

Review

Not peer-reviewed version

MicroRNAs (miRNAs) as Biomarkers for Diagnosis, Prognosis, or as Therapeutics Molecules in Neurodegenerative Diseases

[Zahraa Alkhazaali](#) , [Sajad Sahab-Negah](#) , Amir Reza Boroumand , [Jalil Tavakol Afshari](#) *

Posted Date: 4 April 2024

doi: [10.20944/preprints202404.0366.v1](https://doi.org/10.20944/preprints202404.0366.v1)

Keywords: Microglia cell; neurodegenerative disease; miRNA; protein accumulation

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

MicroRNAs (miRNAs) as Biomarkers for Diagnosis, Prognosis, or as Therapeutics Molecules in Neurodegenerative Diseases

Zahraa Alkhazaali-Ali ^{1,2}, Sajad Sahab-Negah ^{3,4}, Amir Reza Boroumand ³ and Jalil Tavakol-Afshari ^{1,*}

¹ Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

² Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

³ Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

⁴ Shefa Neuroscience Research Center, Khatam Alania Hospital, Tehran, Iran

* Correspondence: Tavakolafsharijalil@gmail.com

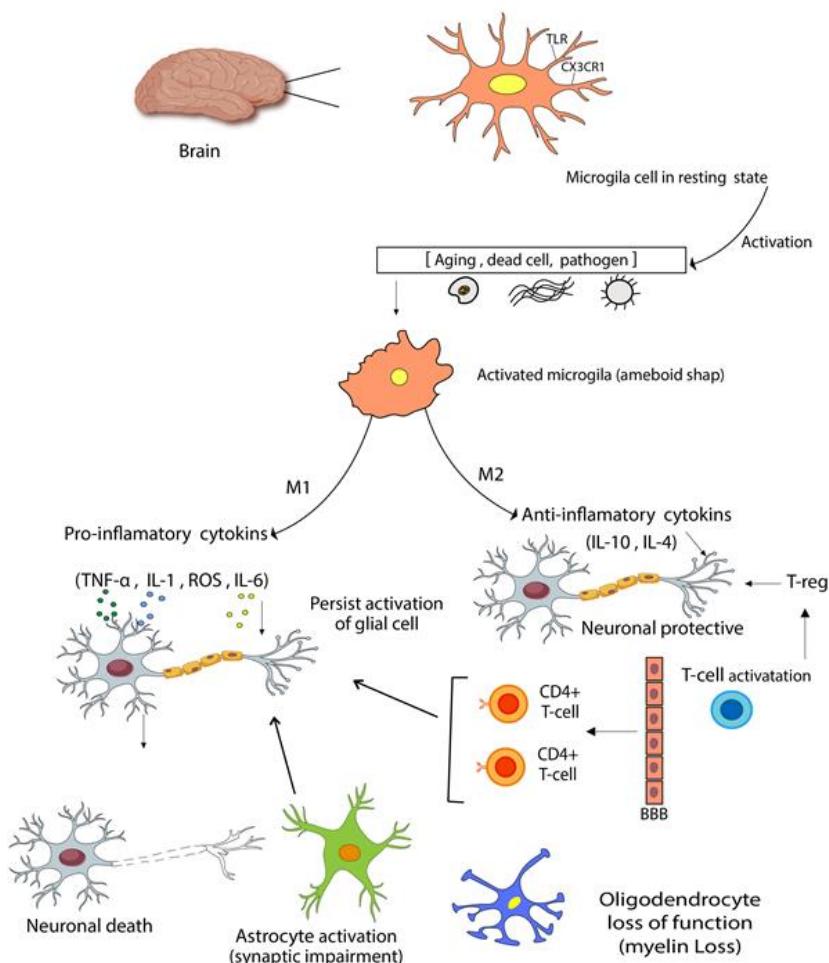
Abstract: Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS), arise due to numerous causes like protein accumulation and autoimmunity, characterized by neurologic depletion which lead to incapacity in normal physiological function such as thinking and movement in these patients. Glial cells perform a critical role in protective neuronal function; in the case of neuroinflammation, glial cell dysfunction can promote the development of neurodegenerative diseases. MiRNA participates in gene regulation and plays a vital role in many biological processes in the body; in the central nervous system (CNS), it can play an essential part in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative diseases (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic agent in these disorders. Finally, we highlighted miRNA as therapy.

Keywords: microglia cell ; neurodegenerative disease; miRNA; protein accumulation

Introduction

Neurodegenerative disease is a collective neurological disorder characterized by neuronal degradation that ultimately leads to cognitive and movement disability, includes Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD) and multiple sclerosis (MS) [1,2]. According to the World Health Organization, this disorder could become the second deadliest disease after cancer in the next fifteen years [3]. nervous system is nearly non-regenerative, thus; the development of these diseases are permanent[4].

Glial cells, which include microglia, astrocyte, and oligodendrocyte, play a significant role in protective neuronal function and regulation[5]. In neurodegenerative disease, Progression of the neuroinflammatory process occurs predominantly through microglia and astrocyte activation [6].


Neuroinflammation plays an active role in the pathogenesis of different neurodegenerative diseases [7], and microglia activation is a key factor in neuroinflammation[8]. microglia resident macrophage in brain[9] can act as either M1(pro-inflammatory) or M2 (anti-inflammatory) [10]. In the case of neuron impairment, this leads to microglia activation and the release of inflammatory cytokines to improve neuronal damage [11]. However, a neurodegenerative disorder characterized by persistent chronic inflammation will further activate microglia, which indicates more damage to

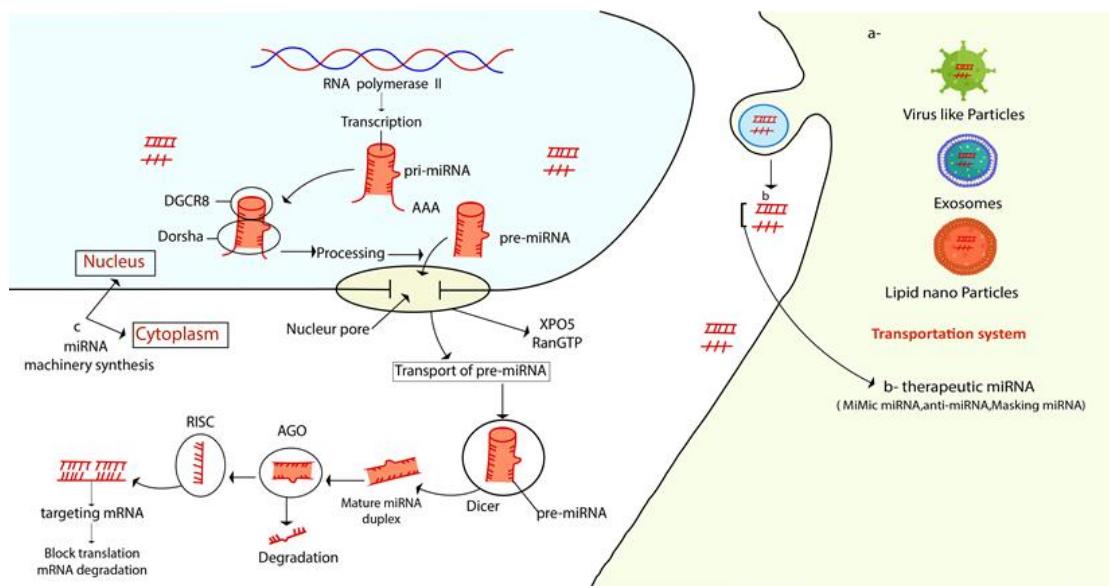
neurons [9], through secreting various inflammatory and cytokine mediators [12]. (Figure 1). CX3CR1 receptor is found on the surface of different cells, including microglial cells [13], that interact with CX3CL1,[14] that found on neurons within globus pallidus, thalamus, striatum, [15], CX3CR1/CX3CL1 which acts as in different biological phenomena in CNS through regulating interaction between microglia, neurons, and immune cell, and participates in different cases of neuropathologies [14].

Astrocyt is one of the glial cells that are abundant in CNS and participate in metabolic supplement for neurons and participate in adjacent cell protection through liberating important chemical messengers such as growth factors, glutamine, lactic acid, and elimination of K⁺ and increased glutamate[16]. The metabolic exchange between astrocytes, microglia, and neurons mediates chronic inflammation and oxidative stress, leading to neurodegenerative disease progression[16,17].

The essential purpose of oligodendrocytes is myelin generation, and they provide support for neurons and prevent cell death via stimulating myelin recovery[18,19]. Chronic demyelination, such as in (MS) leads to myelin loss due to different pathological mechanisms such as loss of function of oligodendrocyte and mitochondrial dysfunction, oxidative stress enhancement, and at last lead to neuronal cell death. [20].

Early diagnosis of neurodegenerative disease can be helpful in disease treatment and elimination of its possible consequences. Thus one of the biomarkers reliable for this purpose is miRNA [21]

Figure 1. Microglia and principle activation in the brain. Microglia normally present in a resting state that contains toll-like receptor (TLR) and CX3CR1, and due to activation such as in case of ageing, pathogen, and depression of dead cell lead to activation of microglia through TLR and CX3CR1; to become either (M1) that secreted proinflammatory cytokine-like tumor necrotic factor- α (TNF- α), interleukin-6 (IL-6), reactive oxygen species (ROS), or (M2) that secreted anti-inflammatory cytokine that have protective effect for example (IL-4, IL-10). In case of persistent activation of microglia, this enhances the persistent secretion of the pro-inflammatory cytokine, increased T-cell activation, which in turn activates microglia that will affect astrocyte activation and loss of oligodendrocyte function; all this contributes to the neuronal death. This figure was created by using (Adobe Illustrator 2020).


MicroRNAs (miRNAs) which play a significant role in neurodegenerative disease through different physiological processes, belong to non-coding RNAs (ncRNA)[3], and one of the characteristics of ncRNA do not encode specific protein[22]. ncRNA that is present typically in (CNS) that participates in the development and pathogenesis of this system, can be classified as small ncRNA that includes transfer RNA (tRNA), microRNAs (miRNAs), short small interference RNAs(siRNAs), piwi-interacting RNAs (pi-RNA), and long non-coding RNAs that include natural antisense transcript (NATs) and long intragenic RNAs non-coding RNAs (linc RNAs)[23],

MicroRNA with lengths of 21-25 nucleotides plays a critical role in the performance of many diverse biological functions in the cells, such as cell development, stem cell differentiation, oxidative stress[24], and tumor genesis [25]. Several miRNAs circulate in the central nervous system and play an essential role in neural maturation, differentiation, and development [26,27].

miRNA are synthesized from double-strand primary miRNA (pri-miRNA) that is synthesized via RNA polymerase II [28] and undergo more processing in the nucleus to generate precursor miRNA(pre-miRNA) hairpins by Drosha (type III ribonuclease) and DiGeorge critical region 8 (DGCR8) (RNA binding protein) [29], [30]. Then pre-miRNA exists in the cytoplasm through the nuclear pore complex in compensation with exportin-5 (XPO5) and GTPase RanGTP to protect it from the degradation process that occurs through nuclelease enzyme[31,32]. In the cytoplasm, Dicer (type III ribonuclease) leads to cleavage of pre-miRNA to form mature miRNA; this mature miRNA is loaded into Argonaute protein (Ago) into the RNA-induced silencing complex (RISC), then when binding to the target region on mRNA (3'UTR) lead to suppression of this region.[33]. In case of any defect occurs in these processes, it can participate in the development of neurodegenerative diseases [35], Figure 2 (c).

In neurodegenerative disease, miRNAs play a significant role in neuronal malfunction through an increased buildup of protein and peptides in the pathogenic form [35]. The Dicer enzyme in the nucleus is essential in miRNA synthesis [36]. When knocked out of specific areas in the brain, this leads to removing the Dicer enzyme, and specific miRNA will not be made, thus leading to the manifestation of neurodegenerative disorders[37].

This study focuses on the role of miRNAs in participation as diagnostic or prognosis in AD, PD, MS, and ALS or as therapy; Finally, we discuss types of therapeutic miRNA overall.

Figure 2. Schematic diagram of miRNA's transportation system, therapeutic, and machinery synthesis. (A) Showed transportation system, miRNA can be transported to cells inside the virus-like particles, lipid nanoparticles and exosomes. (B) Therapeutics miRNA can be a synthetic double or single strand that targets miRNA syntheses in the nucleus or cytoplasm, like (mimic miRNA, anti-miRNA, masking miRNA). (C) Synthesis of miRNA starts in the nucleus, pri-miRNA transcript from RNA polymerase II; after that, pre-miRNA formed through the processing of pri-miRNA by dorsha and DGCR8, pre-miRNA exported into the cytoplasm through nuclear pore in combination with XPO5, RanGTP, dicer lead to form mature miRNA in the cytoplasm, that mature miRNA loaded to (AGO), the unwanted stranded degraded, the functional strand loaded to RISC and lastly targeted complementary region 3' UTR on mRNA, which prompts mRNA degradation or block translation, this Fig. created by using (Adobe Illustrator 2020).

Role of miRNAs in neurodegenerative diseases.

Many mechanisms can facilitate damaging neurons and play a role in the development of different neurodegenerative diseases (Figure 3). In this section, we discuss AD, PD, MS and ALS and how can preserve miRNA in the neurodegenerative diseases as pathological biomarkers, diagnosis or therapy, Table 1.

Table 1. Some miRNA and their potential use in neurodegenerative diseases.

Type of Disease	Type of miRNA	Expression level	indication	reference
MS	Mir-193a	decreased	Prognostic, diagnostic marker, and act as therapeutic	[38]
MS	Let7b-5p, mir-143-3p	Decreased in CSF	Promising miRNA candidate to discriminate PPMS	[39]
MS	Mir-155a, mir-146a	Increased in level (serum)		[40]

	Mir-34a, mir-143a,mir-373a	Decreased in level (serum)	Act as diagnostic, prognostic and therapeutic	
MS	Mir-10,mir-21,mir-124	Decreased (blood)	in the pathogenesis of MS	[41]
MS	MIR-146a	Decreased in whole blood and feces of RRMS in compression with CIS, decreased in female.	In fecal as Diagnostic, prognostic biomarker	[42]
PD	Mir -7-1-5p, mir-223-3p	Increased in serum and serum isolated exosome	play a role in inflammation in PD, a Potential biomarker to discriminate PD from HC	[43]
PD	MIR-24, MIR-195	Increased serum-EVs	Act as an active biomarker in the diagnosis of PD	[44]
	MIR-19b	Decreased Serum -EVs		
PD	MIR-22-3P	Decreased	As a diagnostic parameter in the early stage of PD	[45]
	22-3P, MIR-10b-5p,mir-151a-3p	increased (CSF)		
PD	Has-mir-144-3p	Decreased in serum	Play a role in the progression of the disease and as an Early marker of PD.	[46]
PD	Mir-27-a,	Increased plasma	Can act in early diagnosis of PD, Use of mir-27-a, mir 27-b as a potential therapeutic target	[47], [48]
	Mir-142-3p, mir-222,let-7a,let-7f	Decreased (plasma)		
PD	Mir-132	Increased(in males than in females) in prephrial blood	Biomarker for PD as diagnostic and disease progression	[49]
ALS	miR-16-5p	increased in plasma, CSF	Neuroprotective role in ALS after administration	[50]

	mir-206	Increased plasma	of intrathecal lineage negative cell,	
ALS	miR-23a	Increase in skeletal muscle in ALS patients and mouse model	Therapeutic inhibition of miR-23a may be a strategy to rescue peroxisome proliferator-activated receptor- γ coactivator (PGC-1 α) activity and ameliorate skeletal muscle mitochondrial function in ALS, and down-regulation of miR-23a-3p has been proven to alleviate neuronal cell death and ROS	[51], [52]
ALS	Hsa-mir-4649-5p	Increased (plasma)	Acts as diagnostic markers	[53]
	Has-mir-4299	Decreased (plasma)		
AD	MIR-155,mir-146a, mir-125b ,mir-9,mir-34a	Upregulation Brain tissue of AD, ECF and CSF	Biomarker for AD	[54], [55]
AD	Mir-455-3p	Increased levels in blood serum, CSF post-mortem brain tissues, AD fibroblasts, AD β -lymphocytes, AD cell lines, transgenic AD (TgAD) mouse models and AD CSF	Biomarker and therapeutic	[56,57]
AD	Mir146a-5p	Upregulated in AD brain, neocortex and hippocampus	Act as Pathogenesis and therapeutic biomarker	[58,59]
AD	Mir-125b	Upregulated in AD brain tissue	Pathological role can be used as treating therapy by using anti-mir 125b, anti-NF-kB	[60]

Table 1 Abbreviations: AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; PD, Parkinson's disease; MS, multiple sclerosis, PPMS; primary progressive multiple sclerosis; CIS, clinically isolated syndrome; ROS;

reactive oxygen species, NF-KB, nuclear factor-kappa B; EVs, extravascular vesicle; HC, healthy control; CSF, cerebrospinal fluid.

Alzheimer's disease (AD)

Alzheimer's disease (AD) is the most common prevalent neurodegenerative disease affecting aged people[61], and development as mental decline lead to memory problem and difficulty in language and social communication [62] [63].

AD occurs due to the accumulation of (amyloid β -peptide) A β plaques extracellular in the post-mortem, and neurofibrillary tangles (NFTs) that composed from abnormal hyperphosphorylated tau-protein) as intracellular [64]. Thus, these triggers lead to changes occurs in synapses and synaptic plasticity in different parts of the brain, such as the neocortex, hippocampus, and limbic system, and lead to cognitive impairment in these patients with AD [65,66], [67].

Many other proteins can participate in the pathological of AD, such as cytoplasmic inclusion of TDP-43 accumulation in different parts of the brain hippocampus, amygdala, frontal neocortex, and entorhinal cortex/ inferior temporal cortex[68] and nuclear protein impairments hnRNP A1 and A2/B1 due to neurotoxin-mediated cholinergic impairments, could be lead to defective in processing of miRNA that contribute to pathogenesis and disease development [34,69].

Many investigators informed the role of miRNA in different diseases, such as AD [70], that showed miR-133b could be a promising biomarker for AD patients. Others published that miR-29, miR-181, and miR-9 play a significant role in immune response and inflammation in AD.[71]

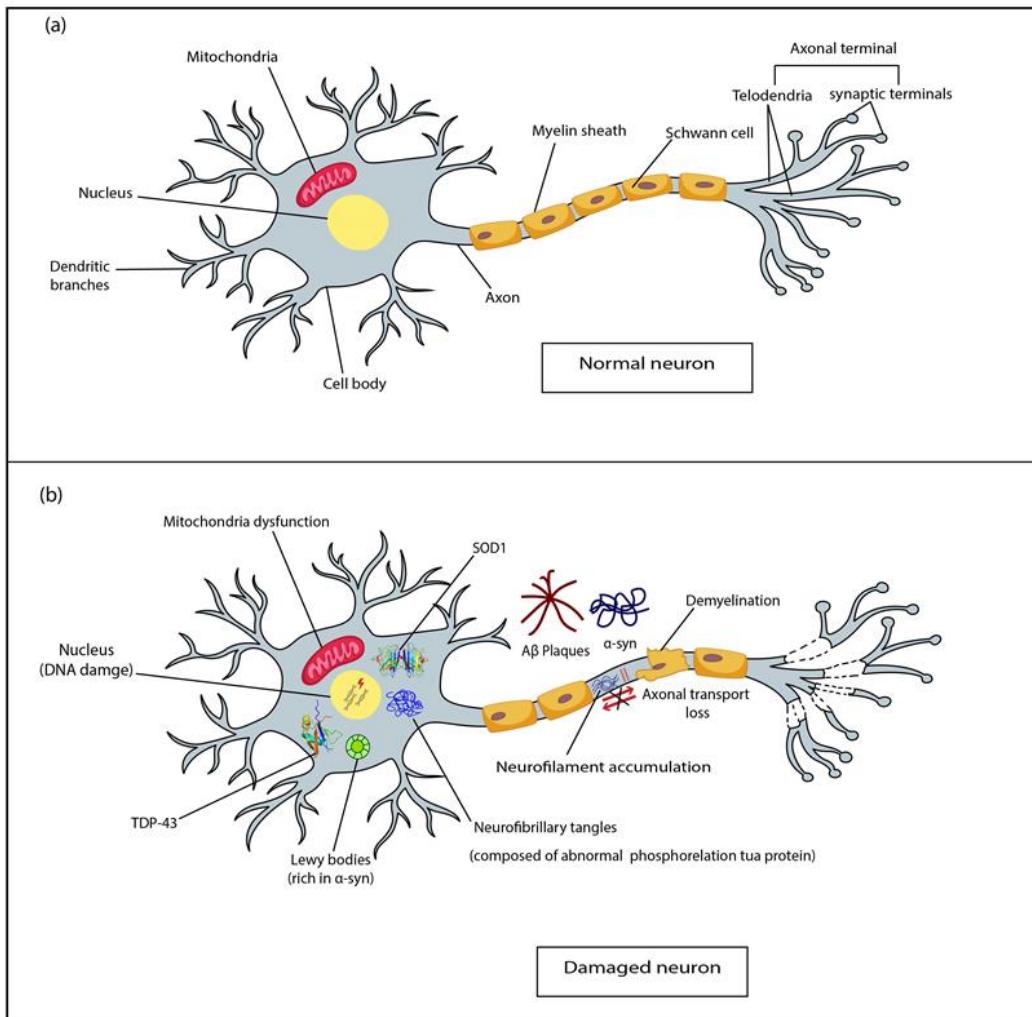
There was noticed when overexpression of miR-455-3P in patients with AD this play as a pathological role in AD and can be used as a peripheral biomarker[72]. When Mir-125b overexpression in the brain frontal cortex of AD patients, this accelerated hyperphosphorylation of tau protein brain mice led to memory and learning skills impairments [73] and reported that miR-28-3P, miR-125b, and miR-9 might consider as prospective indicators for AD[74]. As explained previously, A β plaques accumulation in the brain, they have found numbers of miRNAs participate in the regulation of A β levels, as mir-15 plays a significant role in the regulation of BCL2 [75], while miR-34 downregulates BCL2 translation. BCL2 was associated with AD[76] when increased in a level reduced cognitive impairment progression and A β plaques in the AD of mouse model [77]. Mir 106 can be targeted as therapy in AD due to its ability to inhibit phosphorylation of tau protein through inhibition of A β 1-42 at Tyr18[78]; therefore, when directing this pathway that participated in the pathogenesis of AD, through this miRNA can resort to the function the cell of the brain.

miRNAs can play an essential role in BACE-1 regulation[79] that act as β -secrets 1 that proteolysis of amyloid precursor protein (APP) to liberated A β peptide [80], through increasing or decreasing levels of BACE-1 [79], one of these miRNAs, is mir 149 was noted decreased in expression in serum of AD patients and can prospective diagnostic biomarker for AD, in case of overexpression could suppress A β accumulation through targeting BACE-1 in AD model cells and improving neuronal viability and can target as therapy for this disease [81].

Parkinson's disease (PD)

It is a disease that belongs to neurodegenerative disorders, affecting people with age over 65 years [82]. Arise from losing of dopamine neurons in the brain; this dopamine can act as a neurotransmitter, and due to this depletion, leads to movement slowing and reduced balance [83], furthermore was noted formation of inclusions of Lewy and Lewy neuritis bodies in the cytoplasm of a neuronal cell that mainly involved synuclein alpha protein (α -syn) [84]. Less than 20% account for a genetic mutation that participates in PD development that includes Parkin (PARK2), Parkinsonism-associated deglaze (DJ-1), α -synuclein (SNCA), and leucine-rich repeat kinase 2 (LRRK2)[85].

PD can advance as pathological and nonpathological progression as non-motor indications can be noted, such as constipation, sleep disorders, and depression[86].


Due to miRNAs play an essential role in biological cellular functions [87]; therefore, they can act as a biomarker in the identification of PD; one of these miRNAs is mir 132; in one study that showed

overexpression of miR-132 in plasma samples in males with PD than females in comparison to control, and established a potential role of mir 132 in the regulation of Nurr1 protein that participate in dopamine regulation[49]. Other miRNAs contributing to the rule of α -syn are miR-223 and miR-153, noted down-regulated in expression in serum, brain, and saliva of the PD mice model and thus can be considered a diagnostic biomarker in this disease [88]. Other published that miR-153 Increased in level from the extracted tissue of mouse brain and serum [89], [90], and was noted a negative correlation between miR-153 and nuclear factor-E2-related 2 (Nrf2) that participate in varied antioxidant genes transcription[91] when inhibited of miR-153 in MPP+ induced PD model, induced Nrf2 signalling pathway and preserve neuron from oxidative stress and can promote new strategy for therapy for PD [90].

Another indicated an increased level of mir 29a and mir 29c in the serum of females than males infected with PD; however, mir 29 significantly down-regulated in PD in comper healthy control, anyway needed further study to be indicated as a biomarker for PD [92].

Mir 375 upregulated in the human spinal motor neurons development and assisted spinal motor neurogenesis [93]; one study demonstrated that mir-375 overexpression improved dopaminergic neurons and inflammation by inhibition of specific protein-1 (SP-1)[94]; this protein act as a transcriptional factor, and when the elevated level in the brain lead to increased neuronal death [95].

miR-216a can inhibit the expression of Bax protein [96]. Bax protein belongs to the Bcl-2 gen family[97]; it acts in case of elevated level as prompter apoptosis and leads to cell death, and when decreased level, indicates inhibition of apoptosis [98]; thus, mir 216a and can potentially target in PD through regulation of Bax protein [96].

Figure 3. Schematics overview of normal and damaging neurons. (A) showed normal constituents of neuron form cell body with usually present (nucleus, mitochondria,) to axon and how is generally warped in the myelin sheath, the axonal terminal that consists of normal function of telodendria and synaptic terminals, which ads in the neurotransmitter. (B) showed damaged neuron that occurs due to different mechanisms such as mitochondrial dysfunction, DNA damage, accumulation of different protein such as (TDP-43, Lewy body, A β plaques) in the cell body and around the neuronal cell, axonal transport loss such as (neurofilaments deposition, demyelination) which boost losing of the axonal terminal, all of these mechanisms participate in the loss of normal function of neurons, this Fig. created by using (Adobe Illustrator 2020).

Multiple sclerosis (MS)

Multiple sclerosis (MS) is an autoimmune inflammatory disease characterized by demyelination of the myelin sheath of nerves in the spinal cord and brain; it is a disease of young adult onset[99]. Affecting females more than males [100]. Demyelination formation in white matter occurs due to increased infiltration of T-cells and the release of the cytokine in CNS, which will activate macrophage; this leads B-cells to transform into plasma cells and secreted autoantibodies which attack the myelin sheaths that surround the nerve fibres [101,102].

Many miRNAs have been identified in the different samples of MS patients; one of these, miR-922 and miR-181C in CSF [103], that's associated with transformation from clinically isolated syndrome (CIS) to relapsing-remitting MS (RRMS) characterized by deterioration that initiated via infiltration autoreactive immune cell in CNS [104], and the same association was noted in serum for miR-922 [103]. Mir-181c can control neuroinflammation by reducing microglial activation [105] and diminishing proinflammatory cytokines expressed through microglia [106]. Furthermore, it can indicate miR-181c as a biomarker in an increased inflammatory condition [107].

Mir-150 showed alteration in level in both plasma and CSF after treatment and was used as a biomarker for this disease [108]; mir-155 acts as a proinflammatory activator and plays an essential role in autoimmune diseases [109][110], such as MS pathogenesis; therefore, can be interpreted as one of the miRNAs that use in diagnosis in MS disease [111]. Overexpression of miR-21, miR-146a/b in CSF of patients with MS with active lesions can give used as valuable markers in MS patients [112].

Another indicated that Mir-223 participated in remyelination and activation of M2 phagocyte, and in the case of knout mice, led to remyelination impairment [113]. Another study discussed when over-expression of mir-125a-3p contributed to the impairment of oligodendrocyte precursor cell (OPC) maturation, whereas inhibited expression stimulates this cell development [114]; thus, mir-125a-3p overexpression adds to the MS progression, which involvement repair impairment of demyelinated lesions [115].

ALS

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of adult onset that is characterized by muscle paralysis that occurs due to advanced loss of upper and lower motor neurons, and finally respiratory failure and death through the first five years of diagnosis[116], which can be either familial (fALS) that associated with high genetic adversity[117] or sporadic (sALS) that both environmental and genetic factors were involved in development [118].

The emergence of biomarkers for diagnosing ALS is needed; many studies showed the possible detection of miRNAs can help rapidly identify and observe ALS disease [119].

Many studies noted these miRNAs widely disrupted in skeletal muscle and brain and several biofluids in patients with ALS [120,121], such as mir 206, mir 124, mir 181, mir 155 [122–125]. One study showed that miR-27a-3p in the serum of ALS patients downregulated compared to controls and could indicate miR-27a-3p can serve as a diagnostic biomarker for ALS [126].

Many miRNAs participated in the pathogenesis of ALS; one of these was the downregulation of mir 218-2 due to processing defecting by dicer, which could affect neuronal robustness and, as a result, could be possible targeting therapy in diseases of motor neurons [127]. Fused in sarcoma (FUS)

and Transactive response DNA binding protein-43 (TDP-43) that acts as a nuclear protein that participates in RNAs splicing and transcription initiation[128], in nucleus and cytoplasm through Drosha and Dicer, respectively [129], that was noted TDP-43 widely expressed in ALS cases[130]. At the same time, FUS is less common[131]. So, disturbance in these proteins associated with ALS can lead to dysregulation in the miRNA processing mechanism [132], which is one of the possible pathological involved in ALS disease.

A systematic review specified that serum miR-133b,miR-206, and miR-338-3p are prospective ALS markers[133], and miR-206 and miR-133, known as myomiRNA, are identified in skeletal muscle [134]. According to Pegoraro et al.'s study, mir-133 decreased in level in sALS patients, while miR-206 overexpression in muscle specimens in chromosome 9 open reading frame 72 (C9orf72) and superoxide dismutase 1(SOD1) mutations in ALS patients [135]. Mir1- act as muscle differential and Mir 133 act as muscle proliferation[135,136] , while mir-206 decelerates the progression of ALS disease via adding NM synapses regeneration[137]

mir 155 suggested a therapeutic element for treating ALS disease that acts as a proinflammatory activator when inhibited in ALS mice, improving disease progression [138]. Mir-146a, when down-regulated, can lead to malfunction of astrocytes and microglia and could contribute to the degeneration of motor neurons(MN); while upregulation provides a protective effect in ALS patients [139], it also leads to a level of NFL proteins decreased, and this maintenance of neuronal morphology[140].

miRNAs as therapy

One of the difficulties that prevent transfusion of miRNA is the blood-brain barrier (BBB) that prevents the miRNA from acting appropriately in brain tissues [33]; many promising transporting methods can improve this issue, such as using small extracellular vesicles (sEVs) [141], which can be administrated through intravenous injection [142], stereotactic injection, or nasally administrated,[143–145]. Another method of transportation is either a viral vector such as a recombinant adeno-associated virus or adeno-associated virus [146,147], or through a non-viral vector such as gold nanoparticles[148], and many others met such as hydrogel, Carbone-based nanoparticles like nano-diamonds, and smart mesoporous silica nanoparticles[149], [150,151], that facilities loading of miRNA in these system to specific site , Figure 2(a).

Several strategies have been developed to use miRNA as a therapeutic agent, such as mimic miRNA, by using synthetic double-strand miRNA, one as a guide and another as a passenger that is linked to another molecule, such as cholesterol, to enhance cellular uptake, lead to restoring of specific miRNA to an average level, that absent or downregulated during disease development and can improvement their specific target protein[152][153], or use (anti-miRNA) miRNA inhibitors, such as using synthetic oligonucleotides that are chemically modified, to target specific miRNA that is characterized in overexpression through targeting some pathway that involved in the miRNA biogenesis, at last, provided functions effectiveness, [154] [155][156].

Masking miRNA works to prevent inhibition mRNA from affecting endogenous miRNA [153,157], consisting of single-strand antisense oligonucleotides that interact with the binding site of miRNA in the 3'UTR of the target mRNA[158].

Another type was miRNA sponges that contain multiple binding sites to targeted miRNA that is separated by a few nucleotides, which is typically either viral vector or plasmid and introduced to gen through insertion into 3'UTR of selective gen that is driven by RNA polymerase II promoter [159], Figure 2(b).

There are some limitations of using miRNA as therapy, such as extracellular blockage in case of phagocytosis, degradation by nucleases enzyme, complement opsonization, or through intracellular blocking like non-specific site targeting ineffective cellular taking; regardless of this limitation, miRNA is still ideal targeting as a therapy due to safety, simplicity, effectiveness and easy contributed [160,161] and took multiple advantageous to the improvement of neurodegenerative disease consequences.

Conclusion and future perspective

Recently increased evidence of neurodegenerative disease progression, which can affect aged people and young adults. Therefore, these diseases are a tremendous burden on the health organizations of each country, consequently needing emerging tools and biomarkers facilities in the early diagnosis and treatment to decrease the problem issues of these disorders. One of the promising molecules that add to the early diagnosis of this disease and identify possible pathological mechanisms that lead to the development of those disorders through increased or decreased expression, even if it can be used as therapy through many strategies that developed, is miRNAs. Despite related problems to blood-brain barrier (BBB) that prevent the miRNA from acting appropriately in brain tissues, many promising transporting methods can improve this problem, such as viral vectors and non-viral vectors [162], [33]. So we need increasing investigation of brain-enriched miRNA due to plays a protective or inflammatory role, and by identifying novel pathways that participate in developing this neurodegenerative disease that can assist to considered miRNA-based therapy designed.

Abbreviations

AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; PD, Parkinson's disease; HD, Huntington's disease; MS, multiple sclerosis; CX3CL1, fractalkine; miRNAs, MicroRNAs; nc-RNA, non-coding RNAs; pri-miRNA, primary miRNA; pre-miRNA, precursor miRNA; DGCR8, DiGeorge critical region 8; Ago, Argonaute; RISC, RNA-induced silencing complex; NF-KB, nuclear factor-kappa B; FUS, Fused in sarcoma; TDP-43, Transactive response DNA binding protein; C9orf72, chromosome 9 open reading frame 72; SOD1, superoxide dismutase 1; MN, motor neurons; MPP+, 1-methyl-4-phenylpyridinium; DA, dopamine; A β , amyloid β -peptide; NFTs, neurofibrillary tangles; CIS, clinically isolated syndrome; RRMS, relapsing remitting multiple sclerosis; PPMS, primary progressive multiple sclerosis; sEVs, small extracellular vesicle; PGC-1 α , peroxisome proliferator-activated receptor- γ coactivator; ROS, reactive oxygen species; ECF, extracellular fluid; HC, healthy control; ROS; reactive oxygen species.

Author's contribution: This review was theorized by Jalil Tavakol-Afshari. Literature search was performed and was written by Zahraa Alkhazaali-Ali. The manuscript was critically reviewed and edited by Jalil Tavakol-Afshari, Sajad Sahab-Negah, and Amir Reza Boroumand. All authors read and approved the final manuscript.

Acknowledgements: We would like to thank all individuals participate in literature review.

Consent to participate: Not applicable

Ethical Approval: Not applicable

Consent to Publish: Not applicable.

Competing Interests: The authors declare no competing interests.

Data availability: Not applicable

Funding: The authors declare that no funds were received during the preparation of this manuscript.

References

1. Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. *Dis Model Mech* 10:499–502
2. De Felice B, Mondola P, Sasso A, et al (2014) Small non-coding RNA signature in multiple sclerosis patients after treatment with interferon- β . *BMC Med Genomics* 7:1–9
3. Li S, Lei Z, Sun T (2023) The role of microRNAs in neurodegenerative diseases: A review. *Cell Biol Toxicol* 39:53–83
4. Heemels M-T (2016) Neurodegenerative diseases. *Nature* 539:179–180
5. Ettle B, Schlachetzki JCM, Winkler J (2016) Oligodendroglia and myelin in neurodegenerative diseases: more than just bystanders? *Mol Neurobiol* 53:3046–3062
6. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. *Nat Rev*

Immunol 14:463–477

- 7. Marogianni C, Sokratous M, Dardiotis E, et al (2020) Neurodegeneration and inflammation—an interesting interplay in Parkinson's disease. *Int J Mol Sci* 21:8421
- 8. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. *Mol Neurobiol* 53:1181–1194
- 9. Han D, Dong X, Zheng D, Nao J (2020) MiR-124 and the underlying therapeutic promise of neurodegenerative disorders. *Front Pharmacol* 10:1555
- 10. Essandoh K, Li Y, Huo J, Fan G-C (2016) MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. *Shock* 46:122
- 11. Colonna M, Burovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. *Annu Rev Immunol* 35:441
- 12. Shi Y, Holtzman DM (2018) Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. *Nat Rev Immunol* 18:759–772
- 13. Chamera K, Trojan E, Szuster-Głuszcza M, Basta-Kaim A (2020) The potential role of dysfunctions in neuron-microglia communication in the pathogenesis of brain disorders. *Curr Neuropharmacol* 18:408–430
- 14. Poniatowski ŁA, Wojdasiewicz P, Krawczyk M, et al (2017) Analysis of the role of CX3CL1 (Fractalkine) and its receptor CX3CR1 in traumatic brain and spinal cord injury: insight into recent advances in actions of neurochemokine agents. *Mol Neurobiol* 54:2167–2188
- 15. Tarozzo G, Bortolazzi S, Crochemore C, et al (2003) Fractalkine protein localization and gene expression in mouse brain. *J Neurosci Res* 73:81–88
- 16. Chen Z, Yuan Z, Yang S, et al (2023) Brain energy metabolism: astrocytes in neurodegenerative diseases. *CNS Neurosci Ther* 29:24–36
- 17. Julia TCW, Qian L, Pipalia NH, et al (2022) Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. *Cell* 185:2213–2233
- 18. Chen J, Wang F, Huang N, et al (2022) Oligodendrocytes and myelin: Active players in neurodegenerative brains? *Dev Neurobiol* 82:160–174
- 19. Lee S-H, Rezzonico MG, Friedman BA, et al (2021) TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease. *Cell Rep* 37:
- 20. Correale J, Marrodon M, Ysraelit MC (2019) Mechanisms of neurodegeneration and axonal dysfunction in progressive multiple sclerosis. *Biomedicines* 7:14
- 21. Viswambharan V, Thanseem I, Vasu MM, et al (2017) miRNAs as biomarkers of neurodegenerative disorders. *Biomark Med* 11:151–167
- 22. Szelagowski A, Kozakiewicz M (2023) A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. *Oxid Med Cell Longev* 2023:
- 23. Rege SD, Geetha T, Pondugula SR, et al (2013) Noncoding RNAs in neurodegenerative diseases. *Int Sch Res Not* 2013:
- 24. Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, et al (2019) Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. *Mol Neurobiol* 56:2339–2351
- 25. Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. *Oncogene* 25:6176–6187
- 26. Sharma S, Lu H-C (2018) microRNAs in neurodegeneration: current findings and potential impacts. *J Alzheimer's Dis Park* 8:
- 27. Cho KHT, Xu B, Blenkiron C, Fraser M (2019) Emerging roles of miRNAs in brain development and perinatal brain injury. *Front Physiol* 10:227
- 28. Lee Y, Kim M, Han J, et al (2004) MicroRNA genes are transcribed by RNA polymerase II. *EMBO J* 23:4051–4060
- 29. Lee Y, Ahn C, Han J, et al (2003) The nuclear RNase III Drosha initiates microRNA processing. *Nature* 425:415–419
- 30. Gregory RI, Yan K, Amuthan G, et al (2004) The Microprocessor complex mediates the genesis of microRNAs. *Nature* 432:235–240
- 31. Okada C, Yamashita E, Lee SJ, et al (2009) A high-resolution structure of the pre-microRNA nuclear export machinery. *Science* (80-) 326:1275–1279
- 32. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. *Nucleic Acids Res* 32:4776–4785
- 33. Roy B, Lee E, Li T, Rampersaud M (2022) Role of miRNAs in neurodegeneration: From disease cause to tools of biomarker discovery and therapeutics. *Genes (Basel)* 13:425
- 34. Weng Y-T, Chang Y-M, Chern Y (2023) The impact of dysregulated microRNA biogenesis machinery and microRNA sorting on neurodegenerative diseases. *Int J Mol Sci* 24:3443
- 35. Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential.

Pharmacol Ther 133:142–150

36. Song M-S, Rossi JJ (2017) Molecular mechanisms of Dicer: endonuclease and enzymatic activity. *Biochem J* 474:1603–1618

37. Chmielarz P, Konovalova J, Najam SS, et al (2017) Dicer and microRNAs protect adult dopamine neurons. *Cell Death Dis* 8:e2813–e2813

38. Saeidi N, Goudarzvand H, Mohammadi H, et al (2023) Dysregulation of miR-193a serves as a potential contributor to MS pathogenesis via affecting RhoA and Rock1. *Mult Scler Relat Disord* 69:104468

39. Muñoz-San Martín M, Gómez I, Quiroga-Varela A, et al (2023) miRNA Signature in CSF From Patients With Primary Progressive Multiple Sclerosis. *Neurol Neuroinflammation* 10:

40. Saeidi NN, Dabiri A, Mansouri R, et al (2023) miRNAs as Valuable Diagnostic Biomarkers in Patients with Multiple Sclerosis. *J ISSN* 2766:2276

41. Abolghasemi M, Ashrafi SA, Asadi M, et al (2022) Altered miR-10, miR-24a, miR-124, and miR-21 Expression in Peripheral Blood Mononuclear Cells of Patients with Multiple Sclerosis

42. Unlu HT, Saridas F, Taskapilioglu O, et al (2023) Investigation of miR-146a expression profiles in fecal samples of patients with multiple sclerosis for early diagnosis and treatment. *Neurol Sci Neurophysiol* 40:81

43. Citterio LA, Mancuso R, Agostini S, et al (2023) Serum and Exosomal miR-7-1-5p and miR-223-3p as Possible Biomarkers for Parkinson's Disease. *Biomolecules* 13:865

44. Cao X-Y, Lu J-M, Zhao Z-Q, et al (2017) MicroRNA biomarkers of Parkinson's disease in serum exosome-like microvesicles. *Neurosci Lett* 644:94–99

45. Dos Santos MCT, Barreto-Sanz MA, Correia BRS, et al (2018) miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson's disease. *Oncotarget* 9:17455

46. Zago E, Dal Molin A, Dimitri GM, et al (2022) Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson's disease patients. *Sci Rep* 12:1330

47. Chen L, Yang J, Lü J, et al (2018) Identification of aberrant circulating mi RNA s in Parkinson's disease plasma samples. *Brain Behav* 8:e00941

48. Kim J, Fiesel FC, Belmonte KC, et al (2016) miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). *Mol Neurodegener* 11:1–16

49. Yang Z, Li T, Li S, et al (2019) Altered expression levels of microRNA-132 and Nurr1 in peripheral blood of Parkinson's disease: potential disease biomarkers. *ACS Chem Neurosci* 10:2243–2249

50. Baumert B, Sobiś A, Gołąb-Janowska M, et al (2020) Local and systemic humoral response to autologous lineage-negative cells intrathecal administration in ALS patients. *Int J Mol Sci* 21:1070

51. Russell AP, Wada S, Vergani L, et al (2013) Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. *Neurobiol Dis* 49:107–117

52. Kong Y, Li S, Zhang M, et al (2021) Acupuncture ameliorates neuronal cell death, inflammation, and ferroptosis and downregulated miR-23a-3p after intracerebral hemorrhage in rats. *J Mol Neurosci* 1–13

53. Takahashi I, Hama Y, Matsushima M, et al (2015) Identification of plasma microRNAs as a biomarker of sporadic Amyotrophic Lateral Sclerosis. *Mol Brain* 8:1–9

54. Alexandrov PN, Dua P, Hill JM, et al (2012) microRNA (miRNA) speciation in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). *Int J Biochem Mol Biol* 3:365

55. Lukiw WJ, Pogue AI (2020) Vesicular transport of encapsulated microRNA between glial and neuronal cells. *Int J Mol Sci* 21:5078

56. Kumar S, Reddy AP, Yin X, Reddy PH (2019) Novel MicroRNA-455-3p and its protective effects against abnormal APP processing and amyloid beta toxicity in Alzheimer's disease. *Biochim Biophys Acta (BBA)-Molecular Basis Dis* 1865:2428–2440

57. Kumar S, Reddy PH (2019) A new discovery of MicroRNA-455-3p in Alzheimer's disease. *J Alzheimer's Dis* 72:S117–S130

58. Zhao Y, Pogue AI, Lukiw WJ (2015) MicroRNA (miRNA) signaling in the human CNS in sporadic Alzheimer's disease (AD)-novel and unique pathological features. *Int J Mol Sci* 16:30105–30116

59. Fan W, Liang C, Ou M, et al (2020) MicroRNA-146a is a wide-reaching neuroinflammatory regulator and potential treatment target in neurological diseases. *Front Mol Neurosci* 13:90

60. Zhao Y, Bhattacharjee S, Jones BM, et al (2014) Regulation of neurotropic signaling by the inducible, NF- κ B-sensitive miRNA-125b in Alzheimer's disease (AD) and in primary human neuronal-glial (HNG) cells. *Mol Neurobiol* 50:97–106

61. Andersen E, Casteigne B, Chapman WD, et al (2021) Diagnostic biomarkers in Alzheimer's disease. *Biomarkers in Neuropsychiatry* 5:100041

62. McKhann G, Drachman D, Folstein M, et al (1984) Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task

Force on Alzheimer's Disease. *Neurology* 34:939

- 63. Mayeux R, Stern Y (2012) Epidemiology of Alzheimer disease. *Cold Spring Harb Perspect Med* 2:a006239
- 64. Hyman BT, Phelps CH, Beach TG, et al (2012) National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. *Alzheimer's Dement* 8:1–13
- 65. Masliah E, Crews L, Hansen L (2006) Synaptic remodeling during aging and in Alzheimer's disease. *J Alzheimer's Dis* 9:91–99
- 66. Pennanen C, Kivipelto M, Tuomainen S, et al (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. *Neurobiol Aging* 25:303–310
- 67. DeKosky ST, Scheff SW, Styren SD (1996) Structural correlates of cognition in dementia: quantification and assessment of synapse change. *Neurodegeneration* 5:417–421
- 68. Katsumata Y, Fardo DW, Kukull WA, Nelson PT (2018) Dichotomous scoring of TDP-43 proteinopathy from specific brain regions in 27 academic research centers: associations with Alzheimer's disease and cerebrovascular disease pathologies. *Acta Neuropathol Commun* 6:1–11
- 69. Berson A, Barbash S, Shaltiel G, et al (2012) Cholinergic-associated loss of hnRNP-A/B in Alzheimer's disease impairs cortical splicing and cognitive function in mice. *EMBO Mol Med* 4:730–742
- 70. Yang Q, Zhao Q, Yin Y (2019) miR-133b is a potential diagnostic biomarker for Alzheimer's disease and has a neuroprotective role. *Exp Ther Med* 18:2711–2718
- 71. Dorval V, Nelson PT, Hébert SS (2013) Circulating microRNAs in Alzheimer's disease: the search for novel biomarkers. *Front Mol Neurosci* 6:24
- 72. Kumar S, Vijayan M, Reddy PH (2017) MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer's disease. *Hum Mol Genet* 26:3808–3822
- 73. Banzhaf-Strathmann J, Benito E, May S, et al (2014) Micro RNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease. *EMBO J* 33:1667–1680
- 74. Hong H, Li Y, Su B (2017) Identification of circulating miR-125b as a potential biomarker of Alzheimer's disease in APP/PS1 transgenic mouse. *J Alzheimer's Dis* 59:1449–1458
- 75. Pan Y, Liu R, Terpstra E, et al (2016) Dysregulation and diagnostic potential of microRNA in Alzheimer's disease. *J Alzheimer's Dis* 49:1–12
- 76. Callens M, Kraskovskaya N, Derevtsova K, et al (2021) The role of Bcl-2 proteins in modulating neuronal Ca²⁺ signaling in health and in Alzheimer's disease. *Biochim Biophys Acta (BBA)-Molecular Cell Res* 1868:118997
- 77. Rohn TT, Vyas V, Hernandez-Estrada T, et al (2008) Lack of pathology in a triple transgenic mouse model of Alzheimer's disease after overexpression of the anti-apoptotic protein Bcl-2. *J Neurosci* 28:3051–3059
- 78. Liu W, Zhao J, Lu G (2016) miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer's disease. *Biochem Biophys Res Commun* 478:852–857
- 79. Di Meco A, Pratico D (2016) MicroRNAs as therapeutic targets for Alzheimer's disease. *J Alzheimer's Dis* 53:367–372
- 80. Vassar R (2004) Bace 1: The β-secretase enzyme in Alzheimer's disease. *J Mol Neurosci* 23:105–113
- 81. Du W, Lei C, Dong Y (2021) MicroRNA-149 is downregulated in Alzheimer's disease and inhibits β-amyloid accumulation and ameliorates neuronal viability through targeting BACE1. *Genet Mol Biol* 44:
- 82. Kouli A, Torsney KM, Kuan W-L (2018) Parkinson's disease: etiology, neuropathology, and pathogenesis. *Exon Publ* 3–26
- 83. Jankovic J (2008) Parkinson's disease: clinical features and diagnosis. *J Neurol Neurosurg Psychiatry* 79:368–376
- 84. Narhi L, Wood SJ, Steavenson S, et al (1999) Both familial Parkinson's disease mutations accelerate α-synuclein aggregation. *J Biol Chem* 274:9843–9846
- 85. Alcalay RN, Caccappolo E, Mejia-Santana H, et al (2010) Frequency of known mutations in early-onset Parkinson disease: implication for genetic counseling: the consortium on risk for early onset Parkinson disease study. *Arch Neurol* 67:1116–1122
- 86. Chaudhuri KR, Healy DG, Schapira AH V (2006) Non-motor symptoms of Parkinson's disease: diagnosis and management. *Lancet Neurol* 5:235–245
- 87. Goh SY, Chao YX, Dheen ST, et al (2019) Role of MicroRNAs in Parkinson's disease. *Int J Mol Sci* 20:5649
- 88. Cressatti M, Juwara L, Galindez JM, et al (2020) Salivary microR-153 and microR-223 levels as potential diagnostic biomarkers of idiopathic Parkinson's disease. *Mov Disord* 35:468–477
- 89. Gui Y, Liu H, Zhang L, et al (2015) Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. *Oncotarget* 6:37043
- 90. Zhu J, Wang S, Qi W, et al (2018) Overexpression of miR-153 promotes oxidative stress in MPP+-induced PD model by negatively regulating the Nrf2/HO-1 signaling pathway. *Int J Clin Exp Pathol* 11:4179
- 91. Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress.

Biochim Biophys Acta (BBA)-Molecular Cell Res 1865:721–733

- 92. Bai X, Tang Y, Yu M, et al (2017) Downregulation of blood serum microRNA 29 family in patients with Parkinson's disease. *Sci Rep* 7:5411
- 93. Bhinge A, Namboori SC, Bithell A, et al (2016) MiR-375 is essential for human spinal motor neuron development and may be involved in motor neuron degeneration. *Stem Cells* 34:124–134
- 94. Cai L-J, Tu L, Li T, et al (2020) Up-regulation of microRNA-375 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson's disease by inhibiting SP1. *Aging (Albany NY)* 12:672
- 95. Citron BA, Dennis JS, Zeitlin RS, Echeverria V (2008) Transcription factor Sp1 dysregulation in Alzheimer's disease. *J Neurosci Res* 86:2499–2504
- 96. Yang X, Zhang M, Wei M, et al (2020) MicroRNA-216a inhibits neuronal apoptosis in a cellular Parkinson's disease model by targeting Bax. *Metab Brain Dis* 35:627–635
- 97. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. *Cell death Differ* 13:1378–1386
- 98. De Falco M, De Luca L, Acanfora F, et al (2001) Alteration of the Bcl-2: Bax ratio in the placenta as pregnancy proceeds. *Histochem J* 33:421–425
- 99. Cantoni C, Ghezzi L, Choi J, et al (2023) Targeting miR-223 enhances myeloid-derived suppressor cell suppressive activities in multiple sclerosis patients. *Mult Scler Relat Disord* 104839
- 100. Orton S-M, Herrera BM, Yee IM, et al (2006) Sex ratio of multiple sclerosis in Canada: a longitudinal study. *Lancet Neurol* 5:932–936
- 101. Maciak K, Dziedzic A, Saluk J (2023) Remyelination in multiple sclerosis from the miRNA perspective. *Front Mol Neurosci* 16:1199313
- 102. Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. *Trends Immunol* 26:485–495
- 103. Ahlbrecht J, Martino F, Pul R, et al (2016) Deregulation of microRNA-181c in cerebrospinal fluid of patients with clinically isolated syndrome is associated with early conversion to relapsing-remitting multiple sclerosis. *Mult Scler J* 22:1202–1214
- 104. Harris VK, Tuddenham JF, Sadiq SA (2017) Biomarkers of multiple sclerosis: current findings. *Degener Neurol Neuromuscul Dis* 19–29
- 105. Ma Q, Zhao H, Tao Z, et al (2016) MicroRNA-181c exacerbates brain injury in acute ischemic stroke. *Aging Dis* 7:705
- 106. Zhang L, Dong L-Y, Li Y-J, et al (2012) The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. *J Neuroinflammation* 9:1–12
- 107. Kramer S, Haghikia A, Bang C, et al (2019) Elevated levels of miR-181c and miR-633 in the CSF of patients with MS: A validation study. *Neurol Neuroinflammation* 6:e623
- 108. Bergman P, Piket E, Khademi M, et al (2016) Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. *Neurol Neuroinflammation* 3:
- 109. Moore CS, Rao VTS, Duraifourt BA, et al (2013) miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. *Ann Neurol* 74:709–720
- 110. Leng R-X, Pan H-F, Qin W-Z, et al (2011) Role of microRNA-155 in autoimmunity. *Cytokine Growth Factor Rev* 22:141–147
- 111. Maciak K, Dziedzic A, Miller E, Saluk-Bijak J (2021) miR-155 as an important regulator of multiple sclerosis pathogenesis. A review. *Int J Mol Sci* 22:4332
- 112. Martín M-S, Reverter G, Robles-Cedeño R, et al (2019) Analysis of miRNA signatures in CSF identifies upregulation of miR-21 and miR-146a/b in patients with multiple sclerosis and active lesions. *J Neuroinflammation* 16:1–10
- 113. Galloway DA, Blandford SN, Berry T, et al (2019) miR-223 promotes regenerative myeloid cell phenotype and function in the demyelinated central nervous system. *Glia* 67:857–869
- 114. Marangon D, Boda E, Parolisi R, et al (2020) In vivo silencing of mir-125a-3p promotes myelin repair in models of white matter demyelination. *Glia* 68:2001–2014
- 115. Lecca D, Marangon D, Coppolino GT, et al (2016) MiR-125a-3p timely inhibits oligodendroglial maturation and is pathologically up-regulated in human multiple sclerosis. *Sci Rep* 6:34503
- 116. Brusati A, Ratti A, Pensato V, et al (2022) Analysis of miRNA rare variants in amyotrophic lateral sclerosis and in silico prediction of their biological effects. *Front Genet* 13:1055313
- 117. Hardiman O, Al-Chalabi A, Chio A, et al (2017) Amyotrophic lateral sclerosis. *Nat Rev Dis Prim* 3:1–19
- 118. Goutman SA, Hardiman O, Al-Chalabi A, et al (2022) Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. *Lancet Neurol* 21:465–479
- 119. Joilin G, Leigh PN, Newbury SF, Hafezparast M (2019) An Overview of MicroRNAs as Biomarkers of ALS.

Front. Neurol. 10

- 120. Rinchetti P, Rizzuti M, Faravelli I, Corti S (2018) MicroRNA metabolism and dysregulation in amyotrophic lateral sclerosis. *Mol Neurobiol* 55:2617–2630
- 121. Alvia M, Aytan N, Spencer KR, et al (2022) MicroRNA alterations in chronic traumatic encephalopathy and amyotrophic lateral sclerosis. *Front Neurosci* 16:855096
- 122. Toivonen JM, Manzano R, Oliván S, et al (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. *PLoS One* 9:e89065
- 123. Vaz AR, Vizinha D, Morais H, et al (2021) Overexpression of miR-124 in motor neurons plays a key role in ALS pathological processes. *Int J Mol Sci* 22:6128
- 124. Magen I, Yacovzada NS, Yanowski E, et al (2021) Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. *Nat Neurosci* 24:1534–1541
- 125. Cunha C, Santos C, Gomes C, et al (2018) Downregulated glia interplay and increased miRNA-155 as promising markers to track ALS at an early stage. *Mol Neurobiol* 55:4207–4224
- 126. Xu Q, Zhao Y, Zhou X, et al (2018) Comparison of the extraction and determination of serum exosome and miRNA in serum and the detection of miR-27a-3p in serum exosome of ALS patients. *Intractable rare Dis Res* 7:13–18
- 127. Reichenstein I, Eitan C, Diaz-Garcia S, et al (2019) Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology. *Sci Transl Med* 11:eaav5264
- 128. Yang L, Embree LJ, Hickstein DD (2000) TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. *Mol Cell Biol* 20:3345–3354
- 129. Kawahara Y, Mieda-Sato A (2012) TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. *Proc Natl Acad Sci* 109:3347–3352
- 130. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. *Hum Mol Genet* 19:R46–R64
- 131. Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. *Neuron* 79:416–438
- 132. Koike Y, Onodera O (2023) Implications of miRNAs dysregulation in amyotrophic lateral sclerosis: Challenging for clinical applications. *Front Neurosci* 17:1131758
- 133. Liu H, Lan S, Shi X-J, et al (2023) Systematic review and meta-analysis on microRNAs in Amyotrophic Lateral Sclerosis. *Brain Res Bull*
- 134. Di Pietro L, Lattanzi W, Bernardini C (2018) Skeletal muscle microRNAs as key players in the pathogenesis of amyotrophic lateral sclerosis. *Int J Mol Sci* 19:1534
- 135. Pegoraro V, Marozzo R, Angelini C (2020) MicroRNAs and HDAC4 protein expression in the skeletal muscle of ALS patients. *Clin Neuropathol* 39:105
- 136. Nie M, Deng Z-L, Liu J, Wang D-Z (2015) Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. *Biomed Res Int* 2015:
- 137. Williams AH, Valdez G, Moresi V, et al (2009) MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. *Science* (80-) 326:1549–1554
- 138. Butovsky O, Jedrychowski MP, Cialic R, et al (2015) Targeting mi R-155 restores abnormal microglia and attenuates disease in SOD 1 mice. *Ann Neurol* 77:75–99
- 139. Gomes C, Sequeira C, Likhite S, et al (2022) Neurotoxic astrocytes directly converted from sporadic and familial ALS patient fibroblasts reveal signature diversities and miR-146a theragnostic potential in specific subtypes. *Cells* 11:1186
- 140. Campos-Melo D, Doppelmair CA, He Z, et al (2013) Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. *Mol Brain* 6:1–13
- 141. He M, Zhang H, Tang Z, Gao S (2021) Diagnostic and therapeutic potential of exosomal microRNAs for neurodegenerative diseases. *Neural Plast* 2021:1–13
- 142. Akbari A, Jabbari N, Sharifi R, et al (2020) Free and hydrogel encapsulated exosome-based therapies in regenerative medicine. *Life Sci* 249:117447
- 143. Liu X, Yang Y, Li Y, et al (2017) Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. *Nanoscale* 9:4430–4438
- 144. Kim HJ, Seo SW, Chang JW, et al (2015) Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer's disease dementia: a phase 1 clinical trial. *Alzheimer's Dement Transl Res Clin Interv* 1:95–102
- 145. Erdő F, Bors LA, Farkas D, et al (2018) Evaluation of intranasal delivery route of drug administration for brain targeting. *Brain Res Bull* 143:155–170
- 146. Beutler AS, Reinhardt M (2009) AAV for pain: steps towards clinical translation. *Gene Ther* 16:461–469
- 147. Kaplitt MG, Feigin A, Tang C, et al (2007) Safety and tolerability of gene therapy with an adeno-associated

virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. *Lancet* 369:2097–2105

- 148. Ekin A, Karatas OF, Culha M, Ozen M (2014) Designing a gold nanoparticle-based nanocarrier for microRNA transfection into the prostate and breast cancer cells. *J Gene Med* 16:331–335
- 149. Conde J, Oliva N, Atilano M, et al (2016) Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. *Nat Mater* 15:353–363
- 150. Zhao J, Lai H, Lu H, et al (2016) Fructose-coated nanodiamonds: promising platforms for treatment of human breast cancer. *Biomacromolecules* 17:2946–2955
- 151. Yu C, Qian L, Uttamchandani M, et al (2015) Single-vehicular delivery of antagomir and small molecules to inhibit miR-122 function in hepatocellular carcinoma cells by using "smart" mesoporous silica nanoparticles. *Angew Chemie Int Ed* 54:10574–10578
- 152. Austin TM (2013) First microRNA mimic enters clinic. *Nat Biotechnol* 31:577
- 153. Van Rooij E, Kauppinen S (2014) Development of micro RNA therapeutics is coming of age. *EMBO Mol Med* 6:851–864
- 154. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. *Nat Rev Drug Discov* 16:203–222
- 155. Walayat A, Yang M, Xiao D (2018) Therapeutic implication of miRNA in human disease. *Antisense Ther*
- 156. Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. *Gene Ther* 18:1111–1120
- 157. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. *Nat Rev Drug Discov* 13:622–638
- 158. Wang Z (2011) The principles of MiRNA-masking antisense oligonucleotides technology. *MicroRNA Cancer Methods Protoc* 43–49
- 159. Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. *Rna* 16:2043–2050
- 160. Chen Y, Zhao H, Tan Z, et al (2015) Bottleneck limitations for microRNA-based therapeutics from bench to the bedside. *Die Pharm Int J Pharm Sci* 70:147–154
- 161. Gavrilov K, Saltzman WM (2012) Therapeutic siRNA: principles, challenges, and strategies. *Yale J Biol Med* 85:187
- 162. Yang N (2015) An overview of viral and nonviral delivery systems for microRNA. *Int J Pharm Investig* 5:179