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Abstract: Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral
sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS),
arise due to numerous causes like protein accumulation and autoimmunity, characterized by
neurologic depletion which lead to incapacity in normal physiological function such as thinking
and movement in these patients. Glial cells perform a critical role in protective neuronal function;
in the case of neuroinflammation, glial cell dysfunction can promote the development of
neurodegenerative diseases. MiRNA participates in gene regulation and plays a vital role in many
biological processes in the body; in the central nervous system (CNS), it can play an essential part
in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation
occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative
diseases (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS),
and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic
agent in these disorders. Finally, we highlighted miRNA as therapy.

Keywords: microglia cell ; neurodegenerative disease; miRNA; protein accumulation

Introduction

Neurodegenerative disease is a collective neurological disorder characterized by neuronal
degradation that ultimately leads to cognitive and movement disability, includes Alzheimer's disease
(AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD) and
multiple sclerosis (MS) [1,2]. According to the World Health Organization, this disorder could
become the second deadliest disease after cancer in the next fifteen years [3]. nervous system is
nearly non- regenerative ,thus ; the development of these diseases are permanent[4].

Glial cells, which include microglia, astrocyte, and oligodendrocyte, play a significant role in
protective neuronal function and regulation[5]. In neurodegenerative disease, Progression of the
neuroinflammatory process occurs predominantly through microglia and astrocyte activation [6].

Neuroinflammation plays an active role in the pathogenesis of different neurodegenerative
diseases [7], and microglia activation is a key factor in neuroinflamation[8]. microglia resident
macrophage in brain[9] can act as either M1(pro-inflammatory) or M2 (anti-inflammatory) [10]. In
the case of neuron impairment, this leads to microglia activation and the release of inflammatory
cytokines to improve neuronal damage [11]. However, a neurodegenerative disorder characterized
by persistent chronic inflammation will further activate microglia, which indicates more damage to
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neurons [9], through secreting various inflammatory and cytokine mediators [12]. (Figure 1). CX3CR1
receptor is found on the surface of different cells, including microglial cells [13], that interact with
CX3CL1,[14] that found on neurons within globus pallidus, thalamus, striatum, [15],
CX3CR1/CX3CL1 which acts as in different biological phenomena in CNS through regulating
interaction between microglia, neurons, and immune cell, and participates in different cases of
neuropathologies [14].

Astroceyt is one of the glial cells that are abundant in CNS and participate in metabolic
supplement for neurons and participate in adjacent cell protection through liberating important
chemical messengers such as growth factors, glutamine, lactic acid, and elimination of K+ and
increased glutamate[16]. The metabolic exchange between astrocytes, microglia, and neurons
mediates chronic inflammation and oxidative stress, leading to neurodegenerative disease
progression[16,17].

The essential purpose of oligodendrocytes is myelin generation, and they provide support for
neurons and prevent cell death via stimulating myelin recovery[18,19]. Chronic demyelination, such
as in (MS) leads to myelin loss due to different pathological mechanisms such as loss of function of
oligodendrocyte and mitochondrial dysfunction, oxidative stress enhancement, and at last lead to
neuronal cell death. [20].

Early diagnosis of neurodegenerative disease can be helpful in disease treatment and
elimination of its possible consequences. Thus one of the biomarkers reliable for this purpose is
miRNA [21]
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Figure 1. Microglia and principle activation in the brain. Microglia normally present in a resting state
that contains toll-like receptor (TLR) and CX3CR1, and due to activation such as in case of ageing,
pathogen, and depression of dead cell lead to activation of microglia through TLR and CX3CR1;
to become either  (M1) that secreted proinflammatory cytokine-like tumor necrotic factor-a (TNF-
a), interleukin-6 (IL-6) , reactive oxygen species (ROS) , or (M2) that secreted anti-inflammatory
cytokine that have protect effect for example (IL-4, IL-10). In case of persist activation of microglia,
this enhancing the persistent secretion of the pro-inflammatory cytokine, increased T-cell activation,
which in turn activation of microglia that will affect astrocyte activation and loss of oligodendrocyte
function; all this contributes to the neuronal death. This Fig was created by using (Adobe Illustrator
2020).

MicroRNAs (miRNAs) which play a significant role in neurodegenerative disease through
different physiological process, belongs to non-coding RNAs (ncRNA)[3], and one of the
characteristics of ncRNA do not encode specific protein[22]. NcRNA that is present typically in (CNS)
that participates in the development and pathogenesis of this system, can be classified as small
ncRNA that includes transfer RNA (tRNA), microRNAs (miRNAs), short small interference
RNAs(siRNAs), piwi-interacting RNAs (pi-RNA), and long non-coding RNAs that include natural
antisense transcript (NATSs) and long intragenic RNAs non-coding RNAs (linc RNAs)[23],

MicroRNA with lengths of 21-25 nucleotides plays a critical role in the performance of many
diverse biological functions in the cells, such as cell development, stem cell differentiation, oxidative
stress[24], and tumor genesis [25]. Several miRNAs circulate in the central nervous system and play
an essential role in neural maturation, differentiation, and development [26,27].

miRNA are synthesis from double—strand primary miRNA (pri-miRNA) that is synthesized
via RNA polymerase II [28] and undergo more processing in the nucleus to generate precursor
miRNA( pre-miRNA) hairpins by Drosha ( type III ribonuclease ) and DiGeorge critical region 8
(DGCRS8) (RNA binding protein) [29], [30]. Then pre-miRNA exists in the cytoplasm through the
nuclear pore complex in compensation with exportin-5 (XPO5) and GTPase RanGTP to protect it from
the degradation process that occurs through nuclease enzyme[31,32]. In the cytoplasm, Dicer ( type
III ribonuclease) leads to cleavage of pre-miRNA to form mature miRNA; this mature miRNA is
loaded into Argonaute protein (Ago) into the RNA-induced silencing complex ( RISC), then when
binding to the target region on mRNA (3'UTR) lead to suppression this region.[33].in case of any
defect occurs in these processes, it can participate in the development of neurodegenerative diseases
[35], Figure 2 (c).

In neurodegenerative disease, miRNAs play a significant role in neuronal malfunction through
an increased buildup of protein and peptides in the pathogenic form [35]. The dicer enzyme in the
nucleus is essential in miRNA synthesis [36]. When knocked out of specific areas in the brain, this
leads to removing the dicer enzyme, and specific miRNA will affect and not be made, thus leading
to the manifestation of neurodegenerative disorders[37].

This study focuses on the role of miRNAs in participation as diagnostic or prognosis in AD, PD,
MS, and ALS or as therapy; Finally, we discuss types of therapeutic miRNA overall.
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Figure 2. Schematic diagram of miRNA's transportation system, therapeutic, and machinery
synthesis. (A) Showed transportation system, miRNA can be transported to cells inside the virus-like
particles, lipid nanoparticles and exosomes. (B) Therapeutics miRNA can be a synthetic double or
single strand that targets miRNA syntheses in the nucleus or cytoplasm, like (mimic miRNA, anti-
miRNA, masking miRNA). (C) Synthesis of miRNA starts in the nucleus, pri-miRNA transcript from
RNA polymerase II; after that, pre-miRNA formed through the processing of pri-miRNA by dorsha
and DGCRS, pre-miRNA exported into the cytoplasm through nuclear pore in combination with
XPO5, RanGTP, dicer lead to form mature miRNA in the cytoplasm, that mature miRNA loaded to
(AGO), the unwanted stranded degraded, the functional strand loaded to RISC and lastly targeted
complementary region 3' UTR on mRNA, which prompts mRNA degradation or block translation,
this Fig. created by using (Adobe Illustrator 2020).

Role of miRNAs in neurodegenerative diseases.

Many mechanisms can facilitate damaging neurons and play a role in the development of
different neurodegenerative diseases (Figure 3). In this section, we discuss AD, PD, MS and ALS and
how can preserve miRNA in the neurodegenerative diseases as pathological biomarkers, diagnosis
or therapy, Table 1.

Table 1. Some miRNA and their potential use in neurodegenerative diseases.

Type of | Type of miRNA | Expression level indication reference

Disease

MS Mir-193a decreased Prognostic,  diagnostic | [38]
marker, and act as
therapeutic

MS Let7b-5p, mir- | Decreased in CSF Promising miRNA | [39]

143-3p candidate to discriminate

PPMS

MS Mir-155a, mir- | Increased in level (serum) [40]

146a




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 April 2024

d0i:10.20944/preprints202404.0366.v1

Mir-34a,  mir- | Decreased in level (serum) Act as diagnostic,
143a,mir-373a prognostic and
therapeutic
MS Mir-10,mir- Decreased (blood) in the pathogenesis of | [41]
21,mir-124 MS
MS MIR-146a Decreased in whole blood and | In fecal as Diagnostic, | [42]
fecesof RRMSin compression | prognostic biomarker
with CIS, decreased in female.
PD Mir -7-1-5p, mir- | Increased in serum and serum | play a role in | [43]
223-3p isolated exosome inflammation in PD, a
Potential biomarker to
discriminate PD from HC
PD MIR-24, MIR- | Increased serum-EVs [44]
195 Act as an  active
MIR-19b Decreased Serum -EVs biomarker in the
diagnosis of PD
PD MIR-22-3P Decreased [45]
22-3P, MIR-10b- | increased As a diagnostic
5p,mir-151a-3p | (CSF) parameter in the early
stage of PD
PD Has-mir-144-3p | Decreased in Play a role in the | [46]
serum progression of the disease
and as an Early marker of
PD.
PD Mir-27-a, Increased plasma Can act in early diagnosis | [47], [48]
of PD,
Mir-142-3p, mir- | Decreased (plasma) Use of mir-27-a, mir 27-b
222 let 7a,let-7f as a potential therapeutic
target
PD Mir-132 Increased( in males than in | Biomarker for PD as | [49]
females) in prephrial blood diagnostic and disease
progression
ALS miR-16-5p increased in plasma, CSF Neuroprotective role in | [50]
ALS after administration
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6
mir-206 Increased of intrathecal linage
plasma negative cell,
ALS miR-23a Increase in skeletal muscle in | Therapeutic inhibition of
ALS patients and mouse model | mir-23a may be a strategy | [51], [52]
to rescue
peroxisome proliferator-
activated receptor-y
coactivator (PGC-1a
)activity and ameliorate
skeletal muscle
mitochondrial
function in ALS, and
down-regulation of miR-
23a-3p has been proven
to alleviate neuronal cell
death and ROS
ALS Hsa-mir-4649- Increased Acts as diagnostic | [53]
5p (plasma) markers
Has-mir-4299 Decreased (plasma)
AD MIR-155,mir- Upregulation Biomarker for AD [54], [55]
146a, mir-125b | Brain tissue of AD, ECF and CSF
,mir-9,mir-34a
AD Mir-455-3p Increased levels in blood | Biomarker and | [56,57]
serum, CSF post-mortem brain | therapeutic
tissues, AD fibroblasts, AD f3-
lymphocytes, AD cell lines,
transgenic AD (TgAD) mouse
models and AD CSF
AD Mirl46a-5p Upregulated Act as Pathogenesis and | [58,59]
in AD brain, neocortex and | therapeutic biomarker
hippocampus
AD Mir-125b Upregulated in AD brain tissue | Pathological role can be | [60]
used as treating therapy
by using anti-mir 125b,
anti-NF-kB

Table 1 Abbreviations: AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; PD, Parkinson's disease;

MS, multiple sclerosis, PPMS; primary progressive multiple sclerosis; CIS, clinically isolated syndrome; ROS;
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reactive oxygen species , NF-KB, nuclear factor-kappa B; EVs , extravascular vesicle; HC, healthy control; CSEF,
cerebrospinal fluid.

Alzheimer's disease (AD)

Alzheimer's disease (AD) is the most common prevalent neurodegenerative disease affecting
aged people[61], and development as mental decline lead to memory problem and difficulty in
language and social communication [62] [63].

AD occurs due to the accumulation of (amyloid -peptide )A[ plaques extracellular in the post-
mortem, and neurofibrillary tangles (NFTs) that( composed from abnormal hyperphosphorylated
tau-protein) as intracellular [64]. Thus, these triggers lead to changing occurs in synapses and
synaptic plasticity in different parts of the brain, such as the neocortex, hippocampus, and limbic
system, and lead to cognitive impairment in these patients with AD [65,66], [67].

Many other proteins can participate in the pathological of AD, such as cytoplasmic inclusion of
TDP-43 accumulation in different parts of the brain hippocampus, amygdala, frontal neocortex, and
entorhinal cortex/ inferior temporal cortex[68] and nuclear protein impairments hnRNP A1l and
A2/B1 due to neurotoxin —-mediated cholinergic impairments, could be lead to defective in processing
of miRNA that contribute to pathogenesis and disease development [34,69].

Many investigators informed the role of miRNA in different diseases, such as AD [70], that
showed miR-133b could be a promising biomarker for AD patients. Others published that miR-
29,miR-181, and miR-9 play a significant role in immune response and inflammation in AD.[71]

There was noticed when overexpression of miR-455-3P in patients with AD this play as a
pathological role in AD and can be used as a peripheral biomarker[72]. When Mir-125b
overexpression in the brain frontal cortex of AD patients, this accelerated hyperphosphorylation of
tau protein brain mice led to memory and learning skills impairments [73] and reported that miR-28-
3P, miR-125b, and miR-9 might consider as prospective indicators for AD[74]. As explained
previously, AP plaques accumulation in the brain, they have found numbers of miRNAs participate
in the regulation of Ap levels, as mir-15 plays a significant role in the regulation of BCL2 [75], while
miR-34 downregulates BCL2 translation. BCL2 was associated with AD[76] when increased in a level
reduced cognitive impairment progression and Af3 plaques in the AD of mouse model [77]. Mir 106
can be targeted as therapy in AD due to its ability to inhibit phosphorylation of tau protein through
inhibition of AP1-42 at Tyrl8[78]; therefore, when directing this pathway that participated in the
pathogenesis of AD, through this miRNA can resort to the function the cell of the brain.

miRNAs can play an essential role in BACE-1 regulation[79] that act as (-secrets 1 that
proteolysis of amyloid precursor protein (APP) to liberated A peptide [80], through increasing
or decreasing levels of BACE-1 [79], one of these miRNAs, is mir 149 was noted decreased in
expression in serum of AD patients and can prospective diagnostic biomarker for AD, in case of
overexpression could suppress AP accumulation through targeting BACE-1 in AD model cells and
improving neuronal viability and can target as therapy for this disease [81].

Parkinson's disease (PD)

It is a disease that belongs to neurodegenerative disorders, affecting people with age over 65
years [82]. Arise from losing of dopamine neurons in the brain; this dopamine can act as a
neurotransmitter, and due to this depletion, leads to movement slowing and reduced balance [83],
furthermore was noted formation of inclusions of Lewy and Lewy neuritis bodies in the cytoplasm
of a neuronal cell that mainly involved synuclein alpha protein (a-syn) [84]. Less than 20% account
for a genetic mutation that participates in PD development that includes Parkin (PARK2),
Parkinsonism-associated deglaze (DJ-1), a-synuclein ( SNCA), and leucine-rich repeat kinase 2 (
LRRK2)[85].

PD can advance as pathological and nonpathological progression as non—-motor indications can
be noted, such as constipation, sleep disorders, and depression[86].

Due to miRNAs play an essential role in biological cellular functions [87]; therefore, they can act
as a biomarker in the identification of PD; one of these miRNAs is mir 132; in one study that showed

do0i:10.20944/preprints202404.0366.v1
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overexpression of miR-132 in plasma samples in males with PD than females in compression to
control, and established a potential role of mir 132 in the regulation of Nurrl protein that participate
in dopamine regulation[49]. Other miRNAs contributing to the rule of a-syn are miR-223 and miR-
153, noted down-regulated in expression in serum, brain, and saliva of the PD mice model and thus
can be considered a diagnostic biomarker in this disease [88]. Other published that miR-153 Increased
in level from the extracted tissue of mouse brain and serum [89], [90], and was noted a negative
correlation between miR-153 and nuclear factor-E2-related 2 (Nrf2) that participate in varied
antioxidant genes transcription[91] when inhibited of miR-153 in MPP+ induced PD model, induced
Nrf2 signalling pathway and preserve neuron from oxidative stress and can promote new strategy
for therapy for PD [90].

Another indicated an increased level of mir 29a and mir 29¢ in the serum of females than males
infected with PD; however, mir 29 significantly down-regulated in PD in comper healthy control,
anyway needed further study to be indicated as a biomarker for PD [92].

Mir 375 upregulated in the human spinal motor neurons development and assisted spinal motor
neurogenesis [93]; one study demonstrated that mir-375 overexpression improved dopaminergic
neurons and inflammation by inhibition of specific protein-1 (SP-1)[94]; this protein act as a
transcriptional factor, and when the elevated level in the brain lead to increased neuronal death [95].

miR-216a can inhibit the expression of Bax protein [96]. Bax protein belongs to the Bcl-2 gen
family[97]; it acts in case of elevated level as prompter apoptosis and leads to cell death, and when
decreased level, indicates inhibition of apoptosis [98]; thus, mir 216a and can potentially target in PD
through regulation of Bax protein [96].
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Figure 3. Schematics overview of normal and damaging neurons. (A); showed normal constituents of
neuron form cell body with usually present (nucleus, mitochondria,) to axon and how is generally
warped in the myelin sheath, the axonal terminal that consists of normal function of telodendria and
synaptic terminals, which ads in the neurotransmitter. (B) showed damaged neuron that occurs due
to different mechanisms such as mitochondrial dysfunction, DNA damage, accumulation of different
protein such as (TDP-43, Lewy body, AP plaques ) in the cell body and around the neuronal cell,
axonal transport loss such as (neurofilaments deposition, demyelination) which boost losing of the
axonal terminal, all of these mechanisms participate in the loss of normal function of neurons, this
Fig. created by using (Adobe Illustrator 2020).

Multiple sclerosis (MS)

Multiple sclerosis  (MS) is an autoimmune inflammatory disease characterized by
demyelination of the myelin sheath of nerves in the spinal cord and brain; it is a disease of young
adult onset[99]. Affecting females more than males [100]. Demyelination formation in white matter
occurs due to increased infiltration of T-cells and the release of the cytokine in CNS, which will
activate macrophage; this leads B-cells to transform into plasma cells and secreted autoantibodies
which attack the myelin sheaths that surround the nerve fibres [101,102].

Many miRNAs have been identified in the different samples of MS patients; one of these, miR-
922 and miR-181C in CSF [103], that's associated with transformation from clinically isolated
syndrome (CIS) to relapsing-remitting MS (RRMS) characterized by deterioration that initiated via
infiltration autoreactive immune cell in CNS [104], and the same association was noted in serum for
miR-922 [103]. Mir-181c can control neuroinflammation by reducing microglial activation [105]and
diminishing proinflammatory cytokines expressed through microglia [106]. Furthermore, it can
indicate miR-181c as a biomarker in an increased inflammatory condition [107].

Mir-150 showed alteration in level in both plasma and CSF after treatment and was used as a
biomarker for this disease [108]; mir-155 acts as a proinflammatory activator and plays an essential
role in autoimmune diseases [109][110], such as MS pathogenesis; therefore, can be interpreted as
one of the miRNAs that use in diagnosis in MS disease [111] Overexpression of miR-21, miR-146a/b
in CSF of patients with MS with active lesions can give used as valuable markers in MS patients
[112].

Another indicated that Mir-223 participated in remyelination and activation of M2 phagocyte,
and in the case of knout mice, led to remyelination impairment [113]. Another study discussed when
over-expression of mir-125a-3p contributed to the impairment of oligodendrocyte precursor cell
(OPC) maturation, whereas inhibited expression stimulates this cell development [114]; thus, mir-
125a-3p overexpression adds to the MS progression, which involvement repair impairment of
demyelinated lesions [115].

ALS

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of adult onset that is
characterized by muscle paralysis that occurs due to advanced loss of upper and lower motor neurons
,and finally respiratory failure and death through the first five years of diagnosis[116], which can be
either familial (fALS) that associated with high genetic adversity[117] or sporadic ( sALS) that both
environmental and genetic factors were involved in development [118].

The emergence of biomarkers for diagnosing ALS is needed; many studies showed the possible
detection of miRNAs can help rapidly identify and observe ALS disease [119].

Many studies noted these miRNAs widely disrupted in skeletal muscle and brain and several
biofluids in patients with ALS [120,121], such as mir 206, mir 124, mir 181, mir 155 [122-125]. One
study showed that miR-27a-3p in the serum of ALS patients downregulated compared to controls
and could indicate miR-27a-3p can serve as a diagnostic biomarker for ALS [126].

Many miRNAs participated in the pathogenesis of ALS; one of these was the downregulation of
mir 218-2 due to processing defecting by dicer, which could affect neuronal robustness and, as a
result, could be possible targeting therapy in diseases of motor neurons [127]. Fused in sarcoma (FUS)
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and Transactive response DNA binding protein-43 (TDP-43) that acts as a nuclear protein that
participates in RNAs splicing and transcription initiation[128], in nucleus and cytoplasm through
Drosha and Dicer, respectively [129], that was noted TDP-43 widely expressed in ALS cases[130].
At the same time, FUS is less common[131]. So, disturbance in these proteins associated with ALS
can lead to dysregulation in the miRNA processing mechanism [132], which is one of the possible
pathological involved in ALS disease.

A systematic review specified that serum miR-133b,miR-206, and miR-338-3p are prospective
ALS markers[133], and miR-206 and miR-133, known as myomiRINA, are identified in skeletal muscle
[134]. According to Pegoraro et al.'s study, mir-133 decreased in level in SALS patients, while miR-
206 overexpression in muscle specimens in chromosome 9 open reading frame 72 (C90rf72) and
superoxide dismutase 1(SOD1) mutations in ALS patients [135]. Mirl- act as muscle differential and
Mir 133 act as muscle proliferation[135,136] , while mir-206 decelerates the progression of ALS
disease via adding NM synapses regeneration[137]

mir 155 suggested a therapeutic element for treating ALS  disease that acts as a
proinflammatory activator when inhibited in ALS mice, improving disease progression [138]. Mir-
146a, when down-regulated, can lead to malfunction of astrocytes and microglia and could contribute
to the degeneration of motor neurons(MN); while upregulation provides a protective effect in ALS
patients [139], it also leads to a level of NFL proteins decreased, and this maintenance of neuronal
morphology[140].

miRNAs as therapy

One of the difficulties that prevent transfusion of miRNA is the blood-brain barrier (BBB) that
prevents the miRNA from acting appropriately in brain tissues [33]; many promising transporting
methods can improve this issue, such as using small extravascular vesicles (SEVs) [141], which can
be administrated through intravenous injection [142], stereotactic injection, or nasally
administrated,[143-145]. Another method of transportation is either a viral vector such as a
recombinant adeno-associated virus or adeno-associated virus [146,147], or through a non-viral
vector such as gold nanoparticles[148], and many others met such as hydrogel, Carbone-based
nanoparticles like nano-diamonds, and smart mesoporous silica nanoparticles[149], [150,151], that
facilities loading of miRNA in these system to specific site , Figure 2(a).

Several strategies have been developed to use miRNA as a therapeutic agent, such as mimic
miRNA, by using synthetic double-strand miRNA, one as a guide and another as a passenger that is
linked to another molecule, such as cholesterol, to enhance cellular uptake, lead to restoring of
specific miRNA to an average level, that absent or downregulated during disease development and
can improvement their specific target protein[152][153], or use (anti-miRNA) miRNA inhibitors, such
as using synthetic oligonucleotides that are chemically modified, to target specific miRNA that is
characterized in overexpression through targeting some pathway that involved in the miRNA
biogenesis, at last, provided functions effectiveness, [154] [155][156].

Masking miRNA works to prevent inhibition mRNA from affecting endogenous miRNA
[153,157], consisting of single-strand antisense oligonucleotides that interact with the binding site of
miRNA in the 3'UTR of the target mRNA[158].

Another type was miRNA sponges that contain multiple binding sites to targeted miRNA that
is separated by a few nucleotides, which is typically either viral vector or plasmid and introduced to
gen through insertion into 3'UTR of selective gen that is driven by RNA polymerase II promoter [159],
Figure 2(b).

There are some limitations of using miRNA as therapy, such as extracellular blockage in case of
phagocytosis, degradation by nucleases enzyme, complement opsonization, or through intracellular
blocking like non-specific site targeting ineffective cellular taking; regardless of this limitation,
miRNA is still ideal targeting as a therapy due to safety, simplicity, effectiveness and easy contributed
[160,161] and took multiple advantageous to the improvement of neurodegenerative disease
consequences.
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Conclusion and future perspective

Recently increased evidence of neurodegenerative disease progression, which can affect aged
people and young adults. Therefore, these diseases are a tremendous burden on the health
organizations of each country, consequently needing emerging tools and biomarkers facilities in the
early diagnosis and treatment to decrease the problem issues of these disorders. One of the promising
molecules that add to the early diagnosis of this disease and identify possible pathological
mechanisms that lead to the development of those disorders through increased or decreased
expression, even if it can be used as therapy through many strategies that developed, is miRNAs.
Despite related problems to blood-brain briar (BBB) that prevent the miRNA from acting
appropriately in brain tissues, many promising transporting methods can improve this problem, such
as viral vectors and non-viral vectors [162], [33]. So we need increasing investigation of brain-
enriched miRNA due to plays a protective or inflammatory role, and by identifying novel pathways
that participate in developing this neurodegenerative disease that can assist to considered miRNA-
based therapy designed.
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