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Abstract: We demonstrate how a rigorous mathematical approach can be used to extract a current CMB tempera-

ture of 2.7276±0.0723
0.0743 K from the 580 type Ia supernova data points in the Union2 database. Using redshift formula:

z =
√

Rh
Rt

− 1, incorporated into our new CMB redshift prediction formula, we find that the above current CMB

temperature value is a remarkably good match for this particular data set. In addition, we can alternatively start

out with the measured current CMB temperature and extract the Hubble constant from all 580 supernovae. We

then get an estimated Hubble constant of H0 = 66.8711+0.0019
−0.0019 km/s/Mpc when using the CMB temperature from

the recent Dhal et al study [1] in combination with redshifts from all 580 supernovae. Furthermore, we get an

estimated Hubble constant value of H0 = 66.8943+0.0287
−0.0287 km/s/Mpc when using the CMB temperature measured

by Fixsen [2]. In summary, our simple model essentially perfectly matches all 580 type Ia supernova redshifts

while extracting H0 or T0 values. The Hubble constant we extract by this method fits very well with the Hubble

constant extracted from the CMB by other studies. We believe that our new approach likely solves the Hubble

tension problem, at least inside Rh = ct cosmology.

Keywords: hubble tension; hubble constant; cosmological red-shift; z; CMB temperature

1. The CMB Temperature Prediction Formula

Tatum et al [3] presented the following formula for the Cosmic Microwave Background (CMB)
temperature in 2015:

TCMB,0 =
h̄c3

kb8πG
√

MHmp
=

h̄c
kb4π

√
RH2lp

≈ 2.7195+0.0824
−0.0682, K (1)

We can calculate this CMB temperature when using the current Hubble constant value given by Kelly
and et. al [4] of 66.6+4.1

−3.3 km/s/Mpc. Symbols mp and lp are respectively the Planck mass and the
Planck length (see [5,6]), kb is the Boltzmann constant, h̄ is the reduced Planck constant and G is
Newton’s gravitational constant. MH and RH represent the current Hubble mass and current Hubble
radius, respectively. The current value RH = c

Ht
one can get by using the current CMB-determined

Hubble constant H0, and the current mass inside the Hubble sphere of the model we will describe

as the Friedmann critical mass MH = c2RH
2G ; see [3] for more in-depth discussion. This formula is

quite similar to the Hawking black hole temperature formula [7,8]: THw = h̄c3

kb8πGM , except that one
replaces M with

√
MHmp. Despite its likely great potential significance, this formula has received

little attention from the wider astrophysics community. The likely reasons are that it has not been
published in one of the more prestigious established journals, and secondly, until recently, there have
been no papers providing strong mathematical or other proofs of its foundation.

However, recently, Haug and Wojnow [9,10] have shown that formula (1) can be derived from the
Stefan-Boltzmann law [11,12]. Furthermore, Haug and Tatum [13] have derived the same formula from
a geometric-mathematical approach, demonstrating its consistency with a geometric mean temperature
between the lowest and highest possible current temperatures in the Hubble sphere. All of these
approaches seem to create a consistent and interesting framework, particularly in line with growing
black hole models such as the FSC Schwarzschild metric model, but likely also other growing black
hole models that can be built around other metrics, such as [14–17].
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An actively discussed class of cosmological models, in comparison to the Λ-CDM model, is the
so-called RH = ct models. See, for example, [18–24]. The FSC model, originating with the referenced
Tatum et al 2015 paper, falls within the category of growing black hole variants of RH = ct models,
which represent a subclass of RH = ct models. Thus, there is also thermodynamics related to the
current and past CMB temperature in this cosmological model. A generalized version of formula (1)
can be:

Tt = TCMB(t) =
h̄c

kb4π
√

Rt2lp
(2)

where Rt is the black hole radius at any stage in the growing black hole universe. In this model, the
universe starts out with a Planck mass Schwarzschild radius of Rs =

2Gmp
c2 = 2lp and then expands

one Planck length in radius per Planck time. Thus, one can also say that it increases by one-half a
Planck mass per Planck time.

2. Cosmological Red-Shift from CMB Temperatures

In general, for many cosmological models, we have:

z =
R(t0)

R(t)
− 1 (3)

where R(t) is the scale factor dependent on the cosmological model, and t0 is the reference time, which
is now. In the Λ-CDM model, light is red-shifted based on the idea of the expansion of space and
cosmic time. The redshifted wavelength can be treated as stretching as space-time expands. In RH = ct
models, there is expansion of space and space-time corresponding to a constant horizon speed of light
c. In such models, one can possibly also mathematically treat the redshift as a relativistic Doppler
redshift in a pre-existing space, as outlined in reference [3]. In the FSC Tatum et al model, we have
R0 = R(t0) =

c
H0

= RH , which is simply the Hubble radius RH = c
H0

at present. The Hubble radius is
the distance light has traveled since the beginning of the black hole universe, which in the FSC model
started as a Planck mass black hole and today is the Hubble sphere with mass equal to the mass in the

critical [25] universe MH = Mc =
c2RH

2G .
This means that, in certain RH = ct cosmological models, particularly the FSC growing black hole

model, we can have:

1 + z =
anow

athen
=

RH
Rt

=

(
h̄c

kb4π
√

Rt2lp

)2

(
h̄c

kb4π
√

RH2lp

)2 =
T2

t
T2

0
(4)

where RH = c
H0

and Rt =
c

Ht
. Alternatively, we could write this as:

z =
λobserved − λemitted

λemitted
=

RH − Rt

Rt
=

RH
Rt

− 1 (5)

=

(
h̄c

kb4π
√

Rt2lp

)2

(
h̄c

kb4π
√

RH2lp

)2 − 1 =
T2

t
T2

0
− 1 (6)

Solving for Tt gives:

Tt = T0(1 + z)1−β = T0(1 + z)
1
2 (7)
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In the current paper we provide some detail about its derivation and additional discussion. Tatum
and Seshavatharam have been aware that the formula Tt = T0(1 + z) is also likely valid, and have
used it in a recent paper by [26]. But then this has some potential implications, as discussed in the
section below.

It is also worth looking at the Rt distance as a function of z and H0 in the following way:

z =
RH
Rt

− 1

Rt =
c

H0(1 + z)
(8)

So, the distance to the observed redshift is then:

RH − Rt = RH − c
H0(1 + z)

RH − Rt =
c

H0
− c

H0(1 + z)

RH − Rt =
c

H0

(
1 − 1

(1 + z)

)
(9)

and solved for H0 we have:

H0 =
c
d

(
1 − 1

(1 + z)

)
(10)

where d = RH − Rt is the estimated distance to the object emitting the photons.
When z ≪ 1 we can use the first term of the Taylor series expansion which is:

RH − Rt ≈ cz
H0

(11)

and naturally:

z ≈ dH0

c
(12)

where d = RH − Rt is the distance to the object emitting the photon, that is identical to the standard
Λ-CDM cosmological redshift prediction formula typically used for low z values.

3. Comparison of Tt = T0
√

1 + z versus Tt = T0(1 + z)

The Λ-CDM model has, for many years, been using the following redshift formula:

Tt = T0(1 + z) (13)

As there has been considerable uncertainty as to whether this really is the best model of CMB temper-
ature versus cosmological red shift z, Lima et al. [27] suggested the following generalization of the
formula:

Tt = T0(1 + z)1−β (14)

where β is an unknown constant that, if set to zero, yields the standard formula Tt = T0(1 + z);
however, it has also been suggested that β can be other than zero. Chluba [28] has suggested that:
“decay of vacuum energy leads to ‘adiabatic’ photon production (or destruction), such that the CMB temperature
scales like Tt = T0(1 + z)1−β."
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Research based on observations suggests that β should be close to zero. For example, see Riechers
et al [29]. However, this is still uncertain, as measuring CMB temperatures at high redshifts (z) is
subject to significant uncertainties. Additionally, measuring cosmological redshift can be challenging
because there are no direct observations of the emitted photons; we can only observe the received
photons. This means that cosmological redshift is always seen through the lens of a mathematical
model, and it is never entirely free of assumptions. On the other hand, measuring phenomena such
as Doppler redshift or gravitational redshift on Earth provides much better control because we can
directly compare the wavelengths of the emitted and received photons with minimal reliance on
model assumptions. We mention this because one can then easily imagine how much more difficult it
must be to know the exact CMB temperature for a given cosmological redshift. Based on knowledge
of ‘standardized’ objects as well as decades of impressive research in cosmology, one can make an
educated guess; nevertheless, there could still remain some uncertainties.

If we set β = 0 then we can “only"1 make Tt = T0(1 + z) compatible with CMB equations (1) and
(2) in the following manner:

z =
λobserved − λemitted

λemitted
=

√
RH −

√
Rt√

Rt
=

√
RH
Rt

− 1 (15)

=

(
h̄c

kb4π
√

Rt2lp

)
(

h̄c
kb4π

√
RH2lp

) − 1 =
Tt

T0
− 1 (16)

In that case Tt = T0(1 + z) would give the same result as in the previous sections, except we now also
must have z =

√
RH√
Rt

− 1 which is an alternative possibility that should be carefully investigated, as
this potentially could have an impact on how one interprets space expansion in accordance with the
Λ-CDM and RH = ct models.

Riechers et al [29] have reported the Cosmic Microwave Background (CMB) temperature from
the cosmic epoch at z = 6.34, resulting in a temperature range of 16.4 − 30.2K within one standard
deviation uncertainty. In other words, even the one standard deviation, which represents only
about 68% probability for the CMB temperature to be inside that range, is very wide. The two
standard deviation CMB temperature range is much broader. Therefore, we can conclude that the
formula Tt = T0(1 + z) is not sufficiently well-tested, given the very large uncertainty. The formula
Tt = T0

√
1 + z predicts a CMB temperature of Tt = 2.725K

√
1 + 6.34 ≈ 7.4K which is well inside the

95% confidence interval of the above report (using two standard deviations); however, as we have also
shown, the FSC framework at present also appears to be consistent with Tt = T0(1 + z). Only further
investigation can help us to decide on the optimal choice, even if observations appear to currently
favor β = 0.

It is also worth looking at the Rt distance as a function of z and H0 in the following way:

1 There could naturally be additional methods not discovered here, for example based on new cosmology or other metrics.
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z =

√
RH
Rt

− 1

(z + 1)2 =
RH
Rt

RH = (1 + z)2Rt

Rt =
RH

(1 + z)2

Rt =
c

H0(1 + z)2 (17)

So, the distance to the observed redshift is then

RH − Rt = RH − c
H0(1 + z)2

RH − Rt =
c

H0
− c

H0(1 + z)2

RH − Rt =
c

H0

(
1 − 1

(1 + z)2

)
(18)

and naturally:

H0 =
c
(

1 − 1
(1+z)2

)
D

(19)

where D = RH − Rt, which is the distance between us and the object emitting the observed photons.
When z ≪ 1 we can use the first term of the first order Taylor series expansion and we get

D = RH − Rt ≈
2cz
H0

(20)

that naturally gives:

z ≈ DH0

2c
(21)

and naturally

H0 ≈ 2zc
D

(22)

This is indeed different from the standard redshift formulation. However, in this case, the distance
D will also differ from the distance predicted by the standard formula. Therefore, only careful further
investigation can determine whether it is superior to the standard formula z ≈ dH0

c or not. First of all,
it is important to be aware that we have:

H0 ≈ 2zc
D

=
zc
d

, z ≈ DH0

2c
=

dH0

c
(23)

These two formulas give identical predictions for H0 and z when dealing with short distances
and low z. The ’2’ in the numerator is offset exactly by the fact that D = 2d in the denominator. This
holds true when the distance is short (z ≪ 1). Thus, when used to extract the Hubble constant from,
for example, nearby supernovae, the estimated H0 or estimated z are identical. It is the distances that
differ in the two approaches. However, when dealing with supernovae or other objects far from us, the
estimated Hubble constant values will be different, as we then need to use the exact formulas, rather
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than convenient approximations. This implies that in the standard Λ-CDM model, the value of the
Hubble constant based on redshifts far away is likely overestimated.

For redshift and Hubble constant analysis at short distances, we can say that the Λ-CDM model
likely has two errors that cancel each other out: it has the wrong distance and also the wrong formula,
which offsets the error in the wrong distance. Therefore, its predictions for redshift z and H0 at short
distances will be correct and the same as in our model. However, at much larger distances, their
model will not be fully accurate, which we believe has led to the Hubble tension problem. This issue is
addressed with our new way of looking at redshifts, as will become clear from the remainder of our
paper, particularly in the sections where we aim to resolve the Hubble tension, namely sections 4 and
5.

If this latter redshift formula is correct, then distances to astronomical objects based on redshift
are likely off by as much as a factor of 2. This could explain why the Λ-CDM model must have an
expansion of space faster than Rh = ct models. Once again, we believe that our new approach and
explanation likely resolves the Hubble tension problem.

If one is not deeply entrenched in the topic, it may be easy to assume that our redshift Equation
(20) must be incorrect, given the highly precise measurements of distances to various astronomical
objects through independent methods, such as parallax. However, supernova distances are never
measured directly by a method as elementary as parallax. Establishing their distances requires a
complex understanding of the astronomical distance ladder and the inherent uncertainties built into
each rung of this ladder. Type Ia supernovae represent some of our most reliable standardized candles.
Therefore, the most accurate method of determining their distance is likely through cosmological
redshift, albeit this approach is naturally model-dependent. While our math, which suggests that the
distance to the more remote supernovae is approximately twice that predicted by the Λ-CDM model,
may initially seem unfeasible, based on our current limited knowledge, it should not be immediately
discounted. We would welcome any compelling arguments against our findings, in particular after
studying the rest of our paper.

Figure 1 shows the predicted distances for 580 supernovae from the Union2 database. We have
sorted the supernova database based on redshift, so that supernova number one has the lowest
redshift and supernova number 580 has the highest. Then we have predicted the distances based
on the two approximation formulas. The two approximation formulas are based on the first term
of the Taylor series expansion and are, in reality, only good approximations when z ≪ 1. This is
why these approximations strongly overestimate the distances for high-z supernovae. The two exact
solutions, based on the assumptions given in this paper, yield different values. The one consistent
with Tt = T0(1 + z) predicts that the more remote supernovae are about twice as far away from us
as the Λ-CDM model predicts. The one consistent with Tt = T0(1 + z)1/2 gives the same distance
predictions as the standard model, at least for z ≪ 1, but then the relationship between the current
CMB temperature and that in past cosmic epochs is different for the Λ-CDM model. We need the
current value of H0 to make the distance approximations, which we take from the very recent study of
Sneppen et al [30], H0 = 67+3.6

−3.6 km/s/Mpc.
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Figure 1. This figure shows the predicted supernova distances for different redshift models. Two of the
models employ first series Taylor approximations and only give reasonably accurate solutions when
z ≪ 1.

In Figure 2 we have removed the approximation models and we now focus on those models
which are relatively more accurate at higher redshifts. This makes more obvious the difference between
the model consistent with Tt = T0(1 + z)1/2 and the model consistent with Tt = T0(1 + z). Be aware
that the Λ-CDM model predicts the same distances as the blue line, at least for low z values. The red
line prediction is what likely is correct, however, as it is consistent with Tt = T0(1 + z), which we will
show that observations seem to favor. This will become more clear in the next section. The green line
represents D/d. We can see that, for low z quasars, the standard model is off by a factor of almost 2,
which also appears to be true for the higher observed z supernovae in the Union2 database. There is
more explanation to follow.
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Figure 2. This figure also shows the predicted supernova distances for the red and blue models in
somewhat greater detail, and in comparison to the D/d ratio.

4. Extracting the Current CMB Temperature from 580 Type Ia Supernovae

Here we use the observed redshifts from 580 supernova data points in the Union2 database to
determine the current CMB temperature (z = 0). The methodology employed is as follows: from the
cosmological redshifts, we first predict the CMB temperatures for each observed z value, by using the
standard and well-known relation Tt = T0(1 + z). Since our goal is to find T0 a priori, we start with a
wild guess. For instance, we might start with T0 = 4K, or even T0 = 10K, which is naturally far off
from the currently observed CMB temperature of approximately 2.72K. We start with a wild guess
because we will later use optimization to determine if there exists a T0 that leads to an estimation error

near zero, using the redshift prediction formula z =
√

Rh
Rt

− 1. This can be achieved using optimization
algorithms such as the Newton-Raphson method or the bisection method.

Next, we calculate the radius of the Hubble sphere going back in time for each z value. This is
done by assuming a FSC-like Rh = ct cosmology and solving Equation (2) for Rt. This gives:

Rt =

(
h̄c

Ttkb4π

)2 1
2lp

(24)

and since we also have Tt = T0(1 + z) we can replace Tt with this and get:

Rt =

(
h̄c

T0(1 + z)kb4π

)2 1
2lp

(25)

Because we are assuming that we do not know T0, we will not rely upon measured CMB temperatures.
However, we can now input this expression for Rt into our redshift formula (Equation 16) and we get:

zpre =

√
Rh
Rt

− 1 =

√√√√ Rh(
h̄c

T0(1+zobs)kb4π

)2 1
2lp

− 1 (26)

We can now minimize the errors between zpred and zobs by adjusting the unknown T0 value. This
can be accomplished through pure trial-and-error, or more efficiently by using “intelligent" trial-and-
error systems such as the Newton-Raphson method or the bisection method. The results from these
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approaches are the same, except that, by naive trial-and-error, one will waste more time finding the
optimal CMB temperature. To do this, we also need Rh = c

H0
, which is the current Hubble radius,

and therefore, we also need the current value of H0, which we take from the very recent study of
Sneppen et al [30], H0 = 67+3.6

−3.6 km/s/Mpc. Thus, H0 affects the value; it is actually this relatively new
theoretical relationship between H0 and CMB, first implied by Tatum et al [3] in 2015 and later proved
to be derivable from the Stefan-Boltzmann law by Haug and Wojnow [9,10], that makes this method
possible. We also need the Planck length in our formula, so we have used the NIST CODATA (2018)
value of lp = 1.616255 × 10−35 m (with standard uncertainty of 0.000018 × 10−35m). This uncertainty
is therefore reflected in the reported STD for both our predicted CMB temperature as well as our
predicted H0 using the Union-2 database.

Figure 3 best illustrates the trial-and-error procedure. Assume that we initially have guessed
a CMB temperature of 4K. This is the green line in the figure, that we see is far above the observed
redshift represented by the blue line. However, at least it looks like it correlates well. Still, the
4K prediction is way off. Given that the redshift predictions are proportional to the current CMB
temperature, we must guess a lower CMB temperature. Assume that we now guess T0 = 1.5K; we
then get the predictions presented by the purple line. It becomes obvious that our 1.5K prediction is
now too low compared to the observed redshifts. We now know that the CMB temperature needed in
order to minimize the prediction errors must be between 4K and 1.5K. We, therefore, now guess 3K,
and the redshift predictions we get from this are much closer to observed, but still too high.

We can continue ‘manually’ like this, or we can resort to efficient search algorithms that are used
for similar statistical problems in many scientific fields. Among the most commonly used algorithms
are the Newton-Raphson method or the bisection method. One can also use the goal seek function in
Excel, which is likely based on the bisection method. These trial-and-error methods are simply a form
of calibration method. The question is whether there exists a single CMB temperature, denoted as T0,
for the current epoch of the cosmos that can make our “CMB redshift prediction formula” match the
observed redshifts with precision.

Effectively, we are calibrating our new cosmological redshift prediction equation relative to the
observed 580 supernova redshifts by finding what value of T0 minimizes our prediction error. Only
one parameter is adjusted (optimized), namely the “unknown” current CMB temperature, so that the
errors indicated by the sum of ∑n

i (zpred,i − zobs,i) are minimized. This approach results in a predicted
current CMB temperature T0 ≈ 2.72763155978204K from the 580 supernova observations in the Union2
database. We are not claiming that the current CMB temperature is exactly this (although it could
be); rather, this is what it appears to be, based on the observed supernova redshifts in combination
with the H0 = 67km/s/Mpc. When we also take into account the uncertainty in the value of H0

(67+3.6
−3.6km/s/Mpc), as reported in the study of Sneppen et. al, we get a one standard deviation (STD)

confidence interval range of 2.6534K to 2.7999K for the current CMB temperature. The reason we
provide the numerous digits in T0 ≈ 2.72763155978204K is simply to enable others to obtain the same
value when utilizing H0 = 67km/s/Mpc following the procedure outlined in this paper. This is not
meant to imply that we can determine the CMB temperature with such high precision. The measured
CMB temperature has a lower uncertainty compared to our predicted CMB temperature. Rather,
what is important to understand here is that we have a model that directly links the current CMB
temperature to the Hubble constant and redshift. To the best of our knowledge, the Λ-CDM model
does not offer such a direct relationship between the current CMB temperature and H0.

As different Hubble constant measurement studies and methods yield considerable uncertainty in
H0, this uncertainty could be even larger. Moreover, there is the unexplained Hubble tension problem;
see for example [31–34]. Nevertheless, using our new radically-different theoretical approach, we can
closely approximate the recent CMB temperature observations by [1,2,35,36].

By using a current CMB temperature T0 ≈ 2.7276 ±0.0723
0.0743 K, the predictions from Equation (26) are

now perfectly aligned with the observational blue line in Figure 1. In other words, the redshift formula
we have presented is now capable of matching observed cosmological redshifts. See Figure 4.
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Figure 3. This figure shows observed redshift values from 580 type Ia supernovae, sorted by redshift. In
addition, it shows the predicted redshifts for various qualified guesses on the current CMB temperature.
We note that the predictions and observations are highly correlated, but they do not match. The
predicted redshifts are too high when using CMB temperatures 4K and 3K and too low when using
1.5K. However, by using efficient trial-and-error algorithms, we can quickly find the current CMB
temperature that gives the best fit, as shown in the next figure. See Figure 4.

Figure 4. This figure shows observed redshift values from 580 type Ia supernovae, sorted by redshift.
We find that, by assuming a current CMB temperature of 2.7276K, there is a match between observed
(blue line) redshifts and our predicted (red line) redshifts.

It is interesting that, by incorporating only the current CMB temperature, our redshift prediction
function can match observations. It is important to note that we are using the same epochal T0 for all
supernovae, rather than different T0 values for different supernovae. This basically demonstrates that
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our framework is consistent and robust. Our findings are fully consistent with the empirically-tested
relation Tt = T0(1 + z) and also with the FSC growing black hole variant of Rh = ct cosmology. It is
our recommendation that the astrophysics community pay attention to this result and investigate to
what degree it is or is not consistent with the Λ-CDM model. Could it be that the Λ-CDM model needs
further adjustments? Or could it be that Rh = ct models are actually more realistic in some respects?
Only further research can settle these questions. In either case, researchers should be made aware
of the recent progress in our theoretical understanding of CMB temperature and its relationship to
cosmological redshift and the Hubble constant.

5. Why We Think That We May Have Solved the Hubble Tension Problem

In the section above, where we found the CMB temperature that optimally fits with the observed
supernova redshifts, we had to know the Planck-derived Hubble constant value. Alternatively, one
can use the observed CMB temperature to optimally fit a Hubble constant value for the same 580
supernova redshifts. The CMB temperature has been extremely accurately measured in recent years,
for example, by [1,2,35,36].

First we will use the most recent measurement by Dhal et al [1] of T0 ≈ 2.725007+0.000024
−0.000024K. We

then start out by assuming that we know very little about the Hubble constant value. All we know
is that many different studies have arrived at different values. So we start with a qualified, but wild,
guess that it must be in a range from 50 to 80 km/s/Mpc. We then ask if there is a single Hubble
constant (H0) value that, when used in our new CMB redshift prediction formula, matches all of the
observed supernova redshifts. So, we start with a guess of H0 = 50 km/s/Mpc and use the same
formula as in the previous section:

zpre =

√
Rh
Rt

− 1 =

√√√√ Rh(
h̄c

T0(1+zobs)kb4π

)2 1
2lp

− 1 (27)

The only difference in our approach (compared to in the previous section) is that we now substitute
the measured CMB temperature by Dhal et al for T0. In the previous example, we assumed that we
knew H0 and tried to find T0. We can now use Rh = c

H0
to solve for H0. The result is shown in Figure 5

as the red line. Once again, the actual observed redshifts for all 580 supernovae in the Union2 database
are represented as the blue line. As we can see, the red line indicates that this was an underestimated
Hubble constant value, as our redshift prediction formula is inversely related to H0. Accordingly,
we next guess a much higher Hubble constant value, for example H0 = 80 km/s/Mpc, which gives
redshift predictions correlating to the green line. Now the redshift predictions are too low. By simple
trial-and-error, or by "intelligent" trial-and-error methods, such as the Newton-Raphson method or
the bisection method, we can find the H0 that minimizes the errors between predicted and observed
redshifts. Figure 6 shows the end-result. We obtain H0 = 66.8711+0.0019

−0.0019 km/s/Mpc (corresponding to
a 1STD range of 66.8692 to 66.8730 km/s/Mpc) extracted from all of the supernovae when linked to
the Dhal et al current CMB temperature. A similar approach is used for the Fixen et al (2009) [2] CMB
temperature of 2.72548+0.00057

−0.00057K. See Figure 7, which is best fitted with H0 = 66.8943+0.0287
−0.0287 km/s/Mpc

(corresponding to a 1STD range of 66.8656 to 66.9231 km/s/Mpc).
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Figure 5. This figure shows observed redshift values from 580 type Ia supernovae, sorted by redshift
(blue line). We find that, by assuming the measured CMB temperature by Dhal et al (2023) of 2.725007K,
the red line represents our predictions based on a wild guess of H0 = 50km/s/Mpc, and the green line
represents predictions based on a wild guess of H0 = 80 km/s/Mpc.

Here, it is important to be aware that we are able to achieve essentially a perfect fit with all of the
Union2 database supernovae using either a single Hubble constant value or a single CMB temperature.
This appears to us to solve the Hubble tension problem in favor of the Planck Collaboration Hubble
constant determination. The Hubble constant value cannot be measured directly; it is the redshift that
is measured in the type Ia supernova studies. The Hubble constant is estimated, and therefore relies
on a model-based definition of redshift. In this paper, we use a new redshift model rooted in our new
understanding of the inter-relationships between the current CMB temperature, the current Hubble
constant, and cosmological redshifts; see [3,9,37]. This approach is clearly consistent with black hole
variants of Rh = ct cosmological models. Whether it can also be made compatible with the Λ-CDM
model is too early to say. If so, we believe that the Λ-CDM model, at minimum, would need some
adjustments. Alternatively, it may be that such Rh = ct model variants are actually more realistic.
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Figure 6. This figure shows observed redshift values from 580 type Ia supernovae, sorted by redshift
(blue line). Based upon the measured CMB temperature by Dhal et al (2023) of 2.725007K, the red line
represents our predictions based on H0 = 66.8711km/s/Mpc, which we extracted from the data using
our trial-and-error approach. We find that there is a match between observed and predicted redshifts.

Our results are also fully in line with the recent findings of Tatum et al [38] that one can accurately
find H0 from knowing the current CMB temperature, something that the Λ-CDM model cannot do at
present, as far as we know. Herein, we have taken an additional step forward and linked these two
cosmological parameters to cosmological redshift. These inter-relationships are consistent with core
principles in such Rh = ct cosmology model variants in general, and FSC in particular.
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Figure 7. This figure shows observed redshift values from 580 type Ia supernovae, sorted by redshift
(blue line). Based upon the measured CMB temperature by Fixen et al (2009) of 2.72548K, the red line
represents our predictions based on H0 = 66.8943km/s/Mpc, which we extracted from the redshift
data using our trial-and-error approach. So, we find that there is a match between observed and
predicted redshifts. Remarkably, the same H0 value was predicted in 2015 by Tatum et al, using only
this Fixen CMB temperature.
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6. Has Solving the Hubble Tension Provided Us with New Universal Laws of Cosmology?

Figures 4, 6, and 7 almost seem too good to be true. There may be a tendency to react in such a
way, but the math appears to indicate otherwise. One even wonders if there are ‘new universal laws of
cosmology’ revealed by such an approach, because there appear to be exact relationships between the
Hubble constant, cosmological redshift and the CMB temperature, without the need for concepts such
as dark energy or space expanding faster than light.

Naturally, it is not for us to say whether we have discovered ‘new universal laws.’ But we do
wonder about this. Clearly, we have not simply found broad statistical correlations between these
parameters, but rather very precise mathematical inter-relationships between them. If one knows any
two of these cosmological parameters with high precision, one can automatically solve for the other
with high precision. To take but one example, if one knows the CMB temperature and the Hubble
constant, one can precisely estimate the cosmological redshift for a given cosmological distance. There
is hardly any wiggle room. We find that a convenient way to illustrate this is in Figure 8.

Figure 8. This figure highlights the key equations which we suggest will be important for future
progress along the lines developed in this paper.

The formula in the middle of the triangle demonstrates that the Hubble constant and the CMB
temperature are simply connected by a composite constant that we have called upsilon (the Latin

symbol for upsilon2):
Ω

=
k2

b32π2G1/2

c5/2 h̄3/2 . When we ponder these inter-relationships, we are left asking if
the Lambda-CDM model can accommodate them, or whether they are appropriate for a new paradigm
represented by such RH = ct model variants in general, and the FSC model in particular. We leave this
question for others to ponder as well. It is worth mentioning that our model framework here is also
consistent with a new thermodynamic approach to rewriting the Friedmann equation, which is fully
consistent with the general theory of relativity; see [39].

2 In the first paper about this formula, we used the Greek symbol for upsilon: Υ

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 April 2024                   doi:10.20944/preprints202404.0421.v1



16 of 18

7. Conclusion

In the context of growing black hole RH = ct model variants, we now have a robust theoretical
framework for predicting the Cosmic Microwave Background (CMB) temperature, using a known
Hubble constant value [10], or vice versa [3]. This can be done both for present and past cosmic epochs
(presumably), as well as in relation to cosmological redshifts. This framework initially emerged from
the FSC cosmological model proposed by Tatum et al. However, it is worth exploring whether it
can also be applied to other black hole RH = ct models. The theory appears to be compatible with
the relationship Tt = T0(1 + z)1−β, but only when β = 0 or β = 1

2 . Although it appears that we
are gaining a new perspective on understanding and investigating cosmological redshift, further
theoretical and observational studies are needed in order to reach a final consensus. There is still much
to be discovered.

In this paper, we have demonstrated, from the observed redshifts of 580 type Ia supernovae (the
Union2 database), how one can predict a CMB temperature of 2.7276±0.072

0.074 K. Furthermore, we predict
that future type Ia supernovae will show a similar excellent fit with a current CMB temperature of
2.7276K. Given its derivation, our CMB redshift prediction formula is, of course, also fully consistent
with the Tt = T0(1 + z)1−β formula, so long as β is zero.

We have also demonstrated how to achieve a perfect match between particular Hubble constant
values and observed supernova redshifts, simply by incorporating the observed CMB temperatures
from two well-known CMB studies. We refined our predictions by minimizing errors in our redshift
prediction formula relative to the observed redshifts from the same 580 type Ia supernovae. Utilizing
the CMB temperature from Dhal et. al (2023) of T0 = 2.725007+0.000024

−0.000024K, we derive a Hubble constant
value from the full supernova database of H0 = 66.8711+0.0019

−0.0019 km/s/Mpc. Similarly, utilizing the
CMB temperature from Fixen et al. (2009) of T0 = 2.72548+0.00057

−0.00057K, we obtain a Hubble constant
value from the full supernova database of H0 = 66.8943+0.0287

−0.0287 km/s/Mpc. Remarkably, our redshift
formula can accurately predict the redshift of every supernova in the Union2 supernova database after
calibration for distance. While this process resembles curve-fitting, the only free parameters are either
the Hubble constant or the CMB temperature, with one being derived from measurement and the other
automatically determined as a result. These results are consistent with the predictive power mentioned
in references [37,38]. Accordingly, we believe that our new approach has likely resolved the Hubble
tension problem in favor of the Planck-based CMB-derived Hubble constant value. Nevertheless, our
work should undergo careful scrutiny by others before drawing any firm conclusions.

Data Availability Statement: The supernova Union-2 database that we have used can be found here:
https://supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt

Conflicts of Interest: The authors declare no conflict of interest.
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