Altmetrics
Downloads
118
Views
53
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
10 April 2024
Posted:
10 April 2024
You are already at the latest version
Feature Extraction Method |
PCM | FCM | PFCM | Sample Entropy | ||||
---|---|---|---|---|---|---|---|---|
Statistical Parameters | Cirrhosis | Normal | Cirrhosis | Normal | Cirrhosis | Normal | Cirrhosis | Normal |
Mean | 0.5054 | 0.4968 | 0.1509 | 0.1569 | 0.2828 | 0.2833 | 5.339727 | 5.2504 |
Variance | 0.0468 | 0.0456 | 0.0010 | 0.0014 | 0.0079 | 0.0089 | 0.137262 | 0.2105 |
Skewness | -0.2156 | -0.1960 | -0.6516 | -0.764 | 1.6003 | 1.7111 | -1.75338 | -1.6610 |
Kurtosis | -0.8087 | -0.8578 | 0.7095 | 0.9353 | 3.1021 | 3.1411 | 10.75434 | 7.3273 |
Pearson Correlation coefficient (PCC) | 0.0092 | -0.0212 | 0.5839 | 0.5453 | 0.3721 | 0.4374 | 0.5030 | 0.4914 |
Canonical Correlation Analysis (CCA) | 0.4190 | 0.7655 | 0.7569 | 0.6046 |
Feature Extraction | Classifiers | TP | TN | FP | FN | MSE |
---|---|---|---|---|---|---|
PCM | GMM | 509 | 531 | 398 | 421 | 1.09E-04 |
SDC | 576 | 597 | 332 | 354 | 5.19E-05 | |
Harmonic Search (HS) | 642 | 509 | 420 | 288 | 1.17E-04 | |
SVM (linear) | 509 | 465 | 464 | 421 | 3.33E-04 | |
SVM (polynomial) | 531 | 597 | 332 | 399 | 7.38E-05 | |
SVM (RBF) | 700 | 640 | 289 | 160 | 2.53E-05 | |
Artificial Algae optimization (AAO) | 772 | 641 | 288 | 158 | 2.31E-05 | |
AAO GMM | 797 | 619 | 310 | 133 | 2.22E-05 | |
FCM | GMM | 619 | 752 | 177 | 311 | 3E-05 |
SDC | 664 | 575 | 354 | 266 | 4.09E-05 | |
Harmonic Search (HS) | 774 | 663 | 266 | 156 | 1.62E-05 | |
SVM (linear) | 907 | 486 | 443 | 23 | 2.01E-04 | |
SVM (polynomial) | 752 | 752 | 177 | 178 | 1.22E-05 | |
SVM (RBF) | 818 | 796 | 133 | 112 | 4.57E-06 | |
Artificial Algae optimization (AAO) | 870 | 860 | 69 | 60 | 1.22E-06 | |
Artificial Algae optimization (AAO) with GMM | 841 | 840 | 89 | 89 | 1.39E-06 | |
PFCM | GMM | 819 | 885 | 44 | 111 | 2.05E-06 |
SDC | 554 | 774 | 155 | 377 | 3.701E-05 | |
Harmonic Search (HS) | 819 | 686 | 243 | 111 | 1.249E-05 | |
SVM (linear) | 797 | 708 | 221 | 133 | 1.306E-05 | |
SVM (polynomial) | 797 | 752 | 177 | 133 | 8.545E-06 | |
SVM (RBF) | 841 | 796 | 133 | 89 | 3.145E-06 | |
Artificial Algae optimization(AAO) | 863 | 774 | 155 | 67 | 5.125E-06 | |
AAO GMM | 886 | 885 | 44 | 44 | 2.6E-07 | |
Sample Entropy | GMM | 686 | 818 | 111 | 244 | 1.331E-05 |
SDC | 753 | 774 | 155 | 177 | 1.265E-05 | |
Harmonic Search(HS) | 664 | 553 | 376 | 266 | 4.42E-05 | |
SVM (linear) | 664 | 531 | 398 | 266 | 5.545E-05 | |
SVM (polynomial) | 797 | 664 | 265 | 133 | 1.702E-05 | |
SVM (RBF) | 841 | 818 | 111 | 89 | 1.945E-06 | |
Artificial Algae optimization(AAO) | 886 | 863 | 66 | 44 | 6.5E-07 | |
AAO GMM | 819 | 841 | 88 | 111 | 2.745E-06 |
Classifier | Optimal Parameter of the Classifier |
---|---|
Gaussian Mixture Model (GMM) | The mean and covariance of the input samples, as well as the tuning parameter, are estimated using the Expectation-Maximization (EM) algorithm. Criterion: MSE |
Softmax Discriminant Classifier( SDC) | The value of λ is 0.5, and the mean of the target values for each class is 0.1 and 0.85, respectively. |
Harmonic Search Algorithm | Class harmony will always be maintained at the predetermined target values of 0.85 and 0.1. Adjustments are made to the upper and lower bounds using a step size of = 0.005 for each. The final harmony aggregation is achieved when the MSE is less than 10^-5 or when the maximum iteration count reaches 1000, depending on which comes first. Criterion: MSE |
SVM (linear) | C (Regularization Parameter): 0.85, Class weight: 0.4, Convergence Criterion: MSE |
SVM (polynomial) | C=0.8, kernel function Coefficient γ: 10, Class weight: 0.5, Convergence Criterion: MSE |
SVM (RBF) | C=0.8, kernel function coefficient γ: 100, Class weight: 0.87, Convergence Criterion: MSE |
Artificial Algae optimization(AAO) | Share force: 3, Energy Loss: 0.4, Adaptation: 0.3, Convergence Criterion: MSE |
AAO with GMM | Mean , Covariance of the input samples and tuning parameter is EM steps, Share force: 3, Energy Loss: 0.4, Adaptation: 0.3, Convergence Criterion: MSE |
Feature Extraction | Classifiers | Accuracy | F1 Score | MCC | F Measure | ER | JM |
---|---|---|---|---|---|---|---|
PCM | GMM | 55.95 | 55.42 | 0.12 | 0.55 | 44.05 | 38.33 |
SDC | 63.10 | 62.65 | 0.26 | 0.63 | 36.90 | 45.61 | |
Harmonic Search | 61.90 | 64.44 | 0.24 | 0.65 | 38.10 | 47.54 | |
SVM (linear) | 52.38 | 53.49 | 0.05 | 0.54 | 47.62 | 36.51 | |
SVM (polynomial) | 60.71 | 59.26 | 0.21 | 0.59 | 39.29 | 42.11 | |
SVM (RBF) | 74.90 | 75.72 | 0.51 | 0.76 | 25.10 | 60.92 | |
AAO | 76.01 | 77.59 | 0.53 | 0.78 | 23.99 | 63.38 | |
AAO with GMM | 76.19 | 78.26 | 0.53 | 0.79 | 23.81 | 64.29 | |
FCM | GMM | 73.81 | 71.79 | 0.48 | 0.72 | 26.19 | 56.00 |
SDC | 66.67 | 68.18 | 0.33 | 0.68 | 33.33 | 51.72 | |
Harmonic Search | 77.38 | 78.65 | 0.55 | 0.79 | 22.62 | 64.81 | |
SVM (linear) | 75.00 | 79.61 | 0.56 | 0.81 | 25.00 | 66.13 | |
SVM (polynomial) | 80.95 | 80.95 | 0.62 | 0.81 | 19.05 | 68.00 | |
SVM (RBF) | 86.90 | 87.06 | 0.74 | 0.87 | 13.10 | 77.08 | |
AAO | 91.67 | 91.76 | 0.83 | 0.92 | 8.33 | 84.78 | |
AAO with GMM | 90.48 | 90.48 | 0.81 | 0.90 | 9.52 | 82.61 | |
PFCM | GMM | 91.67 | 91.36 | 0.84 | 0.91 | 8.33 | 84.09 |
SDC | 71.43 | 67.57 | 0.44 | 0.68 | 28.57 | 51.02 | |
Harmonic Search | 80.95 | 82.22 | 0.63 | 0.82 | 19.05 | 69.81 | |
SVM (linear) | 80.95 | 81.82 | 0.62 | 0.82 | 19.05 | 69.23 | |
SVM (polynomial) | 83.33 | 83.72 | 0.67 | 0.84 | 16.67 | 72.00 | |
SVM (RBF) | 88.10 | 88.37 | 0.76 | 0.88 | 11.90 | 79.17 | |
AAO | 88.10 | 88.64 | 0.77 | 0.89 | 11.90 | 79.59 | |
AAO with GMM | 99.03 | 95.24 | 0.90 | 0.95 | 0.97 | 90.91 | |
Sample Entropy | GMM | 80.95 | 79.49 | 0.63 | 0.80 | 19.05 | 65.96 |
SDC | 82.14 | 81.93 | 0.64 | 0.82 | 17.86 | 69.39 | |
Harmonic Search | 65.48 | 67.42 | 0.31 | 0.68 | 34.52 | 50.85 | |
SVM (linear) | 64.29 | 66.67 | 0.29 | 0.67 | 35.71 | 50.00 | |
SVM (polynomial) | 78.57 | 80.00 | 0.58 | 0.80 | 21.43 | 66.67 | |
SVM (RBF) | 89.29 | 89.41 | 0.79 | 0.89 | 10.71 | 80.85 | |
AAO | 94.05 | 94.12 | 0.88 | 0.94 | 5.95 | 88.89 | |
AAO with GMM | 89.29 | 89.16 | 0.79 | 0.89 | 10.71 | 80.43 |
Feature Extraction Technique | Classifiers | Accuracy | F1 Score | JM |
---|---|---|---|---|
PCM | SVM (linear) | 52.38 | 53.49 | 36.51 |
AAO with GMM | 76.19 | 78.26 | 64.29 | |
FCM | SDC | 66.67 | 68.18 | 51.72 |
AAO | 91.67 | 91.76 | 84.78 | |
PFCM | SDC | 71.43 | 67.57 | 51.02 |
AAO with GMM | 99.03 | 95.24 | 90.91 | |
Sample Entropy | SVM (linear) | 64.29 | 66.67 | 50.00 |
AAO | 94.05 | 94.12 | 88.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated