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Abstract: Underwater image often exhibit detail blurring and color distortion due to light scattering, 
impurities, and other influences, obscuring essential textures and details. This presents a challenge 
for existing super-resolution techniques in identifying and extracting effective features, making 
high-quality reconstruction difficult. This research aims to innovate underwater image super-
resolution technology to tackle this challenge. Initially, an underwater image degradation model 
was created by integrating random subsampling, Gaussian blur, mixed noise, and suspended 
particle simulation to generate a highly realistic synthetic dataset, thereby training the network to 
adapt to various degradation factors. Subsequently, to enhance the network's capability to extract 
key features, improvements were made based on the symmetrically structured Blind Super-
Resolution Generative Adversarial Network (BSRGAN) model architecture. An attention 
mechanism based on energy functions was introduced within the generator to assess the importance 
of each pixel, and a weighted fusion strategy of adversarial loss, reconstruction loss, and perceptual 
loss was utilized to improve the quality of image reconstruction. Experimental results demonstrate 
that the proposed method achieved significant improvements in Peak Signal-to-Noise Ratio (PSNR) 
and Underwater Image Quality Measure (UIQM) by 0.85 dB and 0.19, respectively, significantly 
enhancing the visual perception quality and indicating its feasibility in super-resolution 
applications. 

Keywords: underwater image super resolution; degradation model; generative adversarial network; 
attention mechanism 

 

1. Introduction 

Underwater image plays a pivotal role in marine science and engineering applications, offering 
significant value to oceanographic research, ecological monitoring, exploration of marine resources, 
and maintenance of underwater equipment [1]. It not only enhances the monitoring capabilities of 
marine life and coral reefs but also plays a central role in the precise localization, detection, and 
identification of underwater targets. However, the complexity of the underwater environment leads 
to loss of detail, reduced contrast, color distortion, blurred images, and increased noise in underwater 
images. Consequently, super-resolution technology for underwater images becomes critical. This 
technology compensates for various quality deficiencies in low-resolution images by reconstructing 
high-resolution images, thereby significantly enhancing image quality. 

Single image super-resolution (SISR) is a classic problem in computer vision and image 
processing. It aims to reconstruct a high-resolution image from a given low resolution input. Since 
deep learning has been successfully applied to the super-resolution (SR) task [2], numerous methods 
based on the convolutional neural network (CNN) have been proposed [3–7] and almost dominate 
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this field in the past few years. Subsequently, super-resolution methods based on Generative 
Adversarial Networks (GAN) [9–12] have garnered attention. These methods enhance the quality of 
generated images through adversarial training, particularly in terms of restoring image details and 
textures. Techniques based on GANs have emerged as a significant branch within the field of image 
super-resolution, demonstrating their broad potential across multiple application domains. Recently, 
due to the success in natural language processing, Transformer [13] has attracted the attention of the 
computer vision community. After making rapid progress on high-level vision tasks [14], 
Transformer-based methods are also developed for low level vision tasks, as well as for SR [15–18]. 

Underwater image super-resolution technology faces unique challenges. Firstly, the degradation 
process from high-resolution (HR) to low-resolution (LR) images underwater is often unknown, 
deviating from the specific methods typically used (such as bilinear interpolation, nearest neighbor 
interpolation, etc.) to generate paired training data from HR to LR. Consequently, when models 
generate high-resolution images from low-resolution images, their performance often falls short of 
expectations [19,20]. Secondly, in the complex underwater environment, the abundance of impurities, 
suspended particles, and the optical properties of water significantly affect image quality, leading to 
distortion and a considerable amount of noise in underwater images. These factors interfere with the 
basic structure of images and, to a certain extent, obscure important texture and detail information. 
This makes it difficult for networks to extract and recognize useful features from underwater images, 
thereby impacting the quality and accuracy of super-resolution reconstruction. 

Building upon an in-depth analysis and leveraging insights from the super-resolution domain, 
specifically ESRGAN [21], this study has developed and optimized a specialized underwater image 
super-resolution network tailored to address the unique challenges of underwater imaging. Firstly, 
a novel approach was designed to simulate the degradation process of underwater images, enabling 
the network to better learn the mapping relationship between HR and LR images, thereby enhancing 
the quality of underwater image reconstruction. Secondly, a series of innovative adjustments and 
optimizations were made to the model. A significant improvement involves the integration of an 
adaptive residual attention module within the dense residual blocks of the model, aimed at bolstering 
the network's ability to recognize and extract key features in underwater images [22]. Furthermore, 
a suite of targeted design optimizations was implemented, involving adjustments to the network's 
loss function and improvements to the configuration of convolutional layers, along with the 
introduction of Spectral Normalization (SN) layers to enhance the model's stability and 
generalization capacity. These comprehensive improvement strategies work in synergy to elevate the 
model's performance in processing underwater images. 

The contributions of this paper are summarized as follows: 
• We propose a method to simulate the actual degradation process for underwater images, 

enabling the network to better learn the mapping between high-resolution and low-resolution 
images, thereby enhancing the quality of reconstructed images. 

• The adaptive residual attention module designed for underwater images automatically assesses 
image importance using an energy function and, when integrated into dense residual blocks, 
enhances the precision of key feature extraction and the effectiveness of super-resolution 
reconstruction. 

• Experiments show that our method provides both high PSNR and low LPIPS, which has been 
considered a trade-off relation. 

2. Related Work 

2.1. Deep Networks for Image Super-Resolution 

Since SRCNN first introduces deep convolution neural networks to the image SR task and 
obtains superior performance over conventional SR methods, numerous deep networks [23–26] have 
been proposed for SR to further improve the reconstruction quality. For instance, many methods 
apply more elaborate convolution module designs, such as residual block [26–28] and dense block 
[29], to enhance the model representation ability. Several works explore more different frameworks 
like recursive neural network and graph neural network [30]. To improve perceptual quality, [31] 
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introduce adversarial learning to generate more realistic results. By using attention mechanism, [32–
34] achieve further improvement in terms of reconstruction fidelity. Recently, a series of Transformer-
based networks [35] are proposed and constantly refresh the state-of-the-art of SR task, showing the 
powerful representation ability of Transformer. 

2.2. Degradation Models 

In current super-resolution research, many networks still rely on simple interpolation methods 
[36] or traditional degradation models [37], which often struggle to accurately simulate the complex 
degradation phenomena present in the real world. Underwater images are typically affected by a 
variety of complex factors, including the scattering and absorption of light, the suspension of 
particulate matter, and dynamic blurring caused by water flow, all of which contribute to a decline 
in image quality. To effectively address this issue, we have designed a degradation process 
specifically tailored for the underwater environment. By simulating the unique degradation 
characteristics of underwater settings, our method ensures that the processed high-resolution images 
more closely resemble the properties of real underwater images. 

2.3. Attention-Based Image Super-Resolution 

Attention mechanisms enhance image reconstruction quality and model adaptability to 
underwater image's diversity and complexity by highlighting critical features and extracting detailed 
information. Thus, they have become essential for improving underwater image super-resolution. 
For instance, RCAN [38] enhances network performance through channel attention mechanisms; 
SAN [39] leverages second-order channel attention to strengthen feature correlation learning; NLSN 
[40] demonstrates the potential of attention mechanisms in addressing non-local dependencies; 
SwinLR employs self-attention mechanisms from transformers. Moreover, CAL-GAN [41] effectively 
improves the super-resolution quality of photorealistic images by adopting a content-aware local 
generative adversarial network strategy, while DAT achieves efficient feature aggregation by 
merging features across spatial and channel dimensions. 

3. Methods 

3.1. A Practical Degradation Model 

The SISR degradation model can be mathematically formulated as: 

= ⊗ ↓( ) sx y k  (1) 

where y denotes the HR image; x denotes the LR image; k is the blur kernel;⊗ denotes convolution 

operator;↓s denotes sub-sampling operator with stride of s. 
Underwater images is subject to unique degradation factors distinct from those affecting 

conventional images, rendering traditional models inadequate for underwater image restoration. To 
address this, we have devised a degradation model specifically for underwater scenes, concentrating 
on unique aquatic factors to minimize computational overhead and enhance processing efficiency. 
The degradation dynamics of underwater images are captured by the following formula: 

= ⊗ + + ↓(( ) ) sx y k n p  (2) 

where n denotes the added noise, p denotes the suspended particles in the underwater environment. 
As shown in Figure 1, the degradation model employs a first-order degradation process, and the 

detailed choices included in each degradation process are listed. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2024                   doi:10.20944/preprints202404.0331.v1



 4 

 

Resize Noise Blur Particle

-bilinear
-bicubic
-area

-suspended particle-chromatic noise
-ripple noise
-scattering noise

-Gaussian blur

 
Figure 1. Overview of the degradation model, where each degradation process employs the classical 
degradation model. 

3.1.1. Resize 

Downsampling is a fundamental operation for generating low-resolution images in the realm of 
Super-Resolution. Broadening our scope, we evaluate both downsampling and upsampling, that is, 
the resizing procedure. Various algorithms for resizing exist-including nearest-neighbor 
interpolation, area resizing, bilinear interpolation, and bicubic interpolation. Each method introduces 
its own distinctive effect-with some leading to blurriness, while others may produce overly sharp 
images accompanied by overshoot artifacts. 

To encompass a richer array of complex resizing effects, we incorporate a stochastic selection of 
resizing techniques from the methods mentioned. Due to the misalignment complications presented 
by nearest-neighbor interpolation, we discount this method in favor of area, bilinear, and bicubic 
techniques. 

3.1.2. Noise 

The refractive index variation of air particles is mainly attributed to scattering, indicated as scattern
, with chromatic dispersion, chromaticn , being secondary and often overlooked. The wave-based index,

waven , is essential for accurate long-distance light transmission. To accurately simulate these 
influences, a comprehensive stochastic noise model has been constructed: 

α β γ= + +scatter chromatic waven n n n  (3) 

In the proposed model, weighting coefficientsα , β and γ quantify the relative contributions of 
distinct noise sources, adhering to the normalization condition α β γ+ + = 1 . This ensures precise 
modulation of each noise component within the comprehensive noise framework. Additionally,γ is 
restricted to 0 0.1γ≤ ≤ , permitting nuanced adjustment of noise influence in a primarily linear 
domain, which is crucial for accurate noise behavior analysis. 

3.1.3. Blur 

To simulate the uniform blurring effects caused by less than ideal lighting conditions or 
environmental particulates, an isotropic Gaussian kernel is utilized. This kernel is founded on a two-
dimensional normal distribution, with the standard deviation being equal in all directions, thus 
ensuring the uniformity of the blur effect. The isotropic Gaussian kernel k can be represented as 
follows: 

2 2

2

1
( )

1 2( , ) exp
i j

σ

+
= −

 
 
 
 
 

k i j
N

 (4) 
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Within the matrix, ( , )i j denotes the spatial coordinates, N is the normalization factor ensuring the 
sum of all weights equals 1, andσ represents the standard deviation. During experimentation, kernels 
of various dimensions—3x3, 5x5, 7x7, and 9x9—were implemented to replicate blurring effects across 
different area widths. The standard deviation was modulated from 1 to 3 to span blur intensities 
ranging from slight to severe. 

3.1.4. Suspended Particles 

In underwater imaging, image quality is notably impacted by suspended particulates that scatter 
incident light, producing distinct light spots. This research utilizes random field theory to quantify 
scattering in this heterogeneous medium. The method allows simulation of the stochastic interactions 
between light and particles, generating statistically characterized scatter patterns. The function of the 
kernel based on spatial coordinates ( , )I x y  is defined as follows: 

A
σ

 − + −
= −  

 

2 2
0 0

2

( ) ( )
( , ) exp

2
x x y y

I x y  (5) 

The coordinates 0 0( , )x y denote the centroid of the osculating circle located within the central 
segment of the elliptical distribution, where σ symbolizes the standard deviation thereof. The 
parameter A signifies the amplitude of said distribution, providing an index of its density, whereas 
the standard deviationσ conveys the extent of its dispersion. 

3.1.5. Validation of the Degradation Model Efficacy 

To accurately evaluate the practical application effectiveness of the designed degradation model, 
this study selected image samples at random, meticulously extracted their texture and noise features, 
and computed the Standard Deviation (STD) to quantitatively measure the differences in texture and 
noise. The analysis results, as illustrated in Figure 2, revealed that the degraded image had a texture 
STD of 19.83 and a noise STD of 15.05, figures that align more closely with the characteristic high 
noise levels and lower texture clarity found in underwater imaging environments. In contrast, the 
texture STD of the image subjected to direct downsampling significantly increased to 78.95, while the 
noise STD decreased to 5.51. In summary, the texture and noise characterizations of the degraded 
image further affirm the suitability and superiority of our model for processing underwater image. 

degraded image

direct downsampling

 

Figure 2. Comparative analysis of texture and noise in degraded versus directly downsampled 
underwater images. 
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To thoroughly validate the degradation model's capability to mimic authentic underwater image 
characteristics, we expanded our sample size and extracted a total of 100 images from the USR-248 
dataset in increments of five for a comprehensive evaluation. The study involved a comparative 
analysis of images synthesized by the model against those produced by standard downsampling, 
focusing on the standard deviations of noise and texture. The analysis organized texture deviation in 
descending order and noise deviation in ascending order to establish trends. As shown in Figure 3, 
images processed by the degradation model demonstrate a higher standard deviation in noise and a 
lower one in texture, aligning more closely with the inherent properties of underwater images. 

 
Figure 3. Comparative analysis of noise and texture standard deviations between the degradation 
model and direct downsampling, with the red line representing the degradation model and the blue 
line denoting direct downsampling. 

3.2. Network Architecture 

3.2.1. The Overall Structure 

As shown in Figure 4, our proposed Degradation-Aware and Attention Enhanced Generative 
Adversarial Network (DAE-GAN) is structured into three main components: the degradation model, 
the generator, and the discriminator. The degradation model converts high-resolution images to low-
resolution ones to mimic underwater conditions. The generator is comprised of a tripartite 
architecture, encompassing modules for shallow feature extraction, deep feature extraction, and 
image reconstruction. Specifically, for a given low-resolution input inH W C

LRI × ×∈ ,we first exploit 

one convolution layer to extract the shallow feature H W C
0F × ×∈ , where inC and C denote the channel 

number of the input and the intermediate feature. Then a series of attention enhanced residual dense 
blocks (AERDB) and one 3×3 convolution layer are utilized to perform the deep feature extraction. 
The final feature reconstruction layer ultimately generates high-resolution images. The discriminator 
is composed of feature extraction and activation layers followed by a classifier. It processes generated 
and real high-resolution images, uses convolutional layers and spectral normalization to stabilize 
training, and outputs a scalar authenticity score via a sigmoid function after a fully connected layer. 
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Figure 4. The overall architecture of DAE-GAN. 

3.2.2. Attention Enhanced Residual Dense Block 

As shown in Figure 5, each AERDB fuses the Residual in Residual Dense Block (RRDB) with the 
Adaptive Residual Attention Module (ARAM), the latter focusing on key features through its unique 
energy function, thereby enhancing the overall performance of the module. 

C
onv

L
R

eL
U

C
onv

L
R

eL
U

C
onv

L
R

eL
U

Dense
Block

x
β

x
β

x
β

xβ

Basic
Block

＝
ARAM

Dense
Block

Dense
Block ARAM ARAM

L
R

eL
U

C
onv

C
onv

 

Figure 5. Schematic representation of the Basic Block, accentuating the positional relationship 
between the Dense Blocks and ARAMs. 

Inspired by SimAM [42], ARAM implements a unique energy function informed by 
neuroscience to modulate neuronal activity within feature maps, thereby boosting the model's ability 
to capture details. This function accounts for the spatial arrangement and activity patterns of neurons, 
enabling the network to process visual information with greater precision. The energy function is: 

1
2 2

1

1( , , , ) ( ) ( )
1

ˆ ˆ
M

t t t i t o ii
e w b y x y t y x

M

−

=
= − + ∑ −

−
 (6) 

In our approach, ˆ = +t tt w t b and ˆ = +i t i tx w x b represent linear transformations of t and ix , where 
t is the target neuron and ix signifies other neurons within a single channel of the input feature map 

X that belongs to H W C× ×
 . i is index over spatial dimension and ×=M H W is the number of 

neurons on the channel. tw and tb are weight and bias the transform. All variables are scalars, 

achieving minimum values when t aligns with ty  and all ix align with oy , where ty and oy
represent distinct scalar values. Minimizing this function is tantamount to ascertaining the linear 
separability of the target neuron from t its peers in the channel. To streamline this process, binary 
labels (1 and -1) are assigned to ty and oy . Incorporating a regularizer into the equation, the final 
energy function is formulated as: 
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λ
−

=
= ∑ − − ⋅ + + − ⋅ + +

−

1
2 2 2

1

1( , , , ) ( 1 ( )) (1 ( ))
1

M

t t t i t i t t t ti
e w b y x w x b w t b w

M
 (7) 

The energy function for each channel, in theory, can be computationally intensive to solve with 
iterative algorithms such as SGD. Fortunately, a rapid resolution method allows for the efficient 
calculation of the overall solution: 

µ µ
σ λ

− + ⋅
= −

+

2

2

( ) 2( )
2 2

t t
t

t

t t
w  (8) 

21 ( )
2t t tb t t wµ= − + ⋅  (9) 

In the model,µt and 2
tσ , representing the mean and variance across all neurons, can be challenging 

to compute channel-wise. Therefore, we utilize global mean and variance as proxies. Under this 
assumption, these statistics are computed over all neurons and applied to adjust the aforementioned 
neurons, thereby alleviating the model's computational load. Consequently, the minimized energy 
function can be succinctly expressed by the following formula: 

σ λ
µ σ λ

∗ +
=

− + +

2

2 2

4( )
( ) 2 2te
t

 (10) 

The improved te∗ can help in differentiating neurons with significant characteristic differences, which 

is beneficial for feature extraction. Therefore, the importance of each neuron can be obtained by1/ te∗

. 
In this approach, the model not only learns the intensity of each pixel but also the inter-pixel 

relationships. As shown in Figure 5, to incorporate SimAM into the RRDB module, a SimAM unit is 
placed right after the output of each dense block. Specifically, the feature map output from RRDB's 
dense block is fed into SimAM, which then calculates attention weights for every neuron within it, 
with the weighted output serving as the input for the following layer. Through this process, SimAM 
adaptively emphasizes features with higher variability or greater importance to the reconstruction 
task by minimizing its energy function, while suppressing less contributory information for the 
current task. This adaptive adjustment strategy not only improves RRDB's ability to discriminate 
features but also enhances the network's generalization capabilities in complex scenarios. 

Grad-CAM [43] is applied for visualizing feature activation to evaluate the performance 
differences between the RRDB module used alone and the RRDB module integrated with an attention 
mechanism. As shown in Figure 6, the RRDB module with integrated attention mechanism enhances 
the network's focus on key areas during image processing. This focused attention leads to more 
pronounced activation of critical features, rather than a uniform distribution of attention across the 
entire image. Such improvements enhance the model's ability to recognize important information in 
images, significantly benefiting the accuracy and efficiency of deep learning models in image 
processing tasks. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2024                   doi:10.20944/preprints202404.0331.v1



 9 

 

Im
ag

e
RR

D
B

＋A
RA

M

Sea Slug Sea Turtle Stingray Clownfish  

Figure 6. Feature activation comparison using Grad-CAM, illustrating the SimAM's impact on 
emphasizing key areas in underwater images for various marine species. 

3.3. Networks and Training 

3.3.1. Generator 

This study has innovatively enhanced the generator architecture of ESRGAN by integrating an 
attention mechanism within its RRDB modules. Moreover, the architecture, initially designed for 4x 
upscaling, has been expanded to support super-resolution at higher scale factors. These 
improvements not only bolster the network's capability for detail processing but also enhance its 
versatility across different magnification rates. 

3.3.2. Discriminator with Spectral Normalization 

To ensure overall model stability, this study has incorporated spectral normalization into the 
discriminator architecture to enhance its resistance to interference. The integration of a spectral 
normalization layer within the discriminator helps to maintain the spectral norm of the weights 
during training, preventing the weights from growing indefinitely. This approach effectively ensures 
the stability of the model and significantly improves its ability to resist interference. 

3.3.3. Loss Function 

The loss function used by the network in this study is defined as: 

GAN 1 recons 2 percep 3 advL = λ L + λ L + λ L  (11) 

where reconsL is the pixel-wise reconstruction loss, percepL is the perceptual loss measuring the feature 

distance in VGG feature space and advL denotes the adversarial loss. The coefficients 1λ , 2λ , and 3λ
are the balancing parameters, with values typically set to 0.1, 1, and 0.005, respectively. 
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4. Experiments 

4.1. Datasets and Experiments Settings 

4.1.1. Datasets 

To train our model, two open-source datasets were selected, namely USR-248 [44] and UFO-120 
[45]. The USR-248 dataset is the first dataset designed for the super-resolution reconstruction of 
underwater images, containing 1060 pairs of underwater images for training and 248 pairs for testing. 
The UFO-120 dataset consists of 1500 training samples and 120 testing samples. The low-resolution 
images in both datasets are created through artificial simulation and deformation. All samples were 
processed according to standard procedures for optical and spatial image degradation and combined 
with manually labeled saliency mappings to generate data pairs. Additionally, to validate the 
effectiveness of the model, two more datasets, EUVP and SQUID, were used as test datasets. The 
EUVP dataset, with its emphasis on environmental understanding and vision pro-cessing, and the 
SQUID dataset, known for its intricate details and dynamic range, have both significantly contributed 
to a comprehensive evaluation of the model's performance under real-world conditions. 

4.1.2. Implementation Details 

The model in this study was developed within the PyTorch framework and trained using the 
Adam optimizer, with the hyperparameters β1 and β2 for the optimizer set at 0.9 and 0.99, 
respectively. The initial learning rate was set to 2×10-4 and was halved after 200k iterations, with the 
entire training process spanning 400k iterations. Training on the dataset utilized input image patches 
of 64x64 pixels, with a batch size set to 32. We used NVIDIA RTX 3090 GPUs with CUDA acceleration 
for all training processes in the experiments. 

4.1.3. Evaluation Metrics 

This study employs PSNR, Structural Similarity Index Measure (SSIM), UIQM, and Learned 
Perceptual Image Patch Similarity (LPIPS) to evaluate underwater image super-resolution. PSNR and 
SSIM gauge signal-to-noise ratio and visual similarity of reconstructed images. UIQM addresses 
quality degradation from underwater scattering and absorption. LPIPS, using deep learning, assesses 
perceptual image quality, aligning evaluation with human visual observation. Specifically, PSNR and 
SSIM are computed on the Y channel in the YCbCr space. 

4.2. Comparisons of Super-Resolution Results 

4.2.1. Quantitative Results 

Table 1 shows the quantitative comparison of our method against other methods on the USR-
248 dataset: Deep WaveNet [46], RDLN [47], etc., while Table 2 presents the quantitative comparison 
of our method against other methods on the UFO-120 dataset: SRDRM [48], AMPCNet [49], HNCT 
[50], URSCT [51], etc. These outcomes are derived from the average performance metrics across all 
test samples. Notably, DAE-GAN achieved significant improvements in both SSIM and PSNR metrics 
and also performed admirably with respect to UIQM and LPIPS metrics. It is imperative to 
underscore that a lower LPIPS score indicates superior image quality. 

Table 1. Experimental evaluation on the USR-248 dataset, offering a quantitative comparison at 
magnification factors ×2, ×4, and ×8 with other methods, utilizing four metrics: PSNR (dB)↑, SSIM↑, 
UIQM↑, and LPIPS↓. The best results are highlighted in red and the second-best in blue. 

Scale Method PSNR(dB)↑ SSIM↑ UIQM↑ LPIPS↓ 

×2 

SRCNN 26.81 0.76 2.59 0.56 
VDSR 27.98 0.79 2.61 0.53 

SRGAN 26.68 0.73 2.55 0.30 
ESRGAN 28.08 0.76 2.59 0.24 
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Table 2. Experimental evaluation on the UFO-120 dataset, offering a quantitative comparison at 
magnification factors ×2, ×3, and ×4 with other methods, utilizing four metrics: PSNR (dB)↑, SSIM↑, 
UIQM↑, and LPIPS↓. The best results are highlighted in red and the second-best in blue. 

Upon evaluating the DAE-GAN approach against other state-of-the-art methods, it emerges as 
the clear leader in the USR-248 dataset, particularly excelling at a 2x scale with a PSNR of 29.95dB 
and an SSIM of 0.85. Its prowess extends to superior image quality metrics, outshining competitors 
with the lowest LPIPS score, indicative of higher image fidelity at a 4x scale. As magnification 
increases to 8x, DAE-GAN consistently upholds its exceptional performance, achieving a PSNR of 
23.83dB and an SSIM of 0.64, reinforcing its robustness in enhancing image resolution and quality 
across scales. Further analysis on the UFO-120 dataset corroborates DAE-GAN's superior capabilities. 

BSRGAN 28.15 0.79 2.63 0.20 
Real-ESRGAN 28.86 0.80 2.68 0.19 
Deep WaveNet 29.09 0.83 2.72 0.44 

RDLN 29.76 0.82 2.74 0.29 
DAIN 29.97 0.84 2.77 0.43 

DAE-GAN(ours) 29.95 0.85 2.80 0.19 

×4 

SRCNN 23.68 0.65 2.38 0.71 
VDSR 24.70 0.69 2.44 0.67 

SRGAN 23.46 0.63 2.38 0.48 
ESRGAN 24.50 0.67 2.45 0.40 
BSRGAN 25.05 0.69 2.47 0.32 

Real-ESRGAN 25.11 0.71 2.50 0.33 
Deep WaveNet 25.40 0.73 2.53 0.61 

RDLN 25.59 0.71 2.58 0.50 
DAIN 26.16 0.73 2.64 0.63 

DAE-GAN(ours) 26.23 0.75 2.68 0.31 

×8 

SRCNN 19.97 0.57 2.01 0.86 
VDSR 20.15 0.61 2.09 0.83 

SRGAN 19.83 0.54 1.98 0.61 
ESRGAN 20.08 0.57 2.02 0.54 
BSRGAN 20.33 0.59 2.07 0.42 

Real-ESRGAN 20.45 0.62 2.10 0.44 
Deep WaveNet 21.70 0.63 2.13 0.72 

RDLN 22.40 0.62 2.19 0.66 
DAIN 22.86 0.63 2.17 0.69 

DAE-GAN(ours) 23.83 0.64 2.20 0.40 

Method 
PSNR(dB)↑ SSIM↑ UIQM↑ LPIPS↓ 

×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4 
SRCNN 24.75 22.22 19.05 0.72 0.65 0.56 2.39 2.24 2.12 0.56 0.65 0.71 
SRGAN 25.11 23.01 19.93 0.75 0.70 0.58 2.44 2.39 2.35 0.24 0.33 0.37 

Deep 
WaveNet 25.71 25.23 23.26 0.77 0.76 0.73 2.89 2.86 2.85 0.40 - 0.53 

AMPCNet 25.24 25.43 25.08 0.71 0.70 0.70 2.76 2.65 2.68 0.31 - 0.47 
ESRGCNN 25.82 25.98 24.70 0.73 0.71 0.71 2.88 2.86 2.75 0.34 0.46 0.51 

HNCT 25.73 25.86 24.91 0.72 0.73 0.70 2.76 2.78 2.64 0.27 0.40 0.47 
URSCT 25.96 - 25.37 0.81 - 0.69 - - - 0.37 0.49 0.50 
RDLN 26.20 26.13 25.56 0.78 0.74 0.73 2.87 2.84 2.83 0.29 0.37 0.39 
DAE-

GAN(ours) 26.26 26.19 25.89 0.80 0.76 0.74 2.88 2.87 2.85 0.19 0.25 0.30 
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It leads with a notable margin, particularly at 2x magnification, where it achieves a PSNR of 26.26dB 
and a remarkable SSIM of 0.80, surpassing other methodologies. Even at higher magnifications of 3x 
and 4x, DAE-GAN maintains its supremacy, reflecting through its consistent scores, notably a top-
tier LPIPS of 0.25 at 3x and 0.30 at 4x magnification. These scores, particularly in the LPIPS metric, 
denote a quantifiable leap in image clarity and detail retention, firmly positioning DAE-GAN at the 
vanguard of image super-resolution technology. 

4.2.2. Qualitative Results 

To conduct a comprehensive evaluation of DAE-GAN's performance, this study visually 
compares the effectiveness of various methods. Figures 7 and 8 illustrate the reconstruction results of 
our method at a 4x scale using a single network for arbitrary-scale SR, clearly showing from the 
comparisons that DAE-GAN excels in restoring image clarity and texture details, particularly at the 
edges. These visual results underscore the significant advantages of DAE-GAN in enhancing image 
quality, demonstrating its efficacy in the task of refined image restoration. 

HR Bicubic SRFBN SRGAN ESRGAN

Real-ESRGANSwinir DAE-GANBSRDM HAT

HR Bicubic BSRDM SRGAN ESRGAN

Swinir Real-ESRGAN BSRDM HAT DAE-GAN

HR Bicubic SRFBN SRGAN ESRGAN

Swinir Real-ESRGAN BSRDM HAT DAE-GAN  

Figure 7. Qualitative comparison of different methods on ×4 super-resolution for the USR-248 dataset. 
The patches for comparison are marked with red boxes in the original high-resolution images. Zoom 
in for the best view. 

HR SRFBN SRGAN ESRGAN BSRGAN Swinir HAT DAE-GAN

 
Figure 8. Qualitative comparison of different methods on ×4 super-resolution for the UFO-120 dataset. 
The patches for comparison are marked with red boxes in the original high-resolution images. Zoom 
in for the best view. 
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4.3. Model Performance Evaluation on Test Datasets 

To rigorously ascertain the efficacy and robustness of the DAE-GAN model propounded in this 
research, an extensive battery of tests was executed on the EUVP and SQUID datasets. As shown in 
Table 3, the DAE-GAN model proposed in this study demonstrates solid overall performance in the 
quantitative evaluation of 4x super-resolution, underscoring its effectiveness in tackling the 
challenges of underwater image super-resolution from various dimensions. Upon closer 
examination, the model displays the best performance across all assessment metrics on the SQUID 
dataset. On the EUVP dataset, it scores slightly lower in the LPIPS index compared to CAL-GAN and 
is slightly outperformed in the PSNR index by BSRDM [52]; however, it secures the top results in all 
other relevant evaluation metrics. 

Table 3. Experimental evaluation on the EUVP and SQUID test datasets, offering a quantitative 
comparison exclusively at a magnification factor of ×4 against other methods, utilizing four metrics: 
PSNR (dB)↑, SSIM↑, UIQM↑, and LPIPS↓. The best results are highlighted in red and the second-best 
in blue. 

4.4. Ablation Study 

In this section, we explore the significance of each key component of our proposed method. 
Through a series of exhaustive ablation experiments on the EUVP dataset, this study 
comprehensively evaluates and confirms the performance and effectiveness of the proposed 
Degradation Model (DM) and ARAM when applied independently and in conjunction, as shown in 
Table 4. 

Table 4. Ablation study on the impact of degradation models and ARAM for ×4 super-resolution in 
the EUVP dataset. The best results are highlighted in red and the second-best in blue. 

DM ARAM PSNR↑ SSIM↑ UIQM↑ LPIPS↓ 
  24.50 0.66 2.45 0.40 
√  25.02 0.68 2.64 0.34 
 √ 25.89 0.72 2.47 0.37 
√ √ 26.23 0.75 2.68 0.31 

5. Conclusions 

In this work, an innovative generative adversarial network architecture, termed DAE-GAN, is 
introduced with the aim of enhancing the super-resolution processing of underwater images. To 
more accurately reflect the inherently complex and irregular degradation phenomena present in 
underwater environments, a specialized degradation model was specifically designed and placed at 
the forefront of the super-resolution network. This model not only simulates the unique degradation 
process of underwater images but also provides more realistic input conditions for subsequent super-

Method Scale 
EUVP SQUID 

PSNR↑ SSIM↑    UIQM↑ LPIPS↓ PSNR↑ SSIM↑ UIQM↑ LPIPS↓ 
SRCNN 

×4 

23.64 0.63 2.37 0.70 23.66 0.65 2.38 0.70 
SRGAN 23.31 0.59 2.38 0.48 23.37 0.63 2.40 0.45 

ESRGAN 24.40 0.66 2.44 0.38 23.62 0.68 2.48 0.38 
BSRGAN 24.89 0.70 2.47 0.32 25.11 0.72 2.51 0.31 

Real-ESRGAN 25.01 0.73 2.48 0.33 25.23 0.75 2.53 0.33 
PDM-SRGAN 25.89 0.74 - 0.29 26.04 0.74 - 0.28 

BSRDM 26.35 0.76 2.40 0.38 26.40 0.73 2.43 0.36 
CAL-GAN 26.09 0.71 - 0.31 26.11 0.69 - 0.29 

DAE-GAN(ours) 26.33 0.78 2.63 0.30 26.41 0.77 2.68 0.29 
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resolution reconstruction. To effectively capture the delicate features in underwater images, an 
adaptive residual attention module and dense residual blocks were integrated, boosting the 
network’s sensitivity to details and its feature extraction capability. Extensive experiments conducted 
on multiple datasets, and evaluations at different magnification scales, have demonstrated not only 
a significant improvement in visual effects but also outstanding performance across multiple 
objective evaluation metrics. These achievements indicate the potential and practical value of DAE-
GAN in the field of underwater image super-resolution. Furthermore, this approach not only 
provides a fresh avenue for the enhancement of underwater visual technology but also carries 
substantial implications for the progression of underwater image processing methodologies. 

6. Patents 

The work reported in this manuscript has led to the filing of a patent, currently in the acceptance 
stage. The patent is entitled "A Method for Super-Resolution Reconstruction of Underwater Images 
Based on Generative Adversarial Networks," with the application number 202410044547.5. This 
patent encompasses an innovative approach utilizing generative adversarial network technologies 
for the super-resolution reconstruction of underwater image, aiming to address some of the 
limitations in current image processing techniques and to enhance the clarity and quality of 
underwater imaging. Through this patent application, this research seeks to advance the field of 
image processing, particularly in the area of image reconstruction in underwater environments. 
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