Submitted:
29 March 2024
Posted:
01 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Reviews and Background Study
3. Methodology
3.1. Proposed Framework
3.2. Forest Fire Attributing Factors Data Source and Details
| Category | Source of Data | Temporal Availability | Temporal Cycle | Spatial Resolution | Annual Average | Monthly Average | Seasonal Average | Data Layers | Unit |
|---|---|---|---|---|---|---|---|---|---|
| Climate & Environment | TerraClimate [51] | 1958-01-01 to 2022-12-01 | Monthly | 4km2 | ✔ | ✔ | ✔ | Actual Evapotranspiration (AET) | mm |
| Water Deficit (DEF) | mm | ||||||||
| Palmer Drought Severity Index (PDSI) | - | ||||||||
| Reference Evapotranspiration (PET) | mm | ||||||||
| Precipitation (PR) | mm | ||||||||
| Runoff (RO) | mm | ||||||||
| Soil Moisture (SOIL) | mm | ||||||||
| Downward Surface Shortwave Radiation (SRAD) | w/m2 | ||||||||
| Snow Water Equivalent (SWE) | mm | ||||||||
| Minimum Temperature (TMMN) | oc | ||||||||
| Maximum Temperature (TMMX) | oc | ||||||||
| Vapor Pressure (VAP) | kPa | ||||||||
| Vapor Pressure Deficit (VPD) | kPa | ||||||||
| Wind-speed (VS) | m/s | ||||||||
| Rainfall [52] |
2007-01-01 to 2023-09-12 | Daily | 4km2 | ✔ | ✔ | ✔ | Keetch-Byram Drought Index (KBDI) | - | |
| MOD11A2.061 Terra [53] | 2000-02-18 to 2023-08-29 | 8-day | 1km2 | ✔ | ✔ | ✔ | Land Surface Temperature (LST) | K | |
| MOD13Q1.061 Terra [54] | 2002-02-18 to 2023-08-13 | 16-day | 250m | ✔ | ✔ | ✔ | Normalised Difference Vegetation Index (NDVI) | - | |
| Enhanced Vegetation Index (EVI) | - | ||||||||
| Landcover | MCD12Q1.061 MODIS [55] | 2001-01-01 to 2022-01-01 | Annual | 500m | ✔ | Annual University of Maryland (UMD) Classification (LC_Type2) | 16 classes | ||
| European Space Agency (ESA) [56] (static) |
2021-01-01 to 2022-01-01 | Annual | 10m | ✔ | Landcover (Map) | 11 classes | |||
| Topography | NASADEM [57] (static) |
2000-02-11 to 2000-02-22 | 30m | ✔ | elevation | m | |||
| Slope (derived from DEM) | degrees | ||||||||
| Aspect (derived from DEM) | degrees | ||||||||
| Social Economic / Anthropogenic factors | Wildlife Conservation Society [50] | 2001-01-01 to 2020-01-01 | Annual | 300m | ✔ | Human Footprint / Human Impact Index (HII) | - | ||
| Deutsches Zentrum für Luft- und Raumfahrt [58] | 2015-01-01 to 2016-01-01 | Annual | 10m | ✔ | World Settlement Footprint 2015 (settlement) | - | |||
| VIIRS [59] | 2012-04-01 to 2021-01-01 | Annual | 500m | ✔ | Nighttime light (average) | nanoWatts/sr/cm2 | |||
| Burn Area | MCD64A1.061 MODIS [32] | 2000-11-01 to 2023-07-01 | Monthly | 500m | - | - | - | BurnDate | - |
4. Application of the Proposed Framework in The Study Area – Peninsular Malaysia
4.1. Study Area – Peninsular Malaysia
4.2. Peninsular Malaysia Forest Fire Dataset Description
5. Assessing Forest Fire Dataset Leveraging Large Language Model
5.1. ChatGPT (GPT-4) and Noteable Plugin
5.2. Termination of the Noteable
5.3. Sample Analysis of Forest Fire Dataset in Peninsular Malaysia through GPT-4
5.3.1. Sample Analysis - Boxplot Analysis with GPT-4 and Noteable Plugin
5.2.2. Sample Analysis – T-tests Statistical Tests with GPT-4 and Noteable Plugin
5.2.3. Sample Analysis – Variance Inflation Factor with GPT-4 and Noteable Plugin
5.4. Limitation of the GPT-4 with Noteable Plugin
6. Conclusions
7. Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arif, M.; Alghamdi, K.K.; Sahel, S.A.; Alosaimi, S.O.; Alsahaft, M.E.; Alharthi, M.A.; Arif, M. Role of Machine Learning Algorithms in Forest Fire Management: A Literature Review. J Robot. Autom 2021, 5, 212–226. [Google Scholar]
- Bot, K.; Borges, J.G. A Systematic Review of Applications of Machine Learning Techniques for Wildfire Management Decision Support. Inventions 2022, 7, 15. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Bui, D.T.; Pradhan, B.; Foong, L.K. Fuzzy-Metaheuristic Ensembles for Spatial Assessment of Forest Fire Susceptibility. J. Environ. Manage. 2020, 260, 109867. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A Hybrid Artificial Intelligence Approach Using GIS-Based Neural-Fuzzy Inference System and Particle Swarm Optimization for Forest Fire Susceptibility Modeling at a Tropical Area. Agric. For. Meteorol. 2017, 233, 32–44. [Google Scholar]
- Bui, D.T.; Hoang, N.-D.; Samui, P. Spatial Pattern Analysis and Prediction of Forest Fire Using New Machine Learning Approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination Optimization: A Case Study at Lao Cai Province (Viet Nam). J. Environ. Manage. 2019, 237, 476–487. [Google Scholar]
- Sevinc, V.; Kucuk, O.; Goltas, M. A Bayesian Network Model for Prediction and Analysis of Possible Forest Fire Causes. For. Ecol. Manage. 2020, 457, 117723. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Hodges, J.L.; Lattimer, B.Y. Wildland Fire Spread Modeling Using Convolutional Neural Networks. Fire Technol. 2019, 55, 2115–2142. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, Y.; Xin, J.; Mu, L.; Yi, Y.; Liu, H.; Liu, D. A Deep Learning Based Forest Fire Detection Approach Using UAV and YOLOv3. In Proceedings of the 2019 1st International Conference on Industrial Artificial Intelligence (IAI); IEEE: Shenyang, China, July, 2019; pp. 1–5. [Google Scholar]
- Wang, S.; Zhao, J.; Ta, N.; Zhao, X.; Xiao, M.; Wei, H. A Real-Time Deep Learning Forest Fire Monitoring Algorithm Based on an Improved Pruned + KD Model. J. Real-Time Image Process. 2021, 18, 2319–2329. [Google Scholar] [CrossRef]
- Gomes, V.C.F.; Queiroz, G.R.; Ferreira, K.R. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote Sens. 2020, 12, 1253. [Google Scholar] [CrossRef]
- Wu, Q. Geemap: A Python Package for Interactive Mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305. [Google Scholar] [CrossRef]
- OpenAI ChatGPT [Large Language Model]. Available online: https://chat.openai.com/chat (accessed on 21 October 2023).
- Noteable Noteable (ChatGPT Plugin for Notebook). Available online: https://noteable.io/chatgpt-plugin-for-notebook/ (accessed on 21 October 2023).
- Chicas, S.D.; Østergaard Nielsen, J. Who Are the Actors and What Are the Factors That Are Used in Models to Map Forest Fire Susceptibility? A Systematic Review. Nat. Hazards 2022, 114, 2417–2434. [Google Scholar] [CrossRef]
- Pradhan, B.; Suliman, M.D.H. Bin; Awang, M.A. Bin Forest Fire Susceptibility and Risk Mapping Using Remote Sensing and Geographical Information Systems (GIS). Disaster Prev. Manag. 2007, 16, 344–352. [Google Scholar] [CrossRef]
- Pu, R.; Li, Z.; Gong, P.; Csiszar, I.; Fraser, R.; Hao, W.-M.; Kondragunta, S.; Weng, F. Development and Analysis of a 12-Year Daily 1-Km Forest Fire Dataset across North America from NOAA/AVHRR Data. Remote Sens. Environ. 2007, 108, 198–208. [Google Scholar] [CrossRef]
- Lestari, A.; Rumantir, G.; Tapper, N. A Spatio-Temporal Analysis on the Forest Fire Occurrence in Central Kalimantan, Indonesia. In Proceedings of the Proceeding of the 20th Pacific Asia Conference on Information Systems; Chiayi, Taiwan; 2016; p. 90. [Google Scholar]
- Monjarás-Vega, N.A.; Briones-Herrera, C.I.; Vega-Nieva, D.J.; Calleros-Flores, E.; Corral-Rivas, J.J.; López-Serrano, P.M.; Pompa-García, M.; Rodríguez-Trejo, D.A.; Carrillo-Parra, A.; González-Cabán, A. Predicting Forest Fire Kernel Density at Multiple Scales with Geographically Weighted Regression in Mexico. Sci. Total Environ. 2020, 718, 137313. [Google Scholar] [CrossRef]
- Abid, F. A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. Fire Technol. 2021, 57, 559–590. [Google Scholar] [CrossRef]
- Esri Introducing ArcGIS Platform | Esri. Available online: https://www.esri.com/en-us/home (accessed on 13 March 2021).
- QGIS Development Team Welcome to the QGIS Project! Available online:. Available online: https://www.qgis.org/en/site/ (accessed on 13 March 2021).
- Sulova, A.; Jokar Arsanjani, J. Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine. Remote Sens. 2021, 13, 10. [Google Scholar] [CrossRef]
- Sulova, A.; Jokar Arsanjani, J. Github Code: Exploratory Analysis of Wildfires in Australia and Approach for Wildfire Modeling in Google Earth Engine. Available online: https://github.com/sulova/AustraliaFires (accessed on 3 October 2023).
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A Global Analysis and Future Trends. Remote Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Pham-Duc, B.; Nguyen, H.; Phan, H.; Tran-Anh, Q. Trends and Applications of Google Earth Engine in Remote Sensing and Earth Science Research: A Bibliometric Analysis Using Scopus Database. Earth Sci. Informatics 2023, 16, 2355–2371. [Google Scholar] [CrossRef]
- Pérez-Cutillas, P.; Pérez-Navarro, A.; Conesa-García, C.; Zema, D.A.; Amado-Álvarez, J.P. What Is Going on within Google Earth Engine? A Systematic Review and Meta-Analysis. Remote Sens. Appl. Soc. Environ. 2023, 29, 100907. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sens. 2022, 14. [Google Scholar] [CrossRef]
- Chen, H.; Yang, L.; Wu, Q. Enhancing Land Cover Mapping and Monitoring: An Interactive and Explainable Machine Learning Approach Using Google Earth Engine. Remote Sens. 2023, 15, 4585. [Google Scholar] [CrossRef]
- Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V061 [Data Set]. Available online: https://doi.org/10.5067/MODIS/MCD64A1.061 (accessed on 01 March 2023).
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A Spatio-Temporal Active-Fire Clustering Approach for Global Burned Area Mapping at 250 m from MODIS Data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Artés, T.; Oom, D.; De Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A Global Wildfire Dataset for the Analysis of Fire Regimes and Fire Behaviour. Sci. data 2019, 6, 296. [Google Scholar] [CrossRef] [PubMed]
- Chew, Y.J.; Ooi, S.Y.; Pang, Y.H. MCD64A1 Burnt Area Dataset Assessment Using Sentinel-2 and Landsat-8 on Google Earth Engine: A Case Study in Rompin, Pahang in Malaysia. In Proceedings of the 2023 IEEE 13th Symposium on Computer Applications & Industrial Electronics (ISCAIE); 2023; pp. 38–43. [Google Scholar]
- Malaysia Kini Hutan Seluas 34 Hektar Terbakar Di Kuantan (A 34-Hectare Forest Burned in Kuantan). Available online: https://www.malaysiakini.com/news/339616 (accessed on 2 August 2021).
- Astro Awani Kebakaran Hutan Simpan Pekan Tak Membimbangkan (Fire in Pekan Forest Reserve Is Not a Concern). Available online: https://www.astroawani.com/berita-malaysia/kebakaran-hutan-simpan-pekan-tak-membimbangkan-186979 (accessed on 2 August 2021).
- Bernama Kebakaran Hutan Simpan Pekan: Anggota Bomba, Jabatan Perhutanan Terkandas (Fire in Pekan Forest Reserve: Fire Fighters, Forestry Department Is Stranded). Available online: https://www.utusanborneo.com.my/2018/10/01/kebakaran-hutan-simpan-pekan-anggota-bomba-jabatan-perhutanan-terkandas (accessed on 2 August 2021).
- Alagesh, T.N. 40ha of Pahang Forest, Peat Land on Fire. New Straits Times 2019.
- Bernama 80 Hektar Hutan Simpan Kuala Langat Terbakar. Available online: https://www.bharian.com.my/berita/kes/2020/04/679541/80-hektar-hutan-simpan-kuala-langat-terbakar (accessed on 2 August 2021).
- Idris, M.N. Kebakaran Hutan Di Selangor Meningkat - Utusan Digital. Available online: https://www.utusan.com.my/berita/2020/07/kebakaran-hutan-di-selangor-meningkat/ (accessed on 2 August 2021).
- Malaymail Kuala Langat Selatan Forest Fire Spreads to over 40 Hectares, Says Selangor Fire Dept 2021.
- Bernama Large Forest Fire Raging in Perak; Orang Asli Settlement Threatened. News Straits Times 2019.
- Haralick, R.M.; Sternberg, S.R.; Zhuang, X. Image Analysis Using Mathematical Morphology. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 532–550. [Google Scholar] [CrossRef]
- Zeng, A.-C.; Cai, Q.-J.; Su, Z.; Guo, X.-B.; Jin, Q.-F.; Guo, F.-T. Seasonal Variation and Driving Factors of Forest Fire in Zhejiang Province, China, Based on MODIS Satellite Hot Spots. Chinese J. Appl. Ecol. 2020, 31, 399–406. [Google Scholar]
- Zhu, Z.; Deng, X.; Zhao, F.; Li, S.; Wang, L. How Environmental Factors Affect Forest Fire Occurrence in Yunnan Forest Region. Forests 2022, 13. [Google Scholar] [CrossRef]
- Parisien, M.A.; Parks, S.A.; Krawchuk, M.A.; Little, J.M.; Flannigan, M.D.; Gowman, L.M.; Moritz, M.A. An Analysis of Controls on Fire Activity in Boreal Canada: Comparing Models Built with Different Temporal Resolutions. Ecol. Appl. 2014, 24, 1341–1356. [Google Scholar] [CrossRef] [PubMed]
- Chew, Y.J. Forest Fire Dataset for Peninsular Malaysia (2001-2022) Extracted from Multiple-Source Remote Sensing Data Using Google Earth Engine [Data Set]. Zenodo 2023.
- Wu, Q.; Lane, C.R.; Li, X.; Zhao, K.; Zhou, Y.; Clinton, N.; DeVries, B.; Golden, H.E.; Lang, M.W. Integrating LiDAR Data and Multi-Temporal Aerial Imagery to Map Wetland Inundation Dynamics Using Google Earth Engine. Remote Sens. Environ. 2019, 228, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, E.W.; Fisher, K.; Robinson, N.; Sampson, D.; Duncan, A.; Royte, L. The March of the Human Footprint. 2022.
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958-2015. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, W.; Darmawan, S.; Shofiyati, R.; Khiem, M. Van; Oo, K.S.; Pimple, U.; Heng, S. Near-Real Time Meteorological Drought Monitoring and Early Warning System for Croplands in Asia. In Proceedings of the Asian Conference on Remote Sensing 2015: Fostering Resilient Growth in Asia; 2015; Vol. 1; pp. 171–178. [Google Scholar]
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V061 [Dataset]. NASA EOSDIS Land Processes DAAC; Accessed 2023-02-07 from https: //doi. org/10.5067/MODIS/MOD11A2. 061, 2021. [Google Scholar]
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061 [Data Set]. NASA EOSDIS Land Processes DAAC; Accessed 2022-12-23 from https: //doi. org/10.5067/MODIS/MOD13Q1. 061, 2021. [Google Scholar]
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V061. NASA EOSDIS L. Process. DAAC Sioux Falls, SD, USA 2022. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 V200 2022.
- NASA JPL NASADEM Merged DEM Global 1 Arc Second V001 [Data Set].
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A. Outlining Where Humans Live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Chew, Y.J.; Ooi, S.Y.; Pang, Y.H.; Wong, K.-S. A Review of Forest Fire Combating Efforts, Challenges and Future Directions in Peninsular Malaysia, Sabah, and Sarawak. Forests 2022, 13, 1405. [Google Scholar] [CrossRef]
- Chew, Y.J.; Ooi, S.Y.; Pang, Y.H. Data Acquisition Guide for Forest Fire Risk Modelling in Malaysia. 2021 9th Int. Conf. Inf. Commun. Technol. ICoICT 2021 2021, 633–638. [Google Scholar] [CrossRef]
- OCHA Malaysia - Subnational Administrative Boundaries. Available online: https://data.humdata.org/dataset/cod-ab-mys (accessed on 20 October 2023).
- Chew, Y.J.; Ooi, S.Y.; Pang, Y.H.; Wong, K.S. Trend Analysis of Forest Fire in Pahang, Malaysia from 2001-2021 with Google Earth Engine Platform. J. Logist. Informatics Serv. Sci. 2022, 9, 15–26. [Google Scholar] [CrossRef]
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv Prepr. arXiv2307.09288 2023. [Google Scholar]
- Zhipa, J. Noteable’s Unexpected Farewell. Available online: https://medium.com/@julia.zhipa/noteables-unexpected-farewell-b18a312346b4 (accessed on 29 March 2024).
- Paliwal, A. Code Interpreter. Available online: https://gptstore.ai/gpts/R3QCSpFIgF-code-interpreter (accessed on 29 March 2024).
- Promptspellsmith Code Copilot. Available online: https://gptstore.ai/gpts/_0GbIdtVSh-codecopilot (accessed on 29 March 2024).
- Zhu, C.; Kobayashi, H.; Kanaya, Y.; Saito, M. Size-Dependent Validation of MODIS MCD64A1 Burned Area over Six Vegetation Types in Boreal Eurasia: Large Underestimation in Croplands. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Schwehr, K.; Pasquarella, V.; Trochim, E.; Swetnam, T. Samapriya/Awesome-Gee-Community-Datasets: Community Catalog 2023.







| Feature Name | Description | Feature Name | Description | |
|---|---|---|---|---|
| system:index | System-generated from MCD64A1 | current_aet_annual | Actual Evapotranspiration | |
| longitude | Longitude Coordinate of Fire Points | current_def_annual | Climate water deficit | |
| latitude | Latitude Coordinate of Fire Points | current_pdsi_annual | Palmer Drought Severity Index | |
| fire | Fire Occurrence (binary class) | current_pet_annual | Reference Evapotranspiration | |
| date | Date from Administrative Boundaries refer to the Shape | current_pr_annual | Precipitation Accumulation | |
| ADM1_PCODE | Administrative level 1 code | current_ro_annual | Runoff | |
| ADM2_PCODE | Administrative level 2 code | current_soil_annual | Soil Moisture | |
| Shape_Leng | Shape Length (from MCD64A1) | current_srad_annual | Downward Surface Shortwave Radiation | |
| ADM0_EN | Country Name | current_swe_annual | Snow Water Equivalent | |
| ADM1_EN | Administrative level 1 name | current_tmmn_annual | Minimum Temperature | |
| ADM2_EN | Administrative level 2 name | current_tmmx_annual | Maximum Temperature | |
| validOn | Validation Date from Administrative Boundaries refer to the Shape | current_vap_annual | Vapor Pressure | |
| Shape_Area | Shape area (from MCD64A1) | current_vpd_annual | Vapor Pressure Deficit | |
| ADM0_PCODE | Country code | current_vs_annual | Wind Speed at 10m | |
| BurnDate | Date in 0-365 (from MCD64A1) | current_EVI_annual | Enhanced Vegetation Index | |
| year | Year of Fire Observation | current_NDVI_annual | Normalized Difference Vegetation Index | |
| month | Month of Fire Observation | current_LST_annual | Land Surface Temperature | |
| day | Day of Fire Observation | current_KBDI_annual | Keetch-Byram Drought Index. | |
| current0101_hii_annual | Human Impact Index | current0101_LC_Type2_annual | Land Cover Classification of UMD (Numeric) | |
| current0101_average_annual_nighttime | Nighttime Brightness | current0101_LC_Type2_annual_classname | Land Cover Classification of UMD (Classname) |
| Features | Fire = 1 | Non-Fire (Fire = 0) | ||||
|---|---|---|---|---|---|---|
| Count | Mean | Standard Deviation | Count | Mean | Standard Deviation | |
| current0101_LC_Type2_annual | 5557 | 9.613101 | 3.652621 | 5526 | 3.088853 | 2.465596 |
| current0101_average_annual_nighttime | 1960 | 1.33929 | 2.232185 | 0 | - | - |
| current0101_hii_annual | 5403 | 2094.723 | 881.2572 | 0 | - | - |
| current_EVI_annual | 5553 | 0.369616 | 0.059076 | 5526 | 0.460531 | 0.064722 |
| current_KBDI_annual | 3404 | 95.86203 | 55.7931 | 5526 | 21.63871 | 9.450237 |
| current_LST_annual | 5522 | 304.4709 | 1.561426 | 5510 | 299.5443 | 2.200019 |
| current_NDVI_annual | 5553 | 0.567431 | 0.078325 | 5526 | 0.684663 | 0.075106 |
| current_aet_annual | 5557 | 104.8773 | 9.327677 | 5526 | 96.14751 | 8.020696 |
| current_def_annual | 5557 | 7.798602 | 7.765711 | 5526 | 0.57292 | 0.925342 |
| current_pdsi_annual | 5557 | 0.453241 | 2.904917 | 5526 | 3.93935 | 1.623397 |
| current_pet_annual | 5557 | 112.6757 | 12.85509 | 5526 | 96.72054 | 8.350228 |
| current_pr_annual | 5557 | 202.7966 | 36.59999 | 5526 | 269.2244 | 48.8007 |
| current_ro_annual | 5557 | 97.5236 | 41.03856 | 5526 | 173.054 | 52.46889 |
| current_soil_annual | 5557 | 95.14247 | 52.39215 | 5526 | 94.80768 | 27.17345 |
| current_srad_annual | 5557 | 185.4051 | 24.57128 | 5526 | 169.1053 | 7.917929 |
| current_swe_annual | 5557 | 0 | 0 | 5526 | 0 | 0 |
| current_tmmn_annual | 5557 | 23.47415 | 0.549855 | 5526 | 21.33283 | 2.059547 |
| current_tmmx_annual | 5557 | 32.31917 | 0.718615 | 5526 | 29.97259 | 2.362977 |
| current_vap_annual | 5557 | 3.065104 | 0.080479 | 5526 | 2.808721 | 0.217333 |
| current_vpd_annual | 5557 | 0.825758 | 0.098175 | 5526 | 0.623304 | 0.215493 |
| current_vs_annual | 5557 | 1.834698 | 0.287861 | 5526 | 1.327443 | 0.267973 |
| Features | Group 1 | Group 2 | T-Statistics | p-value | Statistically Significant |
|---|---|---|---|---|---|
| BurnDate | Filter Fire Condition (‘fire’ = 1) |
Filter Non-Fire Condition (‘fire’ =0) |
-93.2815 | 0 | Significant |
| current0101_LC_Type2_annual | -110.2646 | 0 | |||
| current_EVI_annual | 77.2107 | 0 | |||
| current_KBDI_annual | -76.9397 | 0 | |||
| current_LST_annual | -135.6047 | 0 | |||
| current_NDVI_annual | 80.4098 | 0 | |||
| current_aet_annual | -52.8367 | 0 | |||
| current_def_annual | -68.8715 | 0 | |||
| current_pdsi_annual | 78.0405 | 0 | |||
| current_pet_annual | -77.5257 | 0 | |||
| current_pr_annual | 81.0322 | 0 | |||
| current_ro_annual | 84.3792 | 0 | |||
| current_srad_annual | -47.0552 | 0 | |||
| current_tmmn_annual | -74.6871 | 0 | |||
| current_tmmx_annual | -70.6441 | 0 | |||
| current_vap_annual | -82.2645 | 0 | |||
| current_vpd_annual | -63.5849 | 0 | |||
| current_vs_annual | -96.0227 | 0 | |||
| current_soil_annual | -0.4226 | 0.6726 | Not Significant | ||
| current0101_average_annual_nighttime | - | - |
NaN (Missing Data) |
||
| current0101_hii_annual | - | - |
NaN (Missing Data) |
||
| current_swe_annual | - | - |
NaN (Constant) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
