumor microenvironment and enhancing the anti-tumor 
immune response. 

4. Immunomodulatory Mechanism of Mannose Modified Lipid Calcium Phosphate Nanoparticle 
Vaccine 

4.1. Tumor Antigen Presentation and T Cell Activation 

4.1.1.  

The mannose-modified lipid calcium phosphate nanoparticle vaccine plays an important role in 
enhancing the anti-tumor immune response, and its immune regulation mechanism involves several 
links[166]. As a carrier, this nanoparticle can effectively load tumor antigens and their related 
immune stimulators (such as proteins, nucleic acids, etc.) stably on its surface or inside. Mannose-
modified nanoparticles can achieve precise, targeted delivery through specific binding to tumor cell 
surfaces[167–170]. This targeted loading allows the nanoparticles to be more efficiently sought out in 
tumor tissue and swallowed by tumor cells[171]. Nanoparticles release tumor antigens that are 
loaded on them. This makes it easier for antigen-presenting cells, like dendritic cells, to take in and 
process these antigens, which then causes immune cells to recognize and respond to the tumor 
antigens. In addition, mannose modification is able to interact with specific receptors on the surface 
of tumor cells to promote intracellular phagocytosis and the internal presentation of 
nanoparticles[172–180]. Finally, the release of these immune stimulators and the presentation of 
tumor antigens will activate the body's immune system, especially promoting the activation and 
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proliferation of antigen-specific T cells and B cells, thus strengthening the immune response to 
tumors[181–184]. 

The mannose-modified lipid calcium phosphate nanoparticle vaccine regulates the tumor 
microenvironment and enhances the anti-tumor immune response by targeting tumor antigen 
delivery, promoting antigen presentation, activating immune cells, and providing new ideas and 
methods for tumor therapy. 

4.1.2. Activation of T Cells by Mannose Modified Lipid Calcium Phosphate Nanoparticle Vaccine 

The mannose-modified lipid calcium phosphate nanoparticle vaccine changes the 
microenvironment of the tumor, which boosts the immune response against it[185]. One way it does 
this is by activating T cells, T cells are an important part of the immune system and play a key role in 
recognizing and eliminating tumor cells[186–188]. Mannose-modified nanoparticles can enhance the 
immune response by promoting the activation and proliferation of T cells in a variety of ways[189]. 

Mannose-modified nanoparticles can effectively improve the delivery efficiency of tumor 
antigen. These nanoparticles act as carriers that can stably load tumor antigens and release them into 
the tumor microenvironment[190]. Antigen-presenting cells (such as dendritic cells) take up and 
process these tumor antigens before presenting them to T cells and inducing an immune response to 
the tumor antigen. Mannose-modified nanoparticles modulate immunosuppressive factors in the 
tumor microenvironment, thereby reducing T cell suppression[191–195]. In the tumor 
microenvironment, the presence of immunosuppressive factors (such as PD-L1, TGF-β, etc.) can 
inhibit the activation and function of T cells[196]. Nanoparticles modified with mannose can control 
the production and release of these immune-suppressing substances by interacting with specific 
receptors on the surface of tumor cells. This makes T cells less inhibited and more active, leading to 
more cell growth and activation[197]. Mannose-modified nanoparticles were also able to activate T-
cell co-stimulatory signaling pathways. Co-stimulatory signaling is a key factor in T cell activation 
and proliferation, among which the CD28/B7 and CD40/CD40L signaling pathways play an 
important role in T cell activation and function[198–200]. Nanoparticles modified with mannose can 
turn on these co-stimulatory signaling pathways by attaching to the right receptors on the surface of 
T cells. This makes T cells' immune response stronger. 

Mannose-modified lipid calcium phosphate nanoparticle vaccine, as an innovative 
immunotherapy method, has received extensive attention and research in recent years[201]. By 
modulating the tumor microenvironment, this vaccine can significantly enhance the anti-tumor 
immune response, providing new possibilities for tumor treatment. Several studies[202–205] have 
explored the treatment of this nanoparticle nucleic acid vaccine through clinical trials. These clinical 
trials typically involve the treatment of tumor patients in groups, with one group receiving the 
mannose-modified lipid calcium phosphate nanoparticle vaccine and the other group acting as a 
control group receiving either standard treatment or a placebo. The main purpose of the trial was to 
assess the effect of the vaccine on tumor growth in patients and the extent to which it activated the 
immune system[206]. By comparing the effects of treatment on different groups of patients, 
researchers can assess the effectiveness and safety of the vaccine. In clinical trials[207–212], 
researchers typically look at data on several aspects, including changes in tumor size, longer patient 
survival, and increased immune cell activity. These data can not only help judge the therapeutic effect 
of the vaccine but also provide an important basis for further optimization of the vaccine design and 
treatment plan(Figure 8). 
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Figure 8. Summary diagram of clinical trial phase related to nanoparticle vaccine. 

4.2. Enhancement of Tumor Immune Response and Establishment of Immune Memory 

Mannose-modified lipid calcium phosphate nanoparticle vaccine is a novel tumor 
immunotherapy method that can enhance the immune response to tumors by regulating the tumor 
microenvironment[213]. Studies[214–220] have shown that the vaccine can activate the body's 
immune system, promote the expression and recognition of tumor-associated antigens, and trigger a 
specific immune response against tumor cells. Through mannose modification, the vaccine can be 
more effectively taken up by antigen-presenting cells and improve its efficiency of antigen delivery 
in the lymph nodes, further activating immune cells such as dendritic cells and T cells and enhancing 
the potential of the immune response[221]. 

In the establishment of immune memory, the application of the vaccine also showed remarkable 
results[222–225]. It was found that after inoculation with mannose-modified lipid calcium phosphate 
nanoparticles, the body can form a long-term memory of tumor antigens[226]. This immune memory 
allows the body to recognize and clear tumor cells more quickly and efficiently during subsequent 
tumor invasion, thereby reducing the risk of tumor recurrence and metastasis. In addition, the 
establishment of immune memory also provides a solid foundation for subsequent immunotherapy, 
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enabling the body to produce a more durable and powerful response to further treatment with tumor 
vaccines or other immunomodulators[227–230]. 

As a new way to treat tumors with immunotherapy, mannose-modified lipid calcium phosphate 
nanoparticle vaccine has shown great promise in improving the immune response to tumors and 
building immune memory[231–235]. This provides new ideas and strategies for the future treatment 
of cancer and is expected to play an important role in clinical practice, bringing more effective 
treatment effects and a better quality of life for patients[236–240]. The main determinants of drug 
resistance include heterogeneity of the tumor microenvironment, immunosuppressive mechanisms, 
and inefficiency of drug delivery[241]. A mannose-modified lipid calcium phosphate nanoparticle 
vaccine can improve the immunogenicity of tumor cells, regulate the tumor microenvironment, and 
promote an anti-tumor immune response by simulating natural antigen presentation(Figure 9). 

 
Figure 9. Schematic diagram of determinants of Cancer Drug Resistance and Mannose-LNP-CaP 
Therapy. 

4.3. Analysis of Immune Cell Infiltration in Tumor Tissue 

Tumor tissue immune cell infiltration analysis is one of the important indicators to evaluate the 
effect of the mannose-modified lipid calcium phosphate nanoparticle vaccine on enhancing the anti-
tumor immune response in the regulation of the tumor microenvironment[242]. Through 
immunohistochemical staining, flow cytometry, and other techniques, different types of immune cell 
infiltration in tumor tissues can be quantitatively analyzed, such as CD8+ T cells, CD4+ T cells, natural 
killer cells, and so on. It was found that the mannose-modified lipid calcium phosphate nanoparticle 
vaccine can significantly increase the amount of CD8+ T cell infiltration in tumor tissues, improve the 
ratio of CD8+/CD4+ T cells, and promote the transformation of the tumor immune 
microenvironment[243–245]. In addition, the vaccine can also effectively increase the degree of 
invasion of natural killer cells, thereby enhancing the clearance of tumor cells[246]. The analysis of 
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tumor immune cell infiltration showed that a mannose-modified lipid calcium phosphate 
nanoparticle vaccine could regulate the tumor microenvironment and enhance the anti-tumor 
immune response significantly. 

5. Enlightenment and Research Prospect of Preclinical Research 

As a novel tumor immunotherapy strategy, mannose modified lipid calcium phosphate 
nanoparticle vaccine has shown great potential in preclinical studies[247–250]. Through in-depth 
investigation of its mechanism of action, we found that the vaccine can effectively regulate the tumor 
microenvironment and enhance the anti-tumor immune response of the body. Studies[251–253] have 
shown that mannose-modified nanoparticles can promote uptake and endocytosis of tumor cells 
through specific targeting, thereby improving the efficiency of antigen delivery and activating the 
activity of tumor-associated antigen-specific T cells. In addition, the vaccine can also induce immune 
cells in the tumor microenvironment, such as plasma cells and dendritic cells, to release pro-
inflammatory factors, and inhibit the function of immunosuppressive cells, thereby promoting the 
activation and expansion of T cells, enhancing the killing ability of cytotoxic T lymphocytes, and 
finally realizing the effective elimination of tumors. 

6. Research Future Prospects 

In future studies, we can further optimize the formulation and preparation process of mannose-
modified lipid calcium phosphate nanoparticle vaccine to improve its stability and bioavailability in 
vivo, thereby enhancing its anti-tumor immunotherapy effect[254]. In addition, the vaccine could be 
explored in combination with other tumor therapies, such as chemotherapy, radiotherapy and 
immune checkpoint inhibitors, to achieve better therapeutic outcomes. In addition, it is possible to 
design personalized treatment regiments for different types and stages of tumors and verify their 
safety and efficacy through preclinical and clinical studies. In general, mannose modified lipid 
calcium phosphate nanoparticles vaccine has broad application prospects in the field of tumor 
immunotherapy, and is expected to become one of the important strategies for tumor therapy in the 
future. 

7. Conclusions  

Mannose-modified nanoparticles can effectively regulate the tumor microenvironment, inhibit 
tumor growth, and enhance the infiltration of immune cells. This vaccine not only induces a strong 
and long-lasting antigen-specific T cell response but also activates anti-tumor effector cells such as 
natural killer cells and macrophages. In addition, after reviewing the literature, we found that the 
vaccine could induce antibody production and thus enhance humoral immune response; namely, the 
mannose-modified lipid calcium phosphate nanoparticle vaccine showed good potential in 
regulating tumor microenvironment, promoting immune cell infiltration, and inducing antibody and 
T cell responses, providing a new idea and strategy for tumor immunotherapy. 
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