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Abstract: Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral 

sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS), 

arise due to numerous causes like protein accumulation and autoimmunity, characterized by 

neurologic depletion which lead to incapacity in normal physiological function such as thinking 

and movement in these patients. Glial cells perform a critical role in protective neuronal function; 

in the case of neuroinflammation, glial cell dysfunction can promote the development of 

neurodegenerative diseases. MiRNA participates in gene regulation and plays a vital role in many 

biological processes in the body; in the central nervous system (CNS), it can play an essential part 

in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation 

occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative 

diseases (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), 

and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic 

agent in these disorders. Finally, we highlighted miRNA as therapy.   
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Introduction 

Neurodegenerative disease is a collective neurological disorder characterized by neuronal 

degradation that ultimately leads to cognitive and movement disability, includes Alzheimer's disease 

(AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD) and 

multiple sclerosis (MS) [1,2]. According to the World Health Organization, this disorder could 

become the second deadliest disease after cancer in the next fifteen years [3]. nervous system  is 

nearly non- regenerative ,thus ; the development of these  diseases are permanent[4]. 

Glial cells, which include microglia, astrocyte, and oligodendrocyte, play a significant role in 

protective neuronal function and regulation[5]. In neurodegenerative disease, Progression of the 

neuroinflammatory process occurs predominantly through microglia and astrocyte activation [6]. 

Neuroinflammation plays an active role in the pathogenesis of different neurodegenerative 

diseases [7], and microglia activation is a key factor in neuroinflamation[8]. microglia resident  

macrophage  in brain[9] can act as either M1(pro-inflammatory) or M2 (anti-inflammatory) [10]. In 

the case of neuron impairment, this leads to microglia activation and the release of inflammatory 

cytokines to improve neuronal damage [11]. However, a neurodegenerative disorder characterized 

by persistent chronic inflammation will further activate microglia, which indicates more damage to 
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neurons [9], through secreting various inflammatory and cytokine mediators [12]. (Figure 1). CX3CR1 

receptor is found on the surface of different cells, including microglial cells [13], that interact with 

CX3CL1,[14] that found on neurons within globus pallidus, thalamus, striatum, [15], 

CX3CR1/CX3CL1  which acts as in different biological phenomena in CNS through regulating 

interaction between microglia, neurons, and immune cell, and participates in different cases of 

neuropathologies [14]. 

Astroceyt is one of the glial cells that are abundant in CNS and participate in metabolic 

supplement for neurons and participate in adjacent cell protection through liberating important 

chemical messengers such as growth factors, glutamine, lactic acid, and elimination of K+ and 

increased glutamate[16]. The metabolic exchange between astrocytes, microglia, and neurons 

mediates chronic inflammation and oxidative stress, leading to neurodegenerative disease 

progression[16,17]. 

The essential purpose of oligodendrocytes is myelin generation, and they provide support for 

neurons and prevent cell death via stimulating myelin recovery[18,19]. Chronic demyelination, such 

as in (MS) leads to myelin loss due to different pathological mechanisms such as loss of function of 

oligodendrocyte and mitochondrial dysfunction, oxidative stress enhancement, and at last lead to 

neuronal cell death. [20]. 

Early diagnosis of neurodegenerative disease can be helpful in disease treatment and 

elimination of its possible consequences. Thus one of the biomarkers reliable for this purpose is  

miRNA [21]   
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Figure 1. Microglia and principle activation in the brain. Microglia normally present in a resting state 

that contains toll-like receptor (TLR)  and CX3CR1, and due to activation such as in case of ageing, 

pathogen,  and depression of dead cell lead to activation of microglia through  TLR and CX3CR1;  

to become either   (M1) that secreted proinflammatory cytokine-like tumor necrotic factor-α (TNF-

α), interleukin-6  (IL-6) , reactive oxygen species (ROS) , or (M2) that secreted anti-inflammatory 

cytokine that have protect effect for example (IL-4, IL-10). In case of persist activation of microglia, 

this enhancing the persistent secretion of the pro-inflammatory cytokine, increased T-cell activation, 

which in turn activation of microglia that will affect astrocyte activation and loss of oligodendrocyte 

function; all this contributes to the neuronal death. This Fig was created by using (Adobe Illustrator 

2020). 

MicroRNAs (miRNAs) which play a significant role in neurodegenerative disease through 

different physiological process, belongs to non-coding RNAs (ncRNA)[3], and one of the 

characteristics of ncRNA do not encode specific protein[22]. NcRNA that is present typically in (CNS) 

that participates in the development and pathogenesis of this system, can be classified as small 

ncRNA that includes transfer RNA (tRNA), microRNAs (miRNAs), short small interference 

RNAs(siRNAs), piwi-interacting RNAs (pi-RNA), and long non-coding RNAs that include natural 

antisense transcript (NATs) and long intragenic  RNAs non-coding RNAs (linc RNAs)[23],  

MicroRNA with lengths of 21-25 nucleotides plays a critical role in the performance of many 

diverse biological functions in the cells, such as cell development, stem cell differentiation, oxidative 

stress[24], and tumor genesis [25]. Several miRNAs circulate in the central nervous system and play 

an essential role in neural maturation, differentiation, and development [26,27]. 

miRNA are synthesis from double–strand primary miRNA (pri-miRNA)  that is synthesized 

via  RNA polymerase II [28] and undergo more processing in the nucleus to generate precursor 

miRNA( pre-miRNA) hairpins by Drosha ( type III ribonuclease ) and DiGeorge critical region 8 

(DGCR8) (RNA binding protein) [29], [30]. Then pre-miRNA exists in the cytoplasm through the 

nuclear pore complex in compensation with exportin-5 (XPO5) and GTPase RanGTP to protect it from 

the degradation process that occurs through nuclease enzyme[31,32]. In the cytoplasm, Dicer ( type 

III ribonuclease) leads to cleavage of pre-miRNA to form mature miRNA; this mature miRNA is 

loaded into Argonaute protein (Ago)  into the RNA-induced silencing complex ( RISC), then when 

binding to the target region on mRNA (3'UTR) lead to suppression this region.[33].in case of any 

defect occurs in these processes, it can participate in the development of neurodegenerative diseases 

[35], Figure 2 (c). 

In neurodegenerative disease, miRNAs play a significant role in neuronal malfunction through 

an increased buildup of protein and peptides in the pathogenic form [35]. The dicer enzyme in the 

nucleus is essential in miRNA synthesis [36]. When knocked out of specific areas in the brain, this 

leads to removing the dicer enzyme, and specific miRNA will affect and not be made, thus leading 

to the manifestation of neurodegenerative disorders[37]. 

This study focuses on the role of miRNAs in participation as diagnostic or prognosis in AD, PD, 

MS, and ALS or as therapy; Finally, we discuss types of therapeutic miRNA overall. 
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Figure 2. Schematic diagram of miRNA's transportation system, therapeutic, and machinery 

synthesis. (A) Showed transportation system, miRNA can be transported to cells inside the virus-like 

particles, lipid nanoparticles and exosomes. (B) Therapeutics miRNA can be a synthetic double or 

single strand that targets miRNA syntheses in the nucleus or cytoplasm, like (mimic miRNA, anti-

miRNA, masking miRNA). (C) Synthesis of miRNA starts in the nucleus, pri-miRNA transcript from 

RNA polymerase II; after that,  pre-miRNA formed through the processing of pri-miRNA by dorsha 

and DGCR8, pre-miRNA exported into the cytoplasm through nuclear pore in combination with  

XPO5, RanGTP, dicer lead to form mature miRNA in the cytoplasm, that mature miRNA loaded to 

(AGO), the unwanted stranded degraded, the functional strand loaded to RISC and lastly targeted 

complementary region 3' UTR on mRNA, which prompts mRNA degradation or block translation,  

this Fig. created by using (Adobe Illustrator 2020). 

Role of miRNAs in neurodegenerative diseases.  

Many mechanisms can facilitate damaging neurons and play a role in the development of 

different neurodegenerative diseases (Figure 3). In this section, we discuss AD, PD, MS and ALS and 

how can preserve miRNA in the neurodegenerative diseases as pathological biomarkers, diagnosis 

or therapy, Table 1. 

Table 1. Some miRNA and their potential use in neurodegenerative diseases. 

Type of 

Disease 

Type of miRNA Expression level indication reference 

MS Mir-193a decreased Prognostic, diagnostic 

marker, and act as 

therapeutic 

[38] 

MS  Let7b-5p, mir-

143-3p 

 

 

Decreased in CSF Promising miRNA 

candidate to discriminate 

PPMS 

[39] 

MS Mir-155a, mir-

146a 

Increased in level (serum) 

 

[40] 
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Mir-34a, mir-

143a,mir-373a 

 

 

Decreased in level (serum) Act as diagnostic, 

prognostic and 

therapeutic 

MS Mir-10,mir-

21,mir-124 

Decreased (blood) in the pathogenesis of  

MS 

[41] 

MS MIR-146a Decreased in whole blood and 

feces of   RRMS in compression 

with CIS, decreased in female. 

 

In fecal as Diagnostic, 

prognostic biomarker  

[42] 

PD Mir -7-1-5p, mir-

223-3p 

Increased in serum and serum 

isolated exosome 

play a role in 

inflammation in PD, a 

Potential biomarker to 

discriminate PD from HC 

[43] 

PD MIR-24, MIR-

195 

Increased serum-EVs 

 

 

Act as an active 

biomarker in the 

diagnosis of PD 

[44] 

MIR-19b 

 

Decreased Serum -EVs 

PD MIR-22-3P Decreased 

 

 

 

As a diagnostic 

parameter  in the early 

stage of PD 

[45] 

22-3P, MIR-10b-

5p,mir-151a-3p 

increased 

(CSF) 

PD Has-mir-144-3p Decreased in 

serum 

Play a role in the 

progression of the disease 

and as an Early marker of 

PD. 

[46] 

PD Mir-27-a, Increased plasma Can act in early diagnosis 

of PD, 

Use of mir-27-a, mir 27-b  

as a potential therapeutic 

target 

[47], [48] 

Mir-142-3p, mir-

222,let-7a,let-7f 

Decreased (plasma) 

PD Mir-132 Increased( in males than in 

females) in prephrial blood 

Biomarker for PD as 

diagnostic and disease 

progression 

[49] 

ALS miR-16-5p 

 

increased in plasma, CSF Neuroprotective role in 

ALS after administration 

[50] 
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mir-206 Increased 

plasma 

of intrathecal linage 

negative cell, 

 

ALS 

 

miR-23a Increase in skeletal muscle in 

ALS patients and mouse model 

Therapeutic inhibition of 

mir-23a may be a strategy 

to      rescue 

peroxisome proliferator-

activated receptor-γ 

coactivator     (PGC-1α 

)activity and ameliorate 

skeletal     muscle 

mitochondrial 

function  in ALS, and 

down-regulation of miR-

23a-3p has been proven 

to alleviate neuronal cell 

death  and ROS 

 

[51], [52] 

ALS Hsa-mir-4649-

5p 

 

Increased 

(plasma) 

 

Acts as diagnostic 

markers 

[53] 

Has-mir-4299 

 

Decreased (plasma) 

AD MIR-155,mir-

146a, mir-125b 

,mir-9,mir-34a 

Upregulation 

Brain tissue of AD, ECF and CSF 

Biomarker for AD [54], [55] 

AD Mir-455-3p Increased levels in  blood 

serum, CSF post-mortem brain 

tissues, AD fibroblasts, AD β-

lymphocytes, AD cell lines, 

transgenic AD (TgAD) mouse 

models and AD CSF 

Biomarker and 

therapeutic  

[56,57] 

AD Mir146a-5p Upregulated 

in AD brain, neocortex and 

hippocampus 

Act as Pathogenesis and 

therapeutic biomarker 

[58,59] 

AD Mir-125b Upregulated in AD brain tissue Pathological role can be 

used as  treating therapy 

by using anti-mir 125b, 

anti-NF-kB 

[60] 

Table 1 Abbreviations: AD, Alzheimer`s disease; ALS, amyotrophic lateral sclerosis; PD, Parkinson's disease; 

MS, multiple sclerosis, PPMS; primary progressive multiple sclerosis; CIS, clinically isolated syndrome; ROS; 
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reactive oxygen species , NF-KB, nuclear factor-kappa B; EVs , extravascular vesicle; HC, healthy control; CSF, 

cerebrospinal fluid.   . 

Alzheimer's disease (AD) 

Alzheimer's disease (AD) is the most common prevalent neurodegenerative disease affecting 

aged people[61], and development as mental decline lead to memory problem and difficulty in 

language and social communication [62] [63]. 

AD occurs due to the accumulation of (amyloid β-peptide )Aβ plaques extracellular in the post-

mortem, and neurofibrillary tangles (NFTs) that( composed from abnormal hyperphosphorylated 

tau-protein) as intracellular  [64]. Thus, these triggers lead to changing occurs in synapses and 

synaptic plasticity in different parts of the brain, such as the neocortex, hippocampus, and limbic 

system, and lead to cognitive impairment in these patients with AD  [65,66], [67]. 

Many other proteins can participate in the pathological of AD, such as cytoplasmic inclusion of 

TDP-43 accumulation in different parts of the brain hippocampus, amygdala, frontal neocortex, and 

entorhinal cortex/ inferior temporal cortex[68] and nuclear protein impairments hnRNP A1 and 

A2/B1 due to neurotoxin –mediated cholinergic impairments, could be lead to defective in processing 

of miRNA that contribute to pathogenesis and disease development [34,69]. 

 Many investigators informed the role of miRNA in different diseases, such as AD [70], that 

showed miR-133b could be a promising biomarker for AD patients. Others published that miR-

29,miR-181, and miR-9 play a significant role in immune response and inflammation in AD.[71] 

There was noticed when overexpression of miR-455-3P in patients with AD this play as a 

pathological role in AD and can be used as a peripheral biomarker[72]. When Mir-125b 

overexpression in the brain frontal cortex of AD patients, this accelerated hyperphosphorylation of 

tau protein brain mice led to memory and learning skills impairments [73] and reported that miR-28-

3P, miR-125b, and miR-9 might consider as prospective indicators for AD[74]. As explained 

previously, Aβ plaques accumulation in the brain, they have found numbers of miRNAs participate 

in the regulation of Aβ levels, as mir-15 plays a significant role in the regulation of  BCL2 [75], while 

miR-34 downregulates BCL2 translation. BCL2 was associated with AD[76] when increased in a level 

reduced cognitive impairment progression and Aβ plaques in the AD of mouse model  [77]. Mir 106 

can be targeted as therapy in AD due to its ability to inhibit phosphorylation of tau protein through 

inhibition of Aβ1-42 at Tyr18[78]; therefore, when directing this pathway that participated in the 

pathogenesis of AD, through this miRNA can resort to the function the cell of the brain.   

miRNAs can play an essential role in BACE-1 regulation[79]  that act as β-secrets 1 that 

proteolysis of amyloid precursor protein (APP) to liberated  Aβ peptide  [80], through increasing 

or decreasing levels of BACE-1 [79], one of these miRNAs, is mir 149 was noted decreased in 

expression in serum of AD patients and can prospective diagnostic biomarker for AD, in case of 

overexpression could suppress Aβ accumulation through targeting BACE-1 in AD model cells and 

improving neuronal viability and can target as therapy for this disease [81].   

Parkinson's disease (PD)  

It is a disease that belongs to neurodegenerative disorders, affecting people with age over 65 

years [82]. Arise from losing of dopamine neurons in the brain; this dopamine can act as a 

neurotransmitter, and due to this depletion, leads to movement slowing and reduced balance  [83], 

furthermore was noted formation of inclusions of Lewy and Lewy neuritis bodies in the cytoplasm 

of a neuronal cell that mainly involved synuclein alpha protein (α-syn) [84]. Less than 20% account 

for a genetic mutation that participates in PD development that includes Parkin (PARK2), 

Parkinsonism-associated deglaze (DJ-1), α-synuclein ( SNCA), and leucine-rich repeat kinase 2 ( 

LRRK2)[85].  

PD can advance as pathological and nonpathological progression as non–motor indications can 

be noted, such as constipation, sleep disorders, and depression[86]. 

Due to miRNAs play an essential role in biological cellular functions [87]; therefore, they can act 

as a biomarker in the identification of PD; one of these miRNAs is mir 132; in one study that showed 
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overexpression of miR-132 in plasma samples in males with PD than females in compression to 

control, and established a  potential role of mir 132 in the regulation of Nurr1 protein that participate 

in dopamine regulation[49]. Other miRNAs contributing to the rule of α-syn are miR-223 and miR-

153, noted down-regulated in expression in serum, brain, and saliva of the PD mice model and thus 

can be considered a diagnostic biomarker in this disease [88]. Other published that miR-153 Increased 

in level from the extracted tissue of mouse brain and serum [89], [90], and was noted a negative 

correlation between  miR-153 and nuclear factor-E2-related 2 (Nrf2) that participate in varied 

antioxidant genes transcription[91] when inhibited of miR-153 in MPP+  induced PD model, induced 

Nrf2 signalling pathway and preserve neuron from oxidative stress and can promote new strategy 

for therapy for PD [90]. 

Another indicated an increased level of mir 29a and mir 29c in the serum of females than males 

infected with PD; however, mir 29 significantly down-regulated in PD in comper healthy control, 

anyway needed further study to be indicated as a biomarker for PD [92].  

Mir 375 upregulated in the human spinal motor neurons development and assisted spinal motor 

neurogenesis [93]; one study demonstrated that mir-375 overexpression improved dopaminergic 

neurons and inflammation by inhibition of specific protein-1 (SP-1)[94]; this protein act as a 

transcriptional factor, and when the elevated level in the brain lead to increased neuronal death [95].  

miR-216a can inhibit the expression of  Bax protein  [96]. Bax protein belongs to the Bcl-2 gen 

family[97]; it acts in case of elevated level as prompter apoptosis and leads to cell death, and when 

decreased level, indicates inhibition of apoptosis [98]; thus, mir 216a and can potentially target in PD 

through regulation of Bax protein [96].  
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Figure 3. Schematics overview of normal and damaging neurons. (A); showed normal constituents of 

neuron form cell body with usually present (nucleus, mitochondria,) to axon and how is generally 

warped in the myelin sheath, the axonal terminal that consists of normal function of telodendria and 

synaptic terminals, which ads in the neurotransmitter. (B) showed damaged neuron that occurs due 

to different mechanisms such as mitochondrial dysfunction, DNA damage, accumulation of different 

protein such as (TDP-43, Lewy body, Aβ plaques  )  in the cell body and around the neuronal cell, 

axonal transport loss such as (neurofilaments deposition, demyelination) which boost losing of the 

axonal terminal, all of these mechanisms participate in the loss of normal function of neurons,  this 

Fig. created by using (Adobe Illustrator 2020). 

Multiple sclerosis (MS) 

Multiple sclerosis  (MS) is an autoimmune inflammatory disease characterized by 

demyelination of the myelin sheath of nerves in the spinal cord and brain; it is a disease of young 

adult onset[99]. Affecting females more than males [100]. Demyelination formation in white matter 

occurs due to increased infiltration of T-cells and the release of the cytokine in CNS,  which will 

activate macrophage; this leads B-cells to transform into plasma cells and secreted autoantibodies 

which attack  the myelin sheaths that surround the nerve fibres [101,102]. 

Many miRNAs have been identified in the different samples of MS patients; one of these, miR-

922 and miR-181C in CSF [103], that's associated with transformation from clinically isolated 

syndrome (CIS) to relapsing-remitting MS (RRMS) characterized by deterioration that initiated via 

infiltration autoreactive immune cell in CNS [104], and the same association was noted in serum for  

miR-922  [103]. Mir-181c can control neuroinflammation by reducing microglial activation [105]and 

diminishing proinflammatory cytokines expressed through microglia [106]. Furthermore, it can 

indicate miR-181c as a biomarker in an increased inflammatory condition [107].  

Mir-150 showed alteration in level in both plasma and CSF after treatment and was used as a 

biomarker for this disease [108]; mir-155 acts as a proinflammatory activator and plays an essential 

role in autoimmune diseases [109][110],  such as MS pathogenesis; therefore, can be interpreted as 

one of the miRNAs that use in diagnosis in MS disease  [111] Overexpression of miR-21, miR-146a/b 

in CSF of patients with MS with active lesions can give used as valuable markers in MS patients  

[112].  

Another indicated that Mir-223 participated in remyelination and activation of M2 phagocyte, 

and in the case of knout mice, led to remyelination impairment [113]. Another study discussed when 

over-expression of mir-125a-3p contributed to the impairment of oligodendrocyte precursor cell 

(OPC) maturation, whereas inhibited expression stimulates this cell development [114]; thus, mir-

125a-3p overexpression adds to the MS progression, which involvement repair impairment of 

demyelinated lesions [115].  

ALS  

Amyotrophic lateral sclerosis (ALS)  is a neurodegenerative disease of adult onset that is 

characterized by muscle paralysis that occurs due to advanced loss of upper and lower motor neurons 

,and finally respiratory failure and death through the first five years of diagnosis[116], which can be 

either familial (fALS )  that associated with high genetic adversity[117] or sporadic ( sALS) that both 

environmental and genetic factors were involved in development [118].  

The emergence of biomarkers for diagnosing ALS is needed; many studies showed the possible 

detection of miRNAs can help rapidly identify and observe ALS disease [119].  

Many studies noted these miRNAs widely disrupted in skeletal muscle and brain and several 

biofluids in patients with ALS  [120,121], such as mir 206, mir 124, mir 181, mir 155 [122–125]. One 

study showed that miR-27a-3p in the serum of ALS patients downregulated compared to controls 

and could indicate miR-27a-3p can serve as a diagnostic biomarker for ALS [126].  

Many miRNAs participated in the pathogenesis of ALS; one of these was the downregulation of 

mir 218-2 due to processing defecting by dicer, which could affect neuronal robustness and, as a 

result, could be possible targeting therapy in diseases of motor neurons [127]. Fused in sarcoma (FUS) 
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and Transactive response DNA binding protein-43 (TDP-43)  that acts as a nuclear protein that 

participates in RNAs splicing and transcription initiation[128], in nucleus and cytoplasm through 

Drosha and Dicer, respectively [129],  that was noted TDP-43 widely expressed in ALS cases[130]. 

At the same time, FUS is less common[131]. So, disturbance in these proteins associated with ALS 

can lead to dysregulation in the miRNA processing mechanism [132], which is one of the possible 

pathological involved in ALS disease.  

A systematic review specified that serum miR-133b,miR-206, and miR-338-3p are prospective 

ALS markers[133], and miR-206 and miR-133, known as myomiRNA, are identified in skeletal muscle 

[134]. According to Pegoraro et al.'s study, mir-133 decreased in level in sALS patients, while miR-

206 overexpression in muscle specimens in chromosome 9 open reading frame 72 (C9orf72) and 

superoxide dismutase 1(SOD1) mutations in ALS patients [135]. Mir1- act as muscle differential and 

Mir 133 act as muscle proliferation[135,136] , while mir-206 decelerates the progression of ALS 

disease via adding NM  synapses regeneration[137]  

mir 155 suggested a therapeutic element for treating ALS  disease that acts as a 

proinflammatory activator when inhibited in ALS mice, improving disease progression [138]. Mir-

146a, when down-regulated, can lead to malfunction of astrocytes and microglia and could contribute 

to the degeneration of motor neurons(MN); while upregulation provides a protective effect in ALS 

patients [139], it also leads to a level of NFL proteins decreased, and this maintenance of neuronal 

morphology[140].  

miRNAs as therapy  

One of the difficulties that prevent transfusion of miRNA is the blood-brain barrier (BBB)  that 

prevents the miRNA from acting appropriately in brain tissues [33]; many promising transporting 

methods can improve this issue, such as using small extravascular vesicles (sEVs) [141], which can 

be administrated through intravenous injection [142], stereotactic injection, or nasally 

administrated,[143–145]. Another method of transportation is either a viral vector such as a 

recombinant adeno-associated virus or adeno-associated virus [146,147], or through a non-viral 

vector such as gold nanoparticles[148], and many others met such as hydrogel, Carbone-based 

nanoparticles like  nano-diamonds, and smart mesoporous silica nanoparticles[149], [150,151], that 

facilities loading of miRNA in these system to specific site , Figure 2(a). 

 Several strategies  have been developed to use miRNA as a therapeutic agent,  such as mimic 

miRNA, by using synthetic double-strand miRNA, one as a guide and another as a passenger that is 

linked to another molecule, such as cholesterol, to enhance cellular uptake, lead to restoring of 

specific miRNA to an average level, that absent or downregulated during disease development and 

can improvement their specific target protein[152][153], or use (anti-miRNA) miRNA inhibitors, such 

as using synthetic oligonucleotides that are chemically modified,  to target specific miRNA that is 

characterized in overexpression through targeting some pathway that involved in the miRNA 

biogenesis, at last, provided functions effectiveness, [154] [155][156]. 

Masking miRNA works to prevent inhibition mRNA from affecting endogenous miRNA 

[153,157], consisting of single-strand antisense oligonucleotides that interact with the binding site of 

miRNA in the 3'UTR of the target mRNA[158]. 

Another type was miRNA sponges that contain multiple binding sites to targeted miRNA that 

is separated by a few nucleotides, which is typically either viral vector or plasmid and introduced to 

gen through insertion into 3'UTR of selective gen that is driven by RNA polymerase II promoter [159], 

Figure 2(b).  

There are some limitations of using miRNA as therapy, such as extracellular blockage in case of 

phagocytosis, degradation by nucleases enzyme, complement opsonization, or through intracellular 

blocking like non-specific site targeting ineffective cellular taking; regardless of this limitation, 

miRNA is still ideal targeting as a therapy due to safety, simplicity, effectiveness and easy contributed 

[160,161] and took multiple advantageous to the improvement of neurodegenerative disease 

consequences.  
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Conclusion and future perspective 

Recently increased evidence of neurodegenerative disease progression, which can affect aged 

people and young adults. Therefore, these diseases are a tremendous burden on the health 

organizations of each country, consequently needing emerging tools and biomarkers facilities in the 

early diagnosis and treatment to decrease the problem issues of these disorders. One of the promising 

molecules that add to the early diagnosis of this disease and identify possible pathological 

mechanisms that lead to the development of those disorders through increased or decreased 

expression, even if it can be used as therapy through many strategies that developed, is miRNAs. 

Despite related problems to blood-brain briar (BBB)  that prevent the miRNA from acting 

appropriately in brain tissues, many promising transporting methods can improve this problem, such 

as viral vectors and non-viral vectors [162], [33]. So we need increasing investigation of brain-

enriched miRNA due to plays a protective or inflammatory role, and by identifying novel pathways 

that participate in developing this neurodegenerative disease that can assist to considered miRNA-

based therapy designed. 
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