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Abstract: Brain-Computer Interface (BCI) systems can assist physically challenged people to interact with their
surroundings and improve the quality of their lives. Decoding human thoughts is a powerful technique that can
assist paralyzed people who have lost their speech production ability. Speaking is a combined process involving
synchronizing the brain and the oral articulators. This paper proposed a high-accuracy brain wave pattern
recognition based on inner speech using a novel feature extraction method. Only eight EEG electrodes were used
in this study, and they were set on selected spots on the scalp. Support Vector Machine (SVM) was employed to
decode the recorded EEG dataset into four internally spoken words which are: Up, Down, Left, and Right. The
proposed approach achieved overall classification accuracy that ranges between 96.20% to 97.5%. In addition,
more performance evaluation metrics were estimated to test the reliability of classifying the EEG-based inner
speech data, and we obtained 97.61%, 97.50%, and 97.73% for Fl-score, recall, and precision respectively.
Furthermore, the Area Under Curve of the Receiver Operating Characteristic (AUC-ROC) proved the strength
of the proposed approach for classifying the specified inner speech commands by achieving a macro-average
amount of 99.32%. The inner speech classification method using electroencephalography proposed in this work
can clinically help improve communication for patients with problems including speech disorder, mutism,
cognitive development, executive function, and psychopathology.

Keywords: inner speech; brain-computer interface; imagined speech; support vector machine; SVM;
autoregressive model; AR; wavelet variance; shannon entropy

1. Introduction

Brain signals were used in 1967 for secured text messages transmitting based on the transmission
of letters of the alphabet using EEG and Morse code by Dewan and his research team [1]. Although
studying inner speech is an enormous challenge, it is essential to understand the development of
language capabilities and the advanced mental abilities to which language is linked [2]. Another skill
that appears to be linked to inner speech is silent reading. Furthermore, inner speech assists with
several brain disorders after a traumatic brain injury, brain stem infarcts, cerebral palsy, or
amyotrophic lateral sclerosis, which affects verbal communication [3]. The concept of Brain-
Computer Interface (BCI) offered great assistance for paralyzed people to interact directly with the
environment surrounding them and improve the quality of their lives. More particularly, people with
aphasia or speech disorder would be supported with a communication system that can recognize
inner speech from their brain signals [4]. The brain signal used in BCI systems can be captured and
monitored with different approaches, such as functional Near-Infrared Spectroscopy (fNIRS),
Magnetoencephalography  (MEG), functional Magnetic Resonance Imaging (fMRI),
Electrocorticography (ECOG), and the Electroencephalography (EEG).

Among various brain signals monitoring technologies, EEG has been proven to be one of the
most popular methods for monitoring brain activities due to its cost-effectiveness and
noninvasiveness. Moreover, EEG offers the quantification and interpretation of cortical activity in
several brain regions by measuring the summation of postsynaptic action potentials [5]. In [6,7], and
[8] studies were conducted to develop EEG-based BCI systems that distinguish between different
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inner speech activities and promising results were reported. The number of EEG sensors required to
design any EEG-based BCI system is the main factor for determining the cost, setup, and maintenance
complexity of the BCI system, which as a result will affect the possibility of its manufacturing such
as a system designed to be used in real-time.

Several studies were able to achieve high overall classification accuracy of 97.66%, 98.60% and
99% for EEG-based BCI for different applications in [52-54], respectively. Most of the researchers
have used high-cost EEG headsets to design BCI systems for inner speech processing. Recent research
published in Scientific Data-Nature journals [9] used a costly 128 channels EEG headset to record
inner speech-based brain activities from 10 subjects. The participants were trained to perform speech
imagery for four commands: Up, Down, Right, and Left responding to a visual cue presented on a
computer screen. In [10], the same 128-channel EEG dataset was used with a deep learning method
to classify them according to their corresponding to the internally spoken word, and an average EEG-
based inner speech classification accuracy of 29.67% was achieved. A subsequent study [11] achieved
51% EEG-based inner speech classification accuracy using the same 128-channel EEG datasets by
considering only a specific number of channels (28-channel only) in the classification process
depending on their location on the scalp that could be linked to the inner speech activity.

In [12], a 20-channel EEG headset was used for aircraft pilots’ cognitive workload estimation,
and an accuracy of 91.67% was achieved using a combination of multi-feature extraction and Support
Vector Machine (SVM). In our very recent research [13], we were able to achieve 93% classification
accuracy to design EEG-based Internet of Brain-Controlled Things (IoBCT) based on visual cues using
only a 16-channel EEG headset. Moreover, in [14,15], we achieved excellent accuracy in classifying
EEG signals with only an 8-channel EEG headset, where we classified EEG signals to control a drone
and designed EEG-based IoBCT based on visual cues, respectively.

Our brain can be excited and stimulated by the external environment through the various senses
we have such as hearing, touch, sight, smell, and taste. Visual and auditory cues play a great role in
the excitement of central motor cortex [16] and [17], but still the functional effect of such as these are
limited [18]. In [19], EEG was used to classify inner speech, and the EEG electrodes have been placed
on different spots on the scalp. The results revealed that the most important EEG channels for
classifying inner speech were the ones laid on Broca’s and Wernicke’s regions of the brain. Both
regions continuously analyze and control the production of our speech, but Wernicke ensures that
the speech makes sense, while the Broca controls the fluency of our speech.

The experimental procedure followed in an EEG-based inner speech classification research is
essential for obtaining classifiable data. The most followed procedure is to ask the subjects to imagine
speaking the commands only once. However, in [20] and [21], the participants were asked to imagine
saying a specific command multiple times in the same recording session. In [22], four commands,
namely, up, down, right, and left, were used to be internally spoken and discriminated based on the
recorded EEG using Extreme Learning Machine (ELM) classifier. Overall classification accuracy of
49.77% and 85.57% were obtained, respectively.

Recent research revealed that EEG-based inner speech classification accuracy can be improved
when auditory cues are used [23]. In [24], four participants imagined speaking without any subvocal
or vocal activity while the audio cues were given to stimulate the brain. During the initial period of
this experiment, the participants heard the audio cues through electrostatic earphones, either a
spoken (“ku”) or a spoken (“ba”) followed by a train of clicks (arrows) indicating the rhythm to be
reproduced. In [25], seven participants imagined speaking a cued syllable, and the cues were also
submitted with auditory stimuli. Additionally, no motor activity analysis was conducted in those
papers. Finally, in [26], the participants were trained to carefully listen to spoken words and try to
comprehend them and then inner speaking them, or “Internal speaking,” as called in the paper,
immediately after seeing it. Practical research examined inner speech classification using EEG-based
BCI systems and showed that inner speech could be recognized using words with high
discriminatory pronunciation [27]. Feature extraction methods such as Autoregressive (AR)
coefficient estimation, Shannon entropy, and wavelet variance estimation were used in several
studies to model EEG to obtain a representation of the signal at each channel and improve the
classification accuracy [28-31].

This paper is a follow up for our previous work in [44] where we used a low-cost 8- channels
EEG headset, g.tec Unicorn Hybrid Black+ [32]. Audio cues were employed for the purpose of
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stimulating motor imagery in this study. The question: Where do you want to go was used, and the
participant replied with inertly spoken audio commands Up, Down, Left, and Right. Finally, we
employed multi-feature extraction methods and SVM to discriminate between the four commands.

2. Materials and Methods
2.1. Subjects

Four native English speakers, right-handed and healthy individuals participated in this study,
all of them had no neurological or movement disorders, no hearing loss, and no speech loss. Each
participant signed his written informed consent. None of the participants had any previous BCI
contribution or experience. The participants were two males and two females aged 20 to 56 and were
named (sub-01) for the first subject (sub-02) for the second subject and so on. The study was
accompanied in Jackson State University at the Department of Electrical and Computer Engineering
and Computer Science. All subjects were voluntarily participated in the experiment, and the
experimental procedure and data collection have been done according to the approved Institutional
Review Board (IRB) procedures at Jackson State University [33].

2.1. Apparatus

An EEG Unicorn Hybrid Black+ headset manufactured by g.tec [32] was used to record the EEG-
based inner speech data. It is a low-cost EEG headset that records up to seventeen channels at up to
250 Hz sampling frequency, eight of them are EEG, a three-axis accelerometer, a three-axis gyroscope,
a battery signal, a counter signal, and a validation signal. The recorded channels are on the positions:
(FZ, C3,CZ, C4, PZ, PO7, OZ, and PO8). A cap with appropriate size was chosen to fit the participants
head and all electrodes were placed in the required positions in the cap. A conductive gel was used
to fill the gaps between the scalp and the electrodes.

2.3. Experimental setup and procedure

We considered the 10-20 electrode placement system recommended by the American clinical
neurophysiology society [34]. The 10-20 system was first presented by Herbert Jasper at the 1957
Brussels IV International EEG Congress. The numbers (10) and (20) denote the distances between the
electrodes position, which are either 10% or 20% of the total distance (front-back or right-left) of the
skull. The head cap has been adjusted to ensure that there are electrodes placed, as much as possible,
within the Wernicke and Broca regions, which are considered good spots for better quality inner
speech-based EEG. Figure 1 presents the g.tec Unicorn Hybrid Black+ headset, Wernicke and Broca, and
the electrode positions. Reference and ground electrodes are sticked on the mastoids using a one-use
sticker.

Broca's Area Wernicke's Area

(a)

(b)

~ s
[ J
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Figure 1. (a) Wernicke’s and Broca’s areas, (b) The electrode positioning layout, (c) The g.tec Unicorn
Hybrid Black+.

The experiment has been designed to record EEG during performing inner speech. Inner speech,
also called imagined speech, silent speech, covert speech, is thinking in the form of sound - "hearing"
our own voice silently without the intentional movement of any extremities such as the lips, tongue,
or hands. Two subjects participated in each recording session, where one subject was performing
inner speech and the second was performing the audio cue. We think that getting the participants
involved in announcing the audio cue will help prevent any bias in the results even if the spoken
commands were in the same order each session, where the audio cue was announced by different
subjects. Before the recording started, the two subjects were seated in a comfortable high-back chair
in front of each other and to familiarize them with the recording procedures. All experiment steps
were clarified during the setup of the EEG headset, and the external electrodes, which took about 15
minutes. The first subject was trained to imagine responding to the question: Where do you want to go?
The question was said by the second subject who was sitting in front of the first subject. The response
was an internally or an imaginary spoken command, which is either Up or Down, Left or Right. Each
participant accomplished 25 recordings for each command. The recording procedure was
implemented as follows. When the first 10 seconds (+ 2 seconds) of the EEG recording passed, the
audio cue was announced and by the end of the second 10 seconds (+ 2 seconds), the participant
started imagining the desired response as inner speech for 60 seconds. The participant was trained to
keep repeating the internally spoken command until the end of the 60 seconds, and the recording
was stopped after 10 seconds as illustrated in Figure 2.

A total of 400 recordings sessions were successfully completed, and the collected data has been
merged without separating them according to their corresponding participants. We ended up having
100 recordings for the command Up, 100 recordings for Down, and so on. This way, we can examine
the performance of the proposed classification method in distinguishing between the four commands
using a dataset from four subjects altogether in one run. Additionally, by combining the data together
and using them in the training and testing process, we can design a reliable algorithm that can be
tested later in real-time on different subjects. For each command, the first 25 recordings were for
subject 1, the second 25 recordings were for subject 2, the third 25 recordings were for subject 3, and
the last 25 recordings were for subject 4. The recorded EEG dataset was spitted, labeled, and stored
to be prepared for the preprocessing stage.

Inner Speech-Based EEG

Where do you want to go?

Time | | | | N

Seconds I 70 I 70 | 60 | 70 'l

Figure 2. The recording procedure.

2.4. EEG Pre-Processing

Before the EEG- Preprocessing stage, 8 seconds from the start and the end of each recording was
trimmed to make sure that we have EEG data that reflects the participants brain activities while they
were purely performing imagined speech. In the EEG pre-processing stage, the recorded data
forwarded to a combination of several noise attenuation and calibration approaches to prepare the
EEG signals for further analysis. Pre-processing is a significant stage for EEG analysis to remove any
expected noises. This noise can be categorized as environmental or instrumentation noise such as the
noise from the power line and biological nose such as ECG and EMG signals arising from muscle
movement. To attenuate biological artifacts such as EMG and ECG noise, researchers have developed
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different methods. Traditional filtration technique worked well so far to eliminate electrical line noise
and other biological artifacts with high frequency such as EMG. But removing ECG can result in
damaging the EEG characteristics and losing its fundamental features because the ECG artifacts have
a noteworthy spectral overlap with the original EEG signals [52-54].

The recorded EEG signals were analyzed wusing gHIsys MATLAB toolbox
(https://www.gtec.at/product/ghisys). To ensure that we have only the performed speech imagery
data, we considered removing the first and the last 8 seconds of the 60 seconds in each recording. A
bandpass filter between 10 and 100 Hz was used to attenuate the baseline drift and the noisy signals
from EEG signals. This filtering bandwidth delivers only the typical frequency bands corresponding
to EEG in the human brain [35]. A bandstop (notch) filter at 60 Hz was used to reject the power
frequency used in Mississippi, USA. The normalization (vectorization) technique was used to
simplify the dataset and reduce the computing demand required to classify the four commands. The
dataset was split into 360 recordings for training and 40 recordings for testing (90% for training and
10% for testing). The training and testing dataset was normalized by determining the mean and
standard deviation for each of the eight EEG signals and apply the following formula to combine
them in a single-vector signal:

X —a

EEGNorm = (1)

o
where (x) is the filtered EEG signal, («) is the mean, and (o) is the standard deviation. The EEG dataset
was then prepared for the feature extraction step. The result of pre-processing steps for one subject
EEG is shown in Figure 3.

—— Raw EEG
Filtered EEG, HP Butter. 10-100 Hz Order 4
Filtered EEG, Notch. 60 Hz

Time (Second)

~_

EEG Normalized

EEG (WV)
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0 10 20 30 40
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Figure 3. Eight-channel preprocessed EEG dataset at 250 HZ (250 sample per second).

2.5. Feature Extraction

Multi-feature extraction methods were applied on eight blocks for each recording with a time
window of about 4 seconds (1024 samples). Autoregressive model (AR) coefficients, Shannon
Entropy (SE), and multiscale wavelet variance estimates were used to extract features of the recorded
data.

2.5.1. AR Coefficients
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In an AR method of order p, the signal X{n} at time n could be represented as a linear sequence
of p prior estimates of the same signal. Specifically, the AR method is modeled as:

X{n} = ijla{i}x(n _ D) +e{n) 2)

where a{i} is i coefficients of the AR representation, e{n} is added noise with zero mean value, and p
is the order number of the AR model. Countless methods could be used to calculate the coefficients
of an AR representation. The method we used to estimate the AR order in this work is the ARfit [36].
The 1st-order has been selected for the recorded EEG signals.

2.5.2. Shannon Entropy

Shannon entropy is one of the most attractive cost functions, which is a measure of signal
complexity to wavelet coefficients generated by wavelet packet transform where larger entropy
values represent higher process uncertainty and, therefore, higher complexity [37]. The
representation of the Shannon entropy for the undecimated wavelet packet transform is formulated
as follows:

n
SE; = zk:113jk log Py 3)

where n is the subsequent coefficients in a j number of nodes and P, are the normalized squares of
the wavelet packet coefficients in each node.

2.5.3. Multiscale Wavelet Variance Estimates

Wavelet variance measures the variability in EEG signal by scale or equivalently in EEG signal
over octave-band frequency intervals. We adjusted the vectorized data to make the number of
samples in each recording in the form of (2A). The biggest number of (A) we could get with the
number of samples we have in each recording is 12. For the signal length of 8192 samples (2 * 12) and
using the “db2’ wavelet with level 5 [38], 10 multiscale wavelet variance features were extracted from
each recording using the following formula:

Number of Wavelet Variance = 2474P (4)

A total of 170 features were extracted from the EEG data: 4 per time window (1024 sample) AR
coefficients, 16 per time window SE values, and 10 wavelet variance estimations. After the multi-
feature extracting stage, the EEG data was reconstructed to be a 360-by-170 features matrix for
training and a 40-by-170 features matrix for testing. By employing Autoregressive coefficients,
Shannon Entropy, and multiscale wavelet variance estimates, the data was reduced from 8192 to 170
element vectors. Representation of the difference in the wavelet variance for the 170 extracted features
from the recorded and preprocessed EEG data will be presented in the final results.

2.6. Classification

In the classification stage, the data was processed with supervised learning, where the specified
algorithm was employed to learn from the prepared data. In this study, the classification stage was
defined as the determination of four different internally spoken commands (Up, Down, Left, and
Right), which are considered a multiclass classification process. SVM is one of the most well-known
supervised learning algorithms specialized in classification problems. Classification using SVM is
powered through generating a best line or decision boundary that segregates an n-dimension space
to multiclass to easily enable data sorting to the category to which they belong [39,40]. SVM works
on picking the margin points that construct vectors which are called support vectors to assist with
generating the best decision boundary.

The SVM architecture utilizes a set of mathematical functions that are known as the kernel
functions. The kernel function performs a kind of similarity measure between input objects and
transforms it into the required output [41]. We employed SVM, which is a machine learning
algorithm for differentiation between the four chosen commands. Furthermore, k-fold cross-
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validation (k = 10) was used to achieve a perfect estimate of the proposed model performance on the
recorded inner speech data and to avoid overfitting in the classification process. The K-fold validation
is an alternative to a fixed validation set. It does not affect the need for a separate held-out test set. So
indeed, the data will be split into training, testing and cross-validation data and is performed on folds
of training sets. With k-fold cross-validation of value 10, the model performance will be evaluated
after dividing the data into 10 subsets (10 folds) while using the k-1 subsets for training the data. In
this way, it can ensure that testing data will be entirely unknown to the classifier that is testing and
training data are not coming from the same given group. Figure 4 illustrates the concept of using the
K-fold for cross-validation during the data training process.

Cross-Validation Training
Folds [ — Folds ——mm— |
i | 751 |
1st | L [ ]
o [T T 7T [T [T ]
wo [ M T [T [T T ]

an [

K Iterations (10-folds)

[ [ 1

Figure 4. Cross-Validation Using 10-Fold.

o |

2.7. Performance Evaluation

Evaluation metrics adopted within a variety of machine learning techniques are critical in
examining the reliability of the designed classifiers. To evaluate the trained model performance,
metrics following [42] have been considered. The classified EEG data using the proposed machine
learning method was grouped into true positive Tr, false positive Fr, true negative Tn, and false
negative Fn. The value of Fr and Fv are the samples that were misclassified, and the value of Tr and
Tw are the samples that were correctly classified [42]. The most state-of-art metrics for classification
are accuracy, precision, recall, and F1-score. Accuracy estimates the percentage of correct predicted
outputs to the overall number of samples in the processed dataset. Recall (sometimes called
Sensitivity) estimates the percentage of Tr to the summation of Tr and Fn. Precision estimates the
percentage of Tr to the summation of Tr and Fr. Hence the F1-Score estimates the average between
recall and precision.

Moreover, the Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) (AUC-
ROC) was plotted. AUC-ROC is a common ranking type of metric that is utilized to show
comparisons between learning algorithms and create an optimal learning model by exposing the
entire classifier ranking performance [43]. Furthermore, while we have a multiclass classification task,
areas under the curve were calculated and presented by macro-averaging, in which each
corresponding metric for each individual class was estimated. The following formula is used to
estimate the AUC-ROC value for multiclass problems:

ACU = S, —n,(n, — 1)/Nn,n, (5)

where Sy, 1p, 1, and N represent the sum of all positive samples, positive and negative samples, and
the number of classes, respectively.

3. Results

In this section, we report the results of the proposed method for EEG signals classification,
including the results of extracting multi-features from the preprocessed EEG signal and the results of
the SVM machine learning model for the classification of the extracted features.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 d0i:10.20944/preprints202404.0239.v1

3.1. Feature Extraction Results

In the feature selection stage, the extracted features using Autoregressive coefficients, Shannon
Entropy, and multiscale wavelet variance were compared using boxplot to examine the variance level
between each individual command. The obtained results using the suggested features extraction
methods showed a noticeable variation between the four commands which will assist with
discriminating between them and improve the classification accuracy. Every feature vector of the
same class should be closer in its representation point and in different classes they should be far from
each other.

For precisely monitoring the variance in data distribution of all features in the four classes we
have, a boxplot was used. Representation of the difference in the wavelet variance for the 170
extracted features from the sample of the recorded and preprocessed EEG data using a boxplot is
shown in Figure 5.

[_110%~90%
T 1%~99%
— Median Line
1 Mean

@ Outliers

3.0

Sub-01_[Sub-02[Sub-03] Sub-04 | Sub-01_[Sub-02[Sub-03] Sub-04 | Sub-01_ Jsub-02[Sub-03] Sub-04 | Sub-01 [Sub-02[sub-03] Sub-04

Up | Down | Left | Right

Figure 5. A boxplot of the wavelet variance for the extracted features from sample of the recorded EEG data.

3.2. Classification Results

After the multi-features extraction stage, classification between the four internally spoken
commands was carried out using machine learning to evaluate the model performance. The SVM
with a polynomial kernel function, C =2 and gamma = 0.1 was selected as the best estimator with the
best margin size (M) after several trials based on trial-and-error as shown in Table 1 and Figure 6.
Gamma and C are regularization parameters where gamma determines the width of the kernel
function, and C controls the trade-off between achieving a simple decision boundary and an excellent
fit to the data during the training process. The cross-validation splitting strategy was chosen as five-
fold cross-validation. Moreover, class names were Up, Down, Left, and Right.

We trained and tested our model using the extracted features by SVM five-fold cross-validation.
The highest performance of the model was achieved by feeding the features selected by
Autoregressive coefficients, Shannon Entropy, and multiscale wavelet variance with an accuracy of
97.5%, precision of 97.73%, recall of 97.50%, and F1-score of 97.61%. In addition, the macro-average
AUC-ROC of the model was 99.32%. The model showed excellent performance using the extracted
features by the proposed feature extraction methods. The confusion matrix and AUC-ROC plot
illustrate the performance of the proposed classifier in Figure 7 and Figure 8, respectively.

Table 1. Information of the participated subjects.

Iteration Cost (C) gamma Accuracy %
1 2.75 0.18 96.2
2 2.7 0.17 96.2
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Figure 7. Confusion matrix for the classification performance of the SVM model.
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4. Discussion

Complex Applications of EEG in a realistic environment, such as decoding inner speech,
generate dynamic and complicated responses in the EEG signals. As reported in [20], the classification
accuracy of inner speech applications based on EEG can be affected by the type of cues used to stimuli
the brain in the recording procedure. In [20], the participants were trained to keep repeating the
internally spoken words for up to 14 seconds and they only responded when they heard a beep. In
[21], visual cues were used in each recording, and the participants were told to keep repeating the
internally spoken words for 30 seconds. Audio cues have been used to stimulate the brain by asking
a question to one of the four subjects and let them imagine speaking one of the four specified
commands. Unlike [20] and [21], we did not include cues during all the 60 seconds of response and
the subjects were trained to keep repeating the specified command until the time ended.

Classifying inner speech using EEG requires robust and efficient classification approaches. Some
researchers recommended autoregressive modeling, Shannon entropy, and wavelet variance
estimation as powerful feature-extracting methods to classify EEG [28-31,43]. In [27], massive efforts
were made to record EEG data for inner speech applications using an expensive 128-channel EEG
headset. Nevertheless, this high number of channels did not allow subsequent researchers [10,11] to
get good classification performance when they used the same 128-channel EEG data. In our research,
with data recorded using a low-cost 8-channel EEG headset, carefully selected electrodes position on
the skull, and the proposed multi-feature extraction method, the results showed that robust and
accurate EEG classification could be implemented. Autoregressive modeling, Shannon entropy, and
wavelet variance estimation were applied for detecting and classifying inner speech in EEG time
series data. The data was reduced from 8192 to 170 element vectors by employing the suggested
multi-feature extracting method. A total of 170 features were extracted from each recording and the
EEG data was reconstructed as a 360-by-170 features matrix for training and a 40-by-170 features
matrix for testing.

It is noteworthy that we combined the recorded data from all the subjects and applied the
suggested multi-feature extraction method on them. Aanalyzing the results by splitting the data
according to which participant it belongs and then averaging the results as in [45—48] by summing
and dividing the results by the number of the participated subject may not be the most practical
method for calculating the accuracy and efficiency of the designed classifier. For example, a 100%
classification accuracy for the data from subject A, and 80% for data from subject B can be averaged
to 90% by doing math calculation (100%+80%)/2. Since we know that the minimum accuracy is 80%,
stating that the overall classification accuracy for this classifier is 90% is not really accurate, and this
method will not provide any close number to what was averaged when testing this classifier online
on different subjects. In our work, we were able to design a BCI system that can distinguish between
four inner speech commands for four subjects at the same time rather than designing four systems,
where each system is tailored for each participant if a designer considered the methods used by
averaging the results. This makes our system more general and more practical because it allows
multiple physically-challenged people to use it.

Besides the reduction in the size and complexity of data, the reported results showed a
significant variance between the specified classes. Even though this is a significant reduction in data
size and complexity, the main objective of using the proposed multi-features extraction method is
not just a reduction in data. We aimed to re-represent the data with much smaller features that allow
capturing the differences between the required classes so that a classifier can ideally separate the EEG
signals. As explained in the result section, the extracted features resulted in high accuracy, precision,
recall, F-score, and macro-average AUC. The resulting classifier can be converted to a C++ or Python
code using MATLAB code generation and uploaded to a microcontroller to be tested in real-time.

5. Limitation

Data for this study included EEG data from four participants, each around 1.6 hours in total.
More participants would allow greater generalizability to indicate the reliability of the proposed
classification method. Furthermore, for accurately performing the experiment procedure, the data
collection requires the research team to train each participant to familiarize them with the procedure
by conducting at least one recording session before the considered one in this paper.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2024 d0i:10.20944/preprints202404.0239.v1

11

6. Conclusion

This research aims to pave the way for a better understanding of processing and classifying inner
speech using EEG and machine learning. Numerous numbers of people around the world need such
an idea to improve the quality of their life. Signal processing was implemented to extract wavelet
multi-feature from EEG signals and employ those features to classify four inner speech classes. Not
only did the multi-feature extraction result in a substantial amount of data reduction, but it enabled
capturing the differences between the Up, Down, Left, and Right classes as confirmed by the results of
cross-validation and the performance of the support vector machine classifier on the test dataset as
well. The experiment further demonstrated that applying autoregressive modeling, Shannon entropy,
and wavelet variance estimation to the raw EEG data resulted in an excellent performance. Five-fold
cross-validation was used to improve the classification performance and generalization. The
achieved results range between 96.20% to 97.5% for overall classification accuracy. Other
performance evaluation metrics were estimated, and we obtained 97.73% for precision, 97.50% for
recall, and 97.61% for Fl-score. Moreover, the macro-average AUC-ROC of 99.32% proved the
efficacy and validity of the proposed approach, for classifying different inner speech commands
using EEG.
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