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Abstract: Brain-Computer Interface (BCI) systems can assist physically challenged people to interact with their 
surroundings and improve the quality of their lives. Decoding human thoughts is a powerful technique that can 
assist paralyzed people who have lost their speech production ability. Speaking is a combined process involving 
synchronizing the brain and the oral articulators. This paper proposed a high-accuracy brain wave pattern 
recognition based on inner speech using a novel feature extraction method. Only eight EEG electrodes were used 
in this study, and they were set on selected spots on the scalp. Support Vector Machine (SVM) was employed to 
decode the recorded EEG dataset into four internally spoken words which are: Up, Down, Left, and Right. The 
proposed approach achieved overall classification accuracy that ranges between 96.20% to 97.5%. In addition, 
more performance evaluation metrics were estimated to test the reliability of classifying the EEG-based inner 
speech data, and we obtained 97.61%, 97.50%, and 97.73% for F1-score, recall, and precision respectively. 
Furthermore, the Area Under Curve of the Receiver Operating Characteristic (AUC-ROC) proved the strength 
of the proposed approach for classifying the specified inner speech commands by achieving a macro-average 
amount of 99.32%. The inner speech classification method using electroencephalography proposed in this work 
can clinically help improve communication for patients with problems including speech disorder, mutism, 
cognitive development, executive function, and psychopathology. 

Keywords: inner speech; brain-computer interface; imagined speech; support vector machine; SVM; 
autoregressive model; AR; wavelet variance; shannon entropy 
 

1. Introduction 
Brain signals were used in 1967 for secured text messages transmitting based on the transmission 

of letters of the alphabet using EEG and Morse code by Dewan and his research team [1]. Although 
studying inner speech is an enormous challenge, it is essential to understand the development of 
language capabilities and the advanced mental abilities to which language is linked [2]. Another skill 
that appears to be linked to inner speech is silent reading. Furthermore, inner speech assists with 
several brain disorders after a traumatic brain injury, brain stem infarcts, cerebral palsy, or 
amyotrophic lateral sclerosis, which affects verbal communication [3]. The concept of Brain-
Computer Interface (BCI) offered great assistance for paralyzed people to interact directly with the 
environment surrounding them and improve the quality of their lives. More particularly, people with 
aphasia or speech disorder would be supported with a communication system that can recognize 
inner speech from their brain signals [4]. The brain signal used in BCI systems can be captured and 
monitored with different approaches, such as functional Near-Infrared Spectroscopy (fNIRS), 
Magnetoencephalography (MEG), functional Magnetic Resonance Imaging (fMRI), 
Electrocorticography (ECOG), and the Electroencephalography (EEG).  

Among various brain signals monitoring technologies, EEG has been proven to be one of the 
most popular methods for monitoring brain activities due to its cost-effectiveness and 
noninvasiveness. Moreover, EEG offers the quantification and interpretation of cortical activity in 
several brain regions by measuring the summation of postsynaptic action potentials [5]. In [6,7], and 
[8] studies were conducted to develop EEG-based BCI systems that distinguish between different 
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inner speech activities and promising results were reported. The number of EEG sensors required to 
design any EEG-based BCI system is the main factor for determining the cost, setup, and maintenance 
complexity of the BCI system, which as a result will affect the possibility of its manufacturing such 
as a system designed to be used in real-time.  

Several studies were able to achieve high overall classification accuracy of 97.66%, 98.60% and 
99% for EEG-based BCI for different applications in [52–54], respectively. Most of the researchers 
have used high-cost EEG headsets to design BCI systems for inner speech processing. Recent research 
published in Scientific Data-Nature journals [9] used a costly 128 channels EEG headset to record 
inner speech-based brain activities from 10 subjects. The participants were trained to perform speech 
imagery for four commands: Up, Down, Right, and Left responding to a visual cue presented on a 
computer screen. In [10], the same 128-channel EEG dataset was used with a deep learning method 
to classify them according to their corresponding to the internally spoken word, and an average EEG-
based inner speech classification accuracy of 29.67% was achieved. A subsequent study [11] achieved 
51% EEG-based inner speech classification accuracy using the same 128-channel EEG datasets by 
considering only a specific number of channels (28-channel only) in the classification process 
depending on their location on the scalp that could be linked to the inner speech activity.  

In [12], a 20-channel EEG headset was used for aircraft pilots’ cognitive workload estimation, 
and an accuracy of 91.67% was achieved using a combination of multi-feature extraction and Support 
Vector Machine (SVM). In our very recent research [13], we were able to achieve 93% classification 
accuracy to design EEG-based Internet of Brain-Controlled Things (IoBCT) based on visual cues using 
only a 16-channel EEG headset. Moreover, in [14,15], we achieved excellent accuracy in classifying 
EEG signals with only an 8-channel EEG headset, where we classified EEG signals to control a drone 
and designed EEG-based IoBCT based on visual cues, respectively.  

Our brain can be excited and stimulated by the external environment through the various senses 
we have such as hearing, touch, sight, smell, and taste. Visual and auditory cues play a great role in 
the excitement of central motor cortex [16] and [17], but still the functional effect of such as these are 
limited [18]. In [19], EEG was used to classify inner speech, and the EEG electrodes have been placed 
on different spots on the scalp. The results revealed that the most important EEG channels for 
classifying inner speech were the ones laid on Broca’s and Wernicke’s regions of the brain. Both 
regions continuously analyze and control the production of our speech, but Wernicke ensures that 
the speech makes sense, while the Broca controls the fluency of our speech.  

The experimental procedure followed in an EEG-based inner speech classification research is 
essential for obtaining classifiable data. The most followed procedure is to ask the subjects to imagine 
speaking the commands only once. However, in [20] and [21], the participants were asked to imagine 
saying a specific command multiple times in the same recording session. In [22], four commands, 
namely, up, down, right, and left, were used to be internally spoken and discriminated based on the 
recorded EEG using Extreme Learning Machine (ELM) classifier. Overall classification accuracy of 
49.77% and 85.57% were obtained, respectively.  

Recent research revealed that EEG-based inner speech classification accuracy can be improved 
when auditory cues are used [23]. In [24], four participants imagined speaking without any subvocal 
or vocal activity while the audio cues were given to stimulate the brain. During the initial period of 
this experiment, the participants heard the audio cues through electrostatic earphones, either a 
spoken (“ku”) or a spoken (“ba”) followed by a train of clicks (arrows) indicating the rhythm to be 
reproduced. In [25], seven participants imagined speaking a cued syllable, and the cues were also 
submitted with auditory stimuli. Additionally, no motor activity analysis was conducted in those 
papers. Finally, in [26], the participants were trained to carefully listen to spoken words and try to 
comprehend them and then inner speaking them, or “Internal speaking,” as called in the paper, 
immediately after seeing it. Practical research examined inner speech classification using EEG-based 
BCI systems and showed that inner speech could be recognized using words with high 
discriminatory pronunciation [27]. Feature extraction methods such as Autoregressive (AR) 
coefficient estimation, Shannon entropy, and wavelet variance estimation were used in several 
studies to model EEG to obtain a representation of the signal at each channel and improve the 
classification accuracy [28–31]. 

This paper is a follow up for our previous work in [44] where we used a low-cost 8- channels 
EEG headset, g.tec Unicorn Hybrid Black+ [32]. Audio cues were employed for the purpose of 
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stimulating motor imagery in this study. The question: Where do you want to go was used, and the 
participant replied with inertly spoken audio commands Up, Down, Left, and Right. Finally, we 
employed multi-feature extraction methods and SVM to discriminate between the four commands. 

2. Materials and Methods 
2.1. Subjects 

Four native English speakers, right-handed and healthy individuals participated in this study, 
all of them had no neurological or movement disorders, no hearing loss, and no speech loss. Each 
participant signed his written informed consent. None of the participants had any previous BCI 
contribution or experience. The participants were two males and two females aged 20 to 56 and were 
named (sub-01) for the first subject (sub-02) for the second subject and so on. The study was 
accompanied in Jackson State University at the Department of Electrical and Computer Engineering 
and Computer Science. All subjects were voluntarily participated in the experiment, and the 
experimental procedure and data collection have been done according to the approved Institutional 
Review Board (IRB) procedures at Jackson State University [33]. 

2.1. Apparatus 
An EEG Unicorn Hybrid Black+ headset manufactured by g.tec [32] was used to record the EEG-

based inner speech data. It is a low-cost EEG headset that records up to seventeen channels at up to 
250 Hz sampling frequency, eight of them are EEG, a three-axis accelerometer, a three-axis gyroscope, 
a battery signal, a counter signal, and a validation signal. The recorded channels are on the positions: 
(FZ, C3, CZ, C4, PZ, PO7, OZ, and PO8). A cap with appropriate size was chosen to fit the participants 
head and all electrodes were placed in the required positions in the cap. A conductive gel was used 
to fill the gaps between the scalp and the electrodes.  

2.3. Experimental setup and procedure 
We considered the 10-20 electrode placement system recommended by the American clinical 

neurophysiology society [34]. The 10-20 system was first presented by Herbert Jasper at the 1957 
Brussels IV International EEG Congress. The numbers (10) and (20) denote the distances between the 
electrodes position, which are either 10% or 20% of the total distance (front-back or right-left) of the 
skull. The head cap has been adjusted to ensure that there are electrodes placed, as much as possible, 
within the Wernicke and Broca regions, which are considered good spots for better quality inner 
speech-based EEG. Figure 1 presents the g.tec Unicorn Hybrid Black+ headset, Wernicke and Broca, and 
the electrode positions. Reference and ground electrodes are sticked on the mastoids using a one-use 
sticker. 
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Figure 1. (a) Wernicke’s and Broca’s areas, (b) The electrode positioning layout, (c) The g.tec Unicorn 
Hybrid Black+. 

The experiment has been designed to record EEG during performing inner speech. Inner speech, 
also called imagined speech, silent speech, covert speech, is thinking in the form of sound – "hearing" 
our own voice silently without the intentional movement of any extremities such as the lips, tongue, 
or hands. Two subjects participated in each recording session, where one subject was performing 
inner speech and the second was performing the audio cue. We think that getting the participants 
involved in announcing the audio cue will help prevent any bias in the results even if the spoken 
commands were in the same order each session, where the audio cue was announced by different 
subjects. Before the recording started, the two subjects were seated in a comfortable high-back chair 
in front of each other and to familiarize them with the recording procedures. All experiment steps 
were clarified during the setup of the EEG headset, and the external electrodes, which took about 15 
minutes. The first subject was trained to imagine responding to the question: Where do you want to go? 
The question was said by the second subject who was sitting in front of the first subject. The response 
was an internally or an imaginary spoken command, which is either Up or Down, Left or Right. Each 
participant accomplished 25 recordings for each command. The recording procedure was 
implemented as follows. When the first 10 seconds (± 2 seconds) of the EEG recording passed, the 
audio cue was announced and by the end of the second 10 seconds (± 2 seconds), the participant 
started imagining the desired response as inner speech for 60 seconds. The participant was trained to 
keep repeating the internally spoken command until the end of the 60 seconds, and the recording 
was stopped after 10 seconds as illustrated in Figure 2.  

A total of 400 recordings sessions were successfully completed, and the collected data has been 
merged without separating them according to their corresponding participants. We ended up having 
100 recordings for the command Up, 100 recordings for Down, and so on. This way, we can examine 
the performance of the proposed classification method in distinguishing between the four commands 
using a dataset from four subjects altogether in one run. Additionally, by combining the data together 
and using them in the training and testing process, we can design a reliable algorithm that can be 
tested later in real-time on different subjects. For each command, the first 25 recordings were for 
subject 1, the second 25 recordings were for subject 2, the third 25 recordings were for subject 3, and 
the last 25 recordings were for subject 4. The recorded EEG dataset was spitted, labeled, and stored 
to be prepared for the preprocessing stage. 

 
Figure 2. The recording procedure. 

2.4. EEG Pre-Processing 
Before the EEG- Preprocessing stage, 8 seconds from the start and the end of each recording was 

trimmed to make sure that we have EEG data that reflects the participants brain activities while they 
were purely performing imagined speech. In the EEG pre-processing stage, the recorded data 
forwarded to a combination of several noise attenuation and calibration approaches to prepare the 
EEG signals for further analysis. Pre-processing is a significant stage for EEG analysis to remove any 
expected noises. This noise can be categorized as environmental or instrumentation noise such as the 
noise from the power line and biological nose such as ECG and EMG signals arising from muscle 
movement. To attenuate biological artifacts such as EMG and ECG noise, researchers have developed 
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different methods. Traditional filtration technique worked well so far to eliminate electrical line noise 
and other biological artifacts with high frequency such as EMG. But removing ECG can result in 
damaging the EEG characteristics and losing its fundamental features because the ECG artifacts have 
a noteworthy spectral overlap with the original EEG signals [52–54]. 

The recorded EEG signals were analyzed using gHIsys MATLAB toolbox 
(https://www.gtec.at/product/ghisys). To ensure that we have only the performed speech imagery 
data, we considered removing the first and the last 8 seconds of the 60 seconds in each recording. A 
bandpass filter between 10 and 100 Hz was used to attenuate the baseline drift and the noisy signals 
from EEG signals. This filtering bandwidth delivers only the typical frequency bands corresponding 
to EEG in the human brain [35]. A bandstop (notch) filter at 60 Hz was used to reject the power 
frequency used in Mississippi, USA. The normalization (vectorization) technique was used to 
simplify the dataset and reduce the computing demand required to classify the four commands. The 
dataset was split into 360 recordings for training and 40 recordings for testing (90% for training and 
10% for testing). The training and testing dataset was normalized by determining the mean and 
standard deviation for each of the eight EEG signals and apply the following formula to combine 
them in a single-vector signal: 

ே௢௥௠ܩܧܧ =  
ݔ − ߙ

ߪ
  (1)

where (x) is the filtered EEG signal, (ߙ) is the mean, and (σ) is the standard deviation. The EEG dataset 
was then prepared for the feature extraction step. The result of pre-processing steps for one subject 
EEG is shown in Figure 3. 

 
Figure 3. Eight-channel preprocessed EEG dataset at 250 HZ (250 sample per second). 

2.5. Feature Extraction 
Multi-feature extraction methods were applied on eight blocks for each recording with a time 

window of about 4 seconds (1024 samples). Autoregressive model (AR) coefficients, Shannon 
Entropy (SE), and multiscale wavelet variance estimates were used to extract features of the recorded 
data. 

2.5.1. AR Coefficients 
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In an AR method of order р, the signal Χ{n} at time n could be represented as a linear sequence 
of р prior estimates of the same signal. Specifically, the AR method is modeled as:  

ܺ{݊} = ෍ ݊)ݔ{݅}ܽ − ݅) + ݁{݊}
௣

௝ୀଵ
 (2)

where a{i} is i coefficients of the AR representation, e{݊} is added noise with zero mean value, and ݌ 
is the order number of the AR model. Countless methods could be used to calculate the coefficients 
of an AR representation. The method we used to estimate the AR order in this work is the ARfit [36]. 
The 1st-order has been selected for the recorded EEG signals. 

2.5.2. Shannon Entropy 
Shannon entropy is one of the most attractive cost functions, which is a measure of signal 

complexity to wavelet coefficients generated by wavelet packet transform where larger entropy 
values represent higher process uncertainty and, therefore, higher complexity [37]. The 
representation of the Shannon entropy for the undecimated wavelet packet transform is formulated 
as follows: 

௝ܧܵ = ෍ ௝ܲ௞ ݈݃݋ ௝ܲ௞ 

݊

݇=1
 (3)

where ݊ is the subsequent coefficients in a j number of nodes and ௝ܲ௞  are the normalized squares of 
the wavelet packet coefficients in each node. 

2.5.3. Multiscale Wavelet Variance Estimates 
Wavelet variance measures the variability in EEG signal by scale or equivalently in EEG signal 

over octave-band frequency intervals. We adjusted the vectorized data to make the number of 
samples in each recording in the form of (2A). The biggest number of (A) we could get with the 
number of samples we have in each recording is 12. For the signal length of 8192 samples (2 ^ 12) and 
using the ‘db2’ wavelet with level 5 [38], 10 multiscale wavelet variance features were extracted from 
each recording using the following formula:  

݁ܿ݊ܽ݅ݎܸܽ ݐ݈݁݁ݒܹܽ ݂݋ ݎܾ݁݉ݑܰ =  2஺ିௗ௕ (4)
A total of 170 features were extracted from the EEG data: 4 per time window (1024 sample) AR 

coefficients, 16 per time window SE values, and 10 wavelet variance estimations. After the multi-
feature extracting stage, the EEG data was reconstructed to be a 360-by-170 features matrix for 
training and a 40-by-170 features matrix for testing. By employing Autoregressive coefficients, 
Shannon Entropy, and multiscale wavelet variance estimates, the data was reduced from 8192 to 170 
element vectors. Representation of the difference in the wavelet variance for the 170 extracted features 
from the recorded and preprocessed EEG data will be presented in the final results. 

2.6. Classification 
In the classification stage, the data was processed with supervised learning, where the specified 

algorithm was employed to learn from the prepared data. In this study, the classification stage was 
defined as the determination of four different internally spoken commands (Up, Down, Left, and 
Right), which are considered a multiclass classification process. SVM is one of the most well-known 
supervised learning algorithms specialized in classification problems. Classification using SVM is 
powered through generating a best line or decision boundary that segregates an n-dimension space 
to multiclass to easily enable data sorting to the category to which they belong [39,40]. SVM works 
on picking the margin points that construct vectors which are called support vectors to assist with 
generating the best decision boundary.  

The SVM architecture utilizes a set of mathematical functions that are known as the kernel 
functions. The kernel function performs a kind of similarity measure between input objects and 
transforms it into the required output [41]. We employed SVM, which is a machine learning 
algorithm for differentiation between the four chosen commands. Furthermore, k-fold cross-
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validation (k = 10) was used to achieve a perfect estimate of the proposed model performance on the 
recorded inner speech data and to avoid overfitting in the classification process. The K-fold validation 
is an alternative to a fixed validation set. It does not affect the need for a separate held-out test set. So 
indeed, the data will be split into training, testing and cross-validation data and is performed on folds 
of training sets. With k-fold cross-validation of value 10, the model performance will be evaluated 
after dividing the data into 10 subsets (10 folds) while using the k-1 subsets for training the data. In 
this way, it can ensure that testing data will be entirely unknown to the classifier that is testing and 
training data are not coming from the same given group. Figure 4 illustrates the concept of using the 
K-fold for cross-validation during the data training process. 

 

 
Figure 4. Cross-Validation Using 10-Fold. 

2.7. Performance Evaluation 
Evaluation metrics adopted within a variety of machine learning techniques are critical in 

examining the reliability of the designed classifiers. To evaluate the trained model performance, 
metrics following [42] have been considered. The classified EEG data using the proposed machine 
learning method was grouped into true positive TP, false positive FP, true negative TN, and false 
negative FN. The value of FP and FN are the samples that were misclassified, and the value of TP and 
TN are the samples that were correctly classified [42]. The most state-of-art metrics for classification 
are accuracy, precision, recall, and F1-score. Accuracy estimates the percentage of correct predicted 
outputs to the overall number of samples in the processed dataset. Recall (sometimes called 
Sensitivity) estimates the percentage of TP to the summation of TP and FN. Precision estimates the 
percentage of TP to the summation of TP and FP. Hence the F1-Score estimates the average between 
recall and precision.  

Moreover, the Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) (AUC-
ROC) was plotted. AUC-ROC is a common ranking type of metric that is utilized to show 
comparisons between learning algorithms and create an optimal learning model by exposing the 
entire classifier ranking performance [43]. Furthermore, while we have a multiclass classification task, 
areas under the curve were calculated and presented by macro-averaging, in which each 
corresponding metric for each individual class was estimated. The following formula is used to 
estimate the AUC-ROC value for multiclass problems: 

ܷܥܣ = ܵ௣ − ݊௣(݊௡ − 1)/ܰ݊௣݊௡ (5)
where Sp, np, nn, and N represent the sum of all positive samples, positive and negative samples, and 
the number of classes, respectively. 

3. Results  
In this section, we report the results of the proposed method for EEG signals classification, 

including the results of extracting multi-features from the preprocessed EEG signal and the results of 
the SVM machine learning model for the classification of the extracted features.  
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3.1. Feature Extraction Results 
In the feature selection stage, the extracted features using Autoregressive coefficients, Shannon 

Entropy, and multiscale wavelet variance were compared using boxplot to examine the variance level 
between each individual command. The obtained results using the suggested features extraction 
methods showed a noticeable variation between the four commands which will assist with 
discriminating between them and improve the classification accuracy. Every feature vector of the 
same class should be closer in its representation point and in different classes they should be far from 
each other.  

For precisely monitoring the variance in data distribution of all features in the four classes we 
have, a boxplot was used. Representation of the difference in the wavelet variance for the 170 
extracted features from the sample of the recorded and preprocessed EEG data using a boxplot is 
shown in Figure 5. 

 
Figure 5. A boxplot of the wavelet variance for the extracted features from sample of the recorded EEG data. 

3.2. Classification Results 
After the multi-features extraction stage, classification between the four internally spoken 

commands was carried out using machine learning to evaluate the model performance. The SVM 
with a polynomial kernel function, C = 2 and gamma = 0.1 was selected as the best estimator with the 
best margin size (M) after several trials based on trial-and-error as shown in Table 1 and Figure 6. 
Gamma and C are regularization parameters where gamma determines the width of the kernel 
function, and C controls the trade-off between achieving a simple decision boundary and an excellent 
fit to the data during the training process. The cross-validation splitting strategy was chosen as five-
fold cross-validation. Moreover, class names were Up, Down, Left, and Right.  

We trained and tested our model using the extracted features by SVM five-fold cross-validation. 
The highest performance of the model was achieved by feeding the features selected by 
Autoregressive coefficients, Shannon Entropy, and multiscale wavelet variance with an accuracy of 
97.5%, precision of 97.73%, recall of 97.50%, and F1-score of 97.61%. In addition, the macro-average 
AUC-ROC of the model was 99.32%. The model showed excellent performance using the extracted 
features by the proposed feature extraction methods. The confusion matrix and AUC-ROC plot 
illustrate the performance of the proposed classifier in Figure 7 and Figure 8, respectively.  

Table 1. Information of the participated subjects. 

Iteration Cost (C) gamma Accuracy % 

1 2.75 0.18 96.2 
2 2.7 0.17 96.2 
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3 2.2 0.15 96.6 
4 2 0.1 97.5 

 

 
Figure 6. Margine size in SVM classifier. 

 
Figure 7. Confusion matrix for the classification performance of the SVM model. 

 

Figure 8. The AUC-ROC plot of the SVM model using the extracted features. 
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4. Discussion 
Complex Applications of EEG in a realistic environment, such as decoding inner speech, 

generate dynamic and complicated responses in the EEG signals. As reported in [20], the classification 
accuracy of inner speech applications based on EEG can be affected by the type of cues used to stimuli 
the brain in the recording procedure. In [20], the participants were trained to keep repeating the 
internally spoken words for up to 14 seconds and they only responded when they heard a beep. In 
[21], visual cues were used in each recording, and the participants were told to keep repeating the 
internally spoken words for 30 seconds. Audio cues have been used to stimulate the brain by asking 
a question to one of the four subjects and let them imagine speaking one of the four specified 
commands. Unlike [20] and [21], we did not include cues during all the 60 seconds of response and 
the subjects were trained to keep repeating the specified command until the time ended. 

Classifying inner speech using EEG requires robust and efficient classification approaches. Some 
researchers recommended autoregressive modeling, Shannon entropy, and wavelet variance 
estimation as powerful feature-extracting methods to classify EEG [28–31,43]. In [27], massive efforts 
were made to record EEG data for inner speech applications using an expensive 128-channel EEG 
headset. Nevertheless, this high number of channels did not allow subsequent researchers [10,11] to 
get good classification performance when they used the same 128-channel EEG data. In our research, 
with data recorded using a low-cost 8-channel EEG headset, carefully selected electrodes position on 
the skull, and the proposed multi-feature extraction method, the results showed that robust and 
accurate EEG classification could be implemented. Autoregressive modeling, Shannon entropy, and 
wavelet variance estimation were applied for detecting and classifying inner speech in EEG time 
series data. The data was reduced from 8192 to 170 element vectors by employing the suggested 
multi-feature extracting method. A total of 170 features were extracted from each recording and the 
EEG data was reconstructed as a 360-by-170 features matrix for training and a 40-by-170 features 
matrix for testing.  

It is noteworthy that we combined the recorded data from all the subjects and applied the 
suggested multi-feature extraction method on them. Aanalyzing the results by splitting the data 
according to which participant it belongs and then averaging the results as in [45–48] by summing 
and dividing the results by the number of the participated subject may not be the most practical 
method for calculating the accuracy and efficiency of the designed classifier. For example, a 100% 
classification accuracy for the data from subject A, and 80% for data from subject B can be averaged 
to 90% by doing math calculation (100%+80%)/2. Since we know that the minimum accuracy is 80%, 
stating that the overall classification accuracy for this classifier is 90% is not really accurate, and this 
method will not provide any close number to what was averaged when testing this classifier online 
on different subjects. In our work, we were able to design a BCI system that can distinguish between 
four inner speech commands for four subjects at the same time rather than designing four systems, 
where each system is tailored for each participant if a designer considered the methods used by 
averaging the results. This makes our system more general and more practical because it allows 
multiple physically-challenged people to use it.  

Besides the reduction in the size and complexity of data, the reported results showed a 
significant variance between the specified classes. Even though this is a significant reduction in data 
size and complexity, the main objective of using the proposed multi-features extraction method is 
not just a reduction in data. We aimed to re-represent the data with much smaller features that allow 
capturing the differences between the required classes so that a classifier can ideally separate the EEG 
signals. As explained in the result section, the extracted features resulted in high accuracy, precision, 
recall, F-score, and macro-average AUC. The resulting classifier can be converted to a C++ or Python 
code using MATLAB code generation and uploaded to a microcontroller to be tested in real-time. 

5. Limitation 
Data for this study included EEG data from four participants, each around 1.6 hours in total. 

More participants would allow greater generalizability to indicate the reliability of the proposed 
classification method. Furthermore, for accurately performing the experiment procedure, the data 
collection requires the research team to train each participant to familiarize them with the procedure 
by conducting at least one recording session before the considered one in this paper. 
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6. Conclusion 
This research aims to pave the way for a better understanding of processing and classifying inner 

speech using EEG and machine learning. Numerous numbers of people around the world need such 
an idea to improve the quality of their life. Signal processing was implemented to extract wavelet 
multi-feature from EEG signals and employ those features to classify four inner speech classes. Not 
only did the multi-feature extraction result in a substantial amount of data reduction, but it enabled 
capturing the differences between the Up, Down, Left, and Right classes as confirmed by the results of 
cross-validation and the performance of the support vector machine classifier on the test dataset as 
well. The experiment further demonstrated that applying autoregressive modeling, Shannon entropy, 
and wavelet variance estimation to the raw EEG data resulted in an excellent performance. Five-fold 
cross-validation was used to improve the classification performance and generalization. The 
achieved results range between 96.20% to 97.5% for overall classification accuracy. Other 
performance evaluation metrics were estimated, and we obtained 97.73% for precision, 97.50% for 
recall, and 97.61% for F1-score. Moreover, the macro-average AUC-ROC of 99.32% proved the 
efficacy and validity of the proposed approach, for classifying different inner speech commands 
using EEG. 

Author Contributions: Conceptualization, M.M.A.; methodology, M.M.A., K.H.A. and W.L.W.; software, 
M.M.A.; validation, M.M.A. and W.L.W.; formal analysis, M.M.A., K.H.A. and W.L.W.; investigation, K.H.A., 
M.M.A. and W.L.W; resources, K.H.A and M.M.A.; data curation, K.H.A., and M.M.A.; writing–original draft 
preparation, K.H.A., M.M.A., M.M.A. and W.L.W.; writing–review and editing, K.H.A., M.M.A. and W.L.W.; 
visualization, K.H.A., M.M.A. and W.L.W; supervision, K.H.A.; project administration, K.H.A.; funding 
acquisition, K.H.A., M.M.A. and W.L.W. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki 
and approved by the Institutional Review Board of Ethics Committee of Jackson State University (Approval no.: 
0067-23). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. 

Data Availability Statement: The code and datasets used and/or analyzed during the current study are available in the 
supplementary materials of this paper. 

Acknowledgments: This work was supported in part by United States Air Force Research Institute for Tactical 
Autonomy (RITA) University Affiliated Research Center (UARC), and in part by The United States Air Force 
Office of Scientific Research (AFOSR) contract FA9550-22-1-0268, entitled: “Investigating Improving Safety of 
Autonomous Exploring Intelligent Agents with Human-in-the-Loop Reinforcement Learning,” and in part by 
Jackson State University. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. E. M. Dewan, “Occipital alpha rhythm eye position and lens accommodation,” Nature, vol. 214, pp. 975–
977, 1967. 

2. N. Eisenberg, A. Sadovsky, and T. Spinrad, “Associations of emotion-related regulation with language 
skills, emotion knowledge, and academic outcomes,” New directions for child and adolescent development, 
vol. 2005, no. 109, pp. 109–118, 2005. 

3. M. P. Jani, G. B. Gore, “Occurrence of communication and swallowing problems in neurological disorders: 
analysis of forty patients,” Neuro Rehabilitation, vol. 35, no. 4, pp. 719–727, 2014. 

4. S. Martin et al., “Decoding inner speech using electrocorticography: Progress and challenges toward a 
speech prosthesis” Frontiers in neuroscience, vol. 12, p. 422, 2018. 

5. Biasiucci, A., Franceschiello, B. & Murray, M. M. Electroencephalography. Curr. Biol. 29, R80–R85 (2019). 
6. P. Gaur, R.B. Pachori, H. Wang, G. Prasad, An automatic subject specific intrinsic mode function selection 

for enhancing two-class EEG based motor imagery-brain computer interface, IEEE Sens. J. 19 (2019) 6938–
6947. 

7. M. D’Zmura, S. Deng, T. Lappas, S. Thorpe, R. Srinivasan, Toward EEG sensing of imagined speech, in: 
J.A. Jacko (Ed.), Human–Computer Interaction. New Trends: 13th International Conference, HCI 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2024                   doi:10.20944/preprints202404.0239.v1



 12 

 

International 2009, San Diego, CA, USA, July 19–24, 2009, Proceedings, Part I, Springer Berlin Heidelberg, 
Berlin, Heidelberg, 2009, pp. 40–48. 

8. M. Matsumoto, J. Hori, Classification of silent speech using support vector machine and relevance vector 
machine, Appl. Soft Comput. 20 (2014) 95–102. 

9. Nieto, N., Peterson, V., Rufiner, H.L.et al. Thinking out loud, an open-access EEG-based BCI dataset for 
inner speech recognition.Sci Data 9, 52 (2022). https://doi.org/10.1038/s41597-022-01147-2. 

10. B. v. d. Berg, S. v. Donkelaar and M. Alimardani, "Inner Speech Classification using EEG Signals: A Deep 
Learning Approach," 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS), 
Magdeburg, Germany, 2021, pp. 1-4, doi: 10.1109/ICHMS53169.2021.9582457. 

11. Wei X, Surjana AI, Söffker D, “Inner speech classification based on electroencephalography (EEG) signals 
and support vector machine (SVM)”, Preprint, November 2023, DOI: 10.21203/rs.3.rs-2287259/v1. 

12. Taheri Gorji, H., Wilson, N., VanBree, J. et al. Using machine learning methods and EEG to discriminate 
aircraft pilot cognitive workload during flight. Sci Rep 13, 2507 (2023). https://doi.org/10.1038/s41598-023-
29647-0. 

13. M. M. Abdulghani, O. Franza, F. Fargo and H. Raad, "Brain Waves Pattern Recognition Using LSTM-RNN 
for Internet of Brain-Controlled Things (IoBCT) Applications," 2022 IEEE International IOT, Electronics and 
Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 2022, pp. 1-5, doi: 
10.1109/IEMTRONICS55184.2022.9795715. 

14. Mokhles M. Abdulghani, Arthur A. Harden, and Khalid H. Abed, “A Drone Flight Control Using Brain-
Computer Interface and Artificial Intelligence,” The 2022 International Conference on Computational 
Science and Computational Intelligence – Artificial Intelligence (CSCI'22–AI), IEEE Conference Publishing 
Services (CPS), Las Vegas, Nevada, December 14-16, 2022. 

15. Mokhles M. Abdulghani, Wilbur L. Walters, and Khalid H. Abed, "Low-Cost Brain Computer Interface 
Design Using Deep Learning for Internet of Brain Controlled Things Applications," The 2022 International 
Conference on Computational Science and Computational Intelligence – Artificial Intelligence (CSCI'22–
AI), IEEE Conference Publishing Services (CPS), Las Vegas, Nevada, December 14-16, 2022. 

16. Riccio A, Mattia D, Simione L, Olivetti M, Cincotti F (2012) Eye gaze independent brain computer interfaces 
for communication. Journal Neural Eng 9: 045001.  

17. Hohne J, Schreuder M, Blankertz B, Tangermann M (2011) A novel 9-class auditory ERP paradigm driving 
a predictive text entry system. Front Neuroscience 5: 99. 

18. Panachakel, T., Vinayak, N., Nunna, M., Ramakrishnan, G., and Sharma, “An improved EEG acquisition 
protocol facilitates localized neural activation,” in Advances in Communication Systems and Networks 
(Springer), pp. 267–281, 2020. 

19. Wang, H. E., Bénar, C. G., Quilichini, P. P., Friston, K. J., Jirsa, V. K., and Bernard, C. (2014). A systematic 
framework for functional connectivity measures. Front. Neurosci. 8:405. doi: 10.3389/fnins.2014. 00405. 

20. Nguyen, C. H., Karavas, G. K., and Artemiadis, P. (2017). Inferring Inner speech using EEG signals: a new 
approach using Riemannian manifold features. J. Neural Eng. 15:016002. doi: 10.1088/1741-2552/aa8235. 

21. Koizumi, K., Ueda, K., and Nakao, M. (2018). “Development of a cognitive brain-machine interface based 
on a visual imagery method,” in 2018 40th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC) (Honolulu: IEEE), 1062–1065. 

22. Pawar, D., and Dhage, S. (2020). Multiclass covert speech classification using extreme learning machine. 
Biomed. Eng. Lett. 10, 217–226. doi: 10.1007/s13534-020-00152-x. 

23. H. Li and F. Chen, “Classify imaginary mandarin tones with cortical EEG signals,” INTERSPEECH, pp. 
4896-4900, 2020. 

24. D’Zmura, M., Deng, S., Lappas, T., Thorpe, S. & Srinivasan, R. Toward EEG sensing of imagined speech. 
In International Conference on Human-Computer Interaction, 40–48 (Springer, 2009). 

25. Deng, S., Srinivasan, R., Lappas, T. & D’Zmura, M. EEG classification of imagined syllable rhythm using 
Hilbert spectrum methods. Journal of Neural Engineering 7, 046006 (2010). 

26. Suppes, P., Lu, Z.-L. & Han, B. Brain wave recognition of words. Proceedings of the National Academy of 
Sciences 94, 14965–14969 (1997). 

27. K. Brigham, B.V.K.V. Kumar, Subject identification from electroencephalogram (EEG) signals during 
imagined speech, 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and 
Systems (BTAS) (2010) 1–8. 

28. Möller E, Schack B, Arnold M, Witte H. Instantaneous multivariate EEG coherence analysis by means of 
adaptive high-dimensional autoregressive models. J Neu-rosci Methods 2001;105(2):143–58. 

29. Franasczcuk P, Bergey G, Kami´ nski M. Analysis of mesial temporal seizure onset and propagation using 
the directed transfer function method. Electroencephalogr Clin Neurophysiol 1994;91(6):413–27. 

30. Malihe Sabeti; Serajeddin Katebi; Reza Boostani (2009). Entropy and complexity measures for EEG signal 
classification of schizophrenic and control participants, 47(3), 263–274. doi: 10.1016/j.artmed.2009.03.003. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2024                   doi:10.20944/preprints202404.0239.v1



 13 

 

31. Follis JL, Lai D. Variability analysis of epileptic EEG using the maximal overlap discrete wavelet transform. 
Health Inf Sci Syst. 2020 Sep 15;8(1):26. doi: 10.1007/s13755-020-00118-4. PMID: 32999715; PMCID: 
PMC7492322. 

32. g.tec Medical Engineering GmbH (2020). Unicorn Hybrid Black. Find it at: https://www.unicorn-
bi.com/brain-interface-technology/(Accessed 12 19, 2022). 

33. Jackson State University, Institutional Review Board (IRB), 
https://www.jsums.edu/researchcompliance/irb-protocol/. 2023. 

34. Acharya, J.N.; Hani, A.; Cheek, J.; Thirumala, P.; Tsuchida, T.N. American Clinical Neurophysiology 
Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature. J. Clin. Neurophysiol. 2016, 
33, 308–311. 

35. Liu, Qing, Liangtao Yang, Zhilin Zhang, Hui Yang, Yi Zhang, and Jinglong Wu. "The Feature, Performance, 
and Prospect of Advanced Electrodes for Electroencephalogram." Biosensors 13, no. 1 (2023): 101. 

36. A. Neumaier and T. Schneider, 2001: "Estimation of parameters and eigenmodes of multivariate 
autoregressive models". ACM Trans. Math. Softw., 27, 27C57. 

37. Deng Wang, Duoqian Miao, Chen Xie, “Best basis-based wavelet packet entropy feature extraction and 
hierarchical EEG classification for epileptic detection”, Expert Systems with Applications, Volume 38, Issue 
11, 2011, Pages 14314-14320. 

38. I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992, p. 194. 
39. Tan, Y., Wang, J.: A support vector machine with a hybrid kernel and minimal vapnik-chervonenkis 

dimension. IEEE Transactions on knowledge and data engineering 16(4), 385–395 (2004).  
40. Ghosh, S., Dasgupta, A., Swetapadma, A.: A study on support vector machine based linear and non-linear 

pattern classification. In: 2019 International Conference on Intelligent Sustainable Systems (ICISS), pp. 24–
28 (2019). 

41. Grauman, K., Darrell, T.: The pyramid match kernel: Discriminative classification with sets of image 
features. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2, pp. 
1458–1465 (2005). 

42. Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamar´ıa, J., Fadhel, 
M.A., Al-Amidie, M., Farhan, L.: Review of deep learning: Concepts, cnn architectures, challenges, 
applications, future directions. Journal of Big Data 8(1), 1–74 (2021). 

43. Vernon Lawhern; W. David Hairston; Kaleb McDowell; Marissa Westerfield; Kay Robbins 
(2012). Detection and classification of subject-generated artifacts in EEG signals using autoregressive 
models., 208(2), doi: 10.1016/j.jneumeth.2012.05.017. 

44. Abdulghani, Mokhles M., Wilbur L. Walters, and Khalid H. Abed. 2023. "Imagined Speech Classification 
Using EEG and Deep Learning" Bioengineering 10, no. 6: 649. 
https://doi.org/10.3390/bioengineering10060649. 

45. S. Zhao and F. Rudzicz, "Classifying phonological categories in imagined and articulated speech," 2015 
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, 
Australia, 2015, pp. 992-996, doi: 10.1109/ICASSP.2015.7178118. 

46. Lee, D.-Y.; Lee, M.; Lee, S.-W. Classification of Imagined Speech Using Siamese Neural Network. 
2020, arXiv:2008.12487. 

47. Vorontsova, D.; Menshikov, I.; Zubov, A.; Orlov, K.; Rikunov, P.; Zvereva, E.; Flitman, L.; Lanikin, A.; 
Sokolova, A.; Markov, S.; et al. Silent EEG-Speech Recognition Using Convolutional and Recurrent Neural 
Network with 85% Accuracy of 9 Words Classification. Sensors 2021, 21, 6744. 
https://doi.org/10.3390/s21206744. 

48. Pramit, S.; Muhammad, A.-M.; Sidney, F. SPEAK YOUR MIND! Towards Imagined Speech Recognition 
with Hierarchical Deep Learning.  2019, arXiv:1904.04358. 

49. Suhaimi, N.S.; Mountstephens, J.; Teo, J. A Dataset for Emotion Recognition Using Virtual Reality and EEG 
(DER-VREEG): Emotional State Classification Using Low-Cost Wearable VR-EEG Headsets. Big Data Cogn. 
Comput. 2022, 6, 16. https://doi.org/10.3390/bdcc6010016. 

50. Hashem, H.A.; Abdulazeem, Y.; Labib, L.M.; Elhosseini, M.A.; Shehata, M. An Integrated Machine 
Learning-Based Brain Computer Interface to Classify Diverse Limb Motor Tasks: Explainable 
Model. Sensors 2023, 23, 3171. https://doi.org/10.3390/s23063171. 

51. F. Ahmed, H. Iqbal, A. Nouman, H. F. Maqbool, S. Zafar and M. K. Saleem, "A non Invasive Brain-
Computer-Interface for Service Robotics," 2023 3rd International Conference on Artificial Intelligence (ICAI), 
Islamabad, Pakistan, 2023, pp. 142-147, doi: 10.1109/ICAI58407.2023.10136672. 

52. J. Sijbers, J. Van Audekerke, M. Verhoye, A. Van der Linden, and D. Van Dyck, ‘Reduction of ECG and 
gradient related artifacts in simultaneously recorded human EEG/MRI data,’’ Magn. Reson. Imag., vol. 18, 
no. 7, pp. 881–886, 2000.  

53. S. Tong, A. Bezerianos, J. Paul, Y. Zhu, and N. Thakor,‘‘Removal of ECG interference from the EEG 
recordings in small animals using independent component analysis,’’ J. Neurosci. Methods, vol. 108, no. 1, 
pp. 11–17, 2001. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2024                   doi:10.20944/preprints202404.0239.v1



 14 

 

54. C. Dai, J. Wang, J. Xie, W. Li, Y. Gong and Y. Li, "Removal of ECG Artifacts from EEG Using an Effective 
Recursive Least Square Notch Filter," in IEEE Access, vol. 7, pp. 158872-158880, 2019, doi: 
10.1109/ACCESS.2019.2949842. 

 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2024                   doi:10.20944/preprints202404.0239.v1


