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Abstract: Hereditary Hemorrhagic Telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, is a
rare and inherited vascular disorder, characterized by the development of arteriovenous malformations (AVMs)
in various organs and telangiectasia (small AVM) in the mucocutaneous. The majority of HHT patients have
haploinsufficiency of genes involved in the transforming growth factor-beta (TGEFpP) signaling pathway,
including endoglin (ENG), activin receptor-like kinase 1 (ALK1, also known as ACVRL1), or SMAD4. Active
angiogenesis is also required for telangiectasia and AVM development. Anti-angiogenic strategies have been
tested in patients and animal models extensively. However, the exact mechanisms for telangiectasia and AVM
development remain unclear. In this review, we discuss recent advances in identifying disease mechanisms,
and potential therapeutic targets.
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1. Introduction

Hereditary hemorrhagic telangiectasia (HHT) is a rare disorder characterized by arteriovenous
malformations (AVMs) in multiple organs telangiectasia (small AVM) in the mucocutaneous [1]. This
condition affects about 1 in 5000-8000 worldwide [2]. Telangiectasias in mucocutaneous can cause
repeated gastrointestinal and nasal bleeding. AVMs in major organs, like the lungs, liver, and brain,
can cause life-threatening hemorrhage and heart failure. Approximately 90% of HHT cases carry a
heterozygous mutation in either the endoglin gene (ENG, HHT-1) or the activin-like receptor kinase
1 (ALK1, also known as ACVRL1, HHT-2). These pathogenic variants follow an autosomal dominant
inheritance pattern. A subset of patients with HHT (about 2% of cases) carry a mutation in the SMAD4
gene, leading to a condition known as Juvenile Polyposis Syndrome (JPS). In this syndrome, the
predominant clinical features include juvenile polyps and anemia [3]. Alteration of growth
differentiation factor 2 (GDF2, also known as BMP-9) has lately been identified as a cause of HHT [4].
This rare form of HHT is also known as HHT5 [5]. Loss of function variants in EPHB4 (encoding
ephrin receptor B4) were reported in a few individuals exhibiting atypical HHT symptoms and HHT-
like hepatic abnormalities [6]. It has been shown that endothelial-specific DROSHA, a key enzyme
for microRNA (miRNA) biogenesis, regulates the TGF-f3 and BMP pathway through interaction with
SMADs. Inactivation of Drosha induced vascular malformation similar to HHT in zebrafish and mice,
indicating a link between Drosha dysfunction and HHT [7,8].

In addition to a few randomized trials, currently, there are no standard medical therapies for
HHT patients [4,9]. Therefore, the development of effective drug therapy is urgently needed. In recent
years, various teams have collaboratively demonstrated several new disease mechanisms and
potential therapeutic targets. This review aims to discuss the new advances within this field.

2. Pathophysiology

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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The pathophysiology of HHT involves haploinsufficiency of ALK1, ENG and SMAD4 genes [10].
However, this theory cannot explain several aspects of the pathogenesis and phenotypes of HHT
patients. Recent studies show that somatic second hit, environmental second hit, and alternation of
BMP9 and BMP10 function all play important roles in HHT pathogenesis.

2.1. Second Hit Hypothesis

The prevailing theory for the progression of HHT is the haploinsufficiency model [10], which
reduces the production of proteins from the altered genes. Over 900 pathogenic variants have been
identified in the ENG and ALK1 genes, including deletions, insertions, missense, and splice site
mutations [11]. The reduction of the protein of the affected gene impairs the normal signaling
pathways mediated by ENG or Alkl. However, the haploinsufficiency model cannot explain why
AVMs/telangiectasia only develop in a few organs or part of the mucocutaneous, even if all cells in
the body carry the same mutation. The haploinsufficiency model also fails to explain why all
members carry the same mutations in one family have symptomatic HHT. This enigma has led
researchers to propose the existence of a "second hit" hypothesis (also known as the Knudson
hypothesis), suggesting that additional factors interact with HHT gene heterozygosity to trigger the
formation of vascular lesions [10].

2.1.1. Genetic Two-Hit

Recently, the second somatic mutations were identified in dermal telangiectasia of both HHT1
and HHT?2 patients (Figure 1). The second somatic mutation was first discovered by Snellings et al.
in 2019 in skin telangiectasia [12]. Hence, local somatic mutations are present and may play a role in
initiating focal vascular malformation [13]. In these studies, the authors checked (1) if there's a
mutation in the same gene as the one causing germline HHT; (2) if both the germline and somatic
mutations occur in pairs (bi-allelic); and (3) if both the mutations lead to loss of function (LoF).
Capture-based library preparations were used to sequence 19 telangiectasia samples, focusing on
three genes associated with HHT (ENG, ALK1, and SMAD4), along with an additional 13 genes
related to vascular malformations. They discovered that among 19 telangiectasia samples, nine have
had somatic mutations in the same gene of the pathogenic germline mutation [12]. Importantly, these
mutations are not present in the constitutional (germline) DNA. To determine the biallelic nature of
the mutations, they investigated whether these mutations were arranged in cis or trans configuration
by sequencing amplicons encompassing positions of both somatic and germline mutations in a single
molecule. They found that all seven mutation pairs are arranged in a trans configuration corresponds
to a p-value of 0.008, indicating a significant bias toward a trans arrangement. This observation
supports the idea that both somatic and germline mutations tend to occur in pairs, exhibiting a bi-
allelic pattern. It also confirms that all bi-allelic germline and somatic mutations are highly likely to
result in LoF [12]. Collectively, these data suggest that the occurrence of bi-allelic loss of function of
ENG, ALK1, or SMAD4 genes may be a crucial step in the development of telangiectasia.

Animal studies have also supported the two-hit model. There is a significant impact of LoF of
the remaining wild-type allele on HHT phenotype development, regardless of how the LoF occurs
(e.g loss of heterozygosity or loss of protein during inflammation) [14]. Elimination of one allele of
genes implicated in HHT, like Eng or Alk1, mimics particular characteristics of the human disease in
animal models, primarily in older animals [15,16]. However, loss of both alleles of any HHT-causative
gene is embryonically lethal in mice [17,18]. Further, conditional homozygous deletion of Eng [14] or
Alk1 [19,20] in mice results in striking vascular malformations, resembling the AVMs found in HHT
patients. It is important to acknowledge that, while the genomic second-hit hypothesis is a reasonable
explanation for the development of vascular malformation in HHT patients, further research is
needed to fully understand how bi-allelic loss of function of ENG or ALK in a few cells lead to the
development of telangiectasia or AVM lesions, [21].
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Figure 1. Schematic representation of Hypothetical Two-hit model in HHT: The germline

heterozygous mutation in the HHT gene cause haploinsufficiency (First hit). The second hits
including inflammation, hypoxia, neo- angiogenesis, vascular injury, and somatic mutations in the
previously unaffected normal allele contribute to HHT phenotype development and progression.

2.1.2. Angiogenesis

Pathogenic variants in AlkI or Eng can initiate the development of AVMs in fetuses and neonates.
During embryonic stages in mice, Alk1 is prominently expressed in arterial ECs. However, in adult
mice, Alk1 expression is consistently high in lung arterial ECs only and during processes like wound
healing and tumor angiogenesis [22].

The important of angiogenesis in AVM formation has been shown by many studies. Conditional
global or EC-specific Alkl deletion is lethal in neonates and adults, resulting in AVMs and
hemorrhage in various organs that have active angiogenesis [20,23,24]. However, homozygous loss
of Alkl alone does not trigger cutaneous arteriovenous (AV) shunt formation in adults. Dermal
wounding in Alkl-deficient mice led to the formation of AVMs in the skin [20,25]. Local application
of angiogenic or inflammatory stimulators, like VEGF or Lipopolysaccharide (LPS), triggers skin
AVM formation, while VEGF neutralizing antibody reduces wound-induced AVMs. Additionally,
angiogenic stimulation is required for the development of brain AVM in adult mice [26-28]. Deletion
of Eng in neonates leads to brain AVM development spontaneously when brain angiogenesis is still
active. However, in adults, skin and brain AVMs only developed in mice with global or EC-specific
Eng deletion when subject to wound or angiogenic stimulation [27]. Together, these data indicate that
angiogenesis is necessary for AVM development.

2.1.3. Inflammation

In addition to angiogenesis, inflammation is also a second-hit event in the development of
vascular malformation in HHT patients. Down regulation of ALK1 in human umbilical ECs (HUVECsS)
or Eng in mouse ECs upregulated pro-inflammatory and innate immune signaling [29], which may
facilitate leukocyte infiltration and extraction [30]. An abnormally high number of macrophages are
present in and around vascular walls in human brain AVM lesions, with or without hemorrhage [31-
33], a pattern also observed in brain AVMs in mice with Eng or Alk1 deletion [27,28,34]. A persistent
infiltration and pro-inflammatory differentiation of monocytes have also been observed in mouse
brains with Eng deletion, indicating the effect of inflammation on HHT pathophysiology [35].

Notably, both ENG and ALK1 are expressed not only in ECs, but also in mononuclear cells
(MNCs). They play essential roles in the maturation of MNCs within the bone marrow and their
subsequent migration into the circulation [30,36-39]. Alterations in signaling through ENG and ALK1
in MNCs have been suggested for modifying immune responses in HHT patients, which present with
heightened incidence of infections or leukopenia [40]. The observed alterations in the migration and
release of various interleukins and mediators in HHT cases suggest an immunodeficiency in these
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patients [41]. Deletion of Eng in macrophages impaired mouse immune response [3,42]. However,
deletion of Eng in macrophages did not cause bAVM development in mice, suggesting that
inflammation could not cause AVM formation, but can act as a second-hit to promote AVM
progression [3,27].

In addition, inflammation can alter the collagen I and III ratios and render brain AVMs prone to
rupture. The collagen I/ collagen III ratios ratio was positively correlated with the number of CD68*

microglia/macrophages and GPNMB* monocytes in Alkl and Eng deficient mouse bAVMs. Microglia,

one of the primary immune cells in the central nervous system, play a crucial role in
neuroinflammation. Increased microglial accumulation was noted in bAVMs in both human and
mouse models [31,43,44]. Studies revealed heightened macrophage infiltration in bAVMs with

hemorrhage compared to those without [45]. However, the connection between microglial activation

and hemorrhage remains unclear.

Several other environmental triggers have also been proposed as potential second-hits in HHT
pathogenesis, including mechanical stress and sun exposure. A study on 103 HHT patients revealed
a higher number of telangiectasias on the dominant hand and on the lower lip, which are expected
to be more frequently exposed to mechanical stimuli, than the undominant hand and the upper lip

[46].

Above evidence indicates that haploinsufficiency of HHT causative genes alone is not sufficient
to induce AVM lesion formation. Additional insult (second hit), such as somatic mutation of the
normal allele, angiogenesis and aforementioned factors are needed to trigger or promote AVM
formation and development.

2.2. Role of BMP9 and BMP10

BMP 9 and 10, the principal ligands within the TGF-f family, are involved in the HHT
development [47]. Mutations in BMP-9 have been reported to cause a vascular anomaly syndrome
with phenotypic overlap with HHT [48]. BMP10 is the closest family member of BMP9, sharing many
biochemical properties with BMP9, including regulating ALK1 downstream signals, such as
SMAD1/5 phosphorylation and Id1 expression [49]. BMP10-null mice died at embryonic day 10.5
with phenotypes like Alk1 null embryos [50]. HHT-like phenotypes have also been shown in zebrafish
with both bmp10 and bmp10-like genes knocked down, which phenocopied ALK1 mutants [51] and
bmp10-null adult fish [52]. These ligands exert their impact through a heteromeric transmembrane
receptor of serine/threonine type I (RI) and type II (RII), followed by the activation of the SMAD
cascades [53]. It has been found that BMP9 induces the expression of VEGFRI1, thus reduces
downstream VEGEF signaling [54]. In addition, BMP9 and BMP10 promote vascular maturation and
quiescence [49].

Numerous studies (Table 1) have highlighted functional overlaps between BMP9 and BMP10.
Both BMP9 and BMP10 are physiological ligands for ENG and ALK1 signaling and contribute to the
proper formation of arteriovenous networks [55]. Knockout of Bmp9 and Bmpl0 induced AVM
development in mice [56].

Table 1. Summary of recent investigations of BMP9-10/ ENG/Alk1/SMAD signaling pathways.

Subject

Title Description Ref.

Zebrafis continuously required AVMs, which are distinguishable from alkl mutants

h

BMP10-mediated The authors have found that loss of both bmp10 and
ALK1 signaling is bmp10-like genes leads to embryonic lethal cranial

for vascular and concluded that BMP10 is vital for the (521
development and maintenance of post-embryonic vascular
maintenance. development as a non-reductant ligand of Alk1.

Mice

Context-dependent
signaling defines roles
of BMP9 and BMP10
in embryonic and
postnatal
development.

The study examined BMP9 and BMP10 in

embryonic and postnatal development. The authors
found that BMP9 is indispensable for postnatal [57]
vascular development in mice. BMP9 and BMP10

are ALK1's natural ligands.
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This study showed that administration of a
BMP9 and BMP10 are neutralizing anti-BMP10 antibody to juvenile Bmp9-
critical for postnatal KO mice reduced retinal vascular expansion and

retinal vascular vascular density. The data indicate that BMP9 and [58]
remodeling. BMP10 are important in postnatal vascular

remodeling of the retina and BMP10 can be a

substitute for BMP9.

A mouse model of  This study induced AVMs in postnatal retina

HHT generated by  through trans-mammary delivery of anti-BMP9/10
trans-mammary- antibodies. This could be a practical and non- [59]
delivery of anti- invasive method for the induction of HHT vascular
BMP9/10 antibodies . pathology in the retina of postnatal mice.

Identification of The authors demonstrated that BMP9/BMP10
BMP9 and BMP10 as .
Human functional activators activate SMAD1/5/8 pathways and concluded that
BMP9 and BMP10 serve as distinct ALK1 ligands [49]

11 .
cell linesof the orp_han a'ctlvm and potentially elicit ALK1-mediated angiogenic
receptor-like kinase 1

ffects.
(ALK1)inECs.  ©°°°°
I t of
I_III; I;::OZO ous ALK1 Endothelial colony-forming cells (ECFCs) and
mutatioisgon the microvascular ECs (HMVECs) were isolated from
transcriptomic new-born HHT and adult PAH donors, and the
P impact of ALKI mutations on BMP9 and BMP19
response to BMP9 . . .
. transcriptomic responses in ECs was consequently  [60]
Human and BMP10 in ECs .
from hereditar observed. RNA-sequencing was performed on these
ary cells following an 18h stimulation with BMP9 or
hemorrhagic

BMP10. The data showed that ALK1 heterozygosity
modified a few of the BMP9/BMP19 regulated genes
which are comparable to the controls.

telangiectasia and

pulmonary arterial

hypertension donors
Abbreviations: BMP9-KO=Bone Morphogenetic Protein 9 Knockout, BMP10-KO= Bone Morphogenetic Protein
10 Knockout, PAH=pulmonary arterial hypertension.

3. Advancements in Developing New Therapies

The use of anti-angiogenic agents like bevacizumab (an anti-VEGF antibody) has shown
promising in treating HHT patients. Anti-angiogenic approaches promise to modify the disease
process and slow down the development of telangiectasias in addition to potentially causing
regression of existing vascular malformations [61]. The available evidence thus far indicates a
potential benefit of anti-angiogenic agents in treating small, mucosal telangiectasias, but not effective
in treating larger visceral AVMs [62]. The limitations associated with the use of anti-angiogenic agents
include limited efficacy and considerable adverse effects, which make them unsuitable for long-term
utilization. Topical nasal spray of bevacizumab (Avastin®), a recombinant, humanized VEGF
antibody, did not improve epistaxis severity in comparison with placebo [63,64]. An in vitro study
showed that high bevacizumab concentration reduced VEGF expression but posed a higher risk of
toxic effects on ECs [65]. A more recent systematic review revealed a significant gap in
sociodemographic variables that identify the race and ethnicity of participants with established HHT
in receiving intravenous delivery of bevacizumab treatment [66]. All current treatments for brain
AVM, including surgery, radiation, or endovascular embolization, are associated with considerable
risks of stroke or death. Treatment of patients with unruptured bAVMs has become increasingly
controversial because the natural history of these patients may be less morbid than invasive therapies
[67]. There is currently no FDA-approved treatment for HHT [68].

3.1. Enhancing ALK1 or ENG Expression


https://doi.org/10.20944/preprints202404.0949.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2024 d0i:10.20944/preprints202404.0949.v1

6

An alternative therapeutic approach for HHT patients is to enhance the expression of ENG and
ALKI1 genes in ECs. Kim et al. reported that overexpression of Alkl in ECs can rescue HHT phenotype
in mice with Alk1 or Eng gene deleted, without untoward effects [69]. This observation indicates that
overexpression of Alkl in ECs is well tolerated by mice. Similar finding has been shown in a zebrafish
model in which alkl is stably expressed in all ECs. [51] This zebrafish line has been continuously
maintained for more than 12 years. The fact that overexpression of Alk1 rescues the HHT phenotypes
in Eng mutant mice suggests that overexpression of Alkl in ECs is a promising therapeutic strategy
to treat both HHT2 (ALK1 mutation) and HHT1 (ENG mutation) patients, which together make up
more than 80% of the HHT patient population.

The absence of hepatic endothelial Alkl changes liver sinusoidal EC differentiation, hinders the
differentiation of large vessels by stimulating angiogenesis and arterialization, and cause the
formation of shunts within the hepatic vascular system. Therefore, hepatic endothelial ALK1
signaling protects from development of vascular malformations by preserving organ-specific
endothelial differentiation and angiocrine signaling [70]. This evidence further supports the finding
that an increase in ALK1 or ENG levels can reduce HHT phenotype severity.

Through screening FDA-approved drugs, Tacrolimus was found to be a potent activator of ALK1
signaling [71]. A case report demonstrated that oral administration of low-dose Tacrolimus improved
HHT-related epistaxis without impacting pulmonary artery hypertension (PAH) progression in a
patient with HHT2 and PAH [72]. Clinical trials using tacrolimus in HHT patients undergoing liver
transplantation enhanced control of epistaxis. This medication upregulates the expression of ENG
and ALKI1, promotes tubulogenesis and cell migration [73]. In another study, oral administration of
tacrolimus significantly increased hemoglobin levels and decreased epistaxis and/or gastrointestinal
bleeding and the needs of blood transfusion in HHT patients [73]. Adverse effects however were
common. At least one adverse effect occurred in 64% of patients during tacrolimus treatment. The
most frequently observed adverse effects were headache, abdominal pain, diarrhea, and insomnia.
25% of patients still have adverse effects after the trial has finished [73]. Another study reported
outcomes of 11 HHT patients treated with low tacrolimus doses (0.5-2 mg/day) on an off-label
prescription basis and demonstrated that low doses of tacrolimus is a promising treatment for
epistaxis and gastrointestinal bleeding in HHT [74]. Overall, treatment with tacrolimus significantly
reduced severe bleeding, improved hemoglobin levels, and decreased transfusion needs in patients
with HHT. Nevertheless, side effects of tacrolimus were prominent. Among 11 patients, two patients
had to stop treatment due to gastric intolerance [74]. Despite the potential therapeutic benefit, its
safety should be further investigated in a randomized controlled clinical trial. A recent study found
that Neuropilin-1 interacts with ALK1 and ENG in vascular smooth muscle cells (SMCs). Neuropilin-
1 deletion in vascular SMCs leads to reduced ALK1, ENG, and pSMAD1/5/8 signaling, and reduced
cell death associated with HHT. Therefore, in addition to Tacrolimus, Neuropilin can be considered
as a new therapeutic target for the treatment of HHT [75].

3.2. Anti-Angiogenic Gene Therapy

Anti-angiogenic approaches promise to reduce hemorrhage and modify the disease process [61].
Many agents can block VEGEF signaling, e.g., anti-VEGF antibodies [26,61,76-80] and tyrosine kinase
inhibitors (TKIs) [81-83]. However, these agents have considerable side effects [84-87]. In addition,
TKIs showed a differential effect on skin and intestinal AVMs [88]. Genetic deletion of the angiogenic
signal-transducing VEGF receptor-2 (VEGFR-2) prevented excessive angiogenesis but did not fully
revert AVM formation [89]. This data suggests that blocking angiogenesis alone is not sufficient to
treat AVMs. In addition, systemic therapies with antibodies and TKIs have many drawbacks and side
effect [81,84,85,90,91]. Telangiectasia and brain AVMs are chronic lesionin which angiogenesis can be
activated over time[87,92,93]. To control the disease progression, systemic delivery of antibodies or
TKIs must be repeated for an extended period, which may be intolerable to some patients.

The soluble FMS-related tyrosine kinase 1 (sFLT1) contains the extracellular domain of VEGF
receptor-1 and can bind all isoforms of VEGEF, thereby inhibiting their downstream signaling. Thus,
the effect of sSFLT1 could be broader than VEGF antibodies that are specific to an individual VEGF
isotope, and kinase inhibitors. Mice carrying two modified Fit1 alleles which lack the cytoplasmic
tyrosine kinase signaling domain but retain the ability to express the sFlt1 isoform, are viable with
mild adult phenotypes [94-96]. This suggests that signaling by FLT1 is not essential and supports a
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primary role for FLT1 and sFLT1 as decoy receptors, limiting the availability of VEGF to signal
through its receptors.

It has been shown that in mice, intravenous (i.v.) injection of AAV9-sFLT1 (a recombinant AAV
packaged in serotype 9 capsid) reversed bAVM phenotypes [97]. However, uncontrolled systemic
sFLT1 expression caused minor liver inflammation and growth arrest of young mice [97]. New
engineered AAV capsids and different delivery routes may minimize the side effects. AAV has many
advantages over direct systemic delivery of anti-angiogenic protein because it can mediate long-term
transgene expression [98-103], which makes a need for repeated dosing unlikely. In addition, many
engineered AAV capsids make targeted delivery of genes possible. Therefore, AAV is a promising
vector for developing specific gene therapy strategy for treating telangiectasia and AVMs.

3.3. Angiopoetin-2 (Angpt2) Antibodies

Alk1 germline deletion increased Angpt2 expression in rodent brain and spinal cord AVMs [19].
Angpt2 expression was found to increase in the postnatal retina of Smad4 mutant mice, as detected
through RNA- and ChIP-sequencing on BMP9- stimulated ECs, as well as in mice with Smad4
knocked out specifically in ECs [104]. Increased Angpt2 expression was also detected in postnatal
brain ECs of Alk1, Eng, and Smad4 mutant mice [104,105]. Administration of Angpt2 monoclonal
antibodies prevented and resolved retinal AVMs of Smad4 mutant mice [104] and improved brain
vascular morphology in other HHT models [105]. However, other studies showed that the blood
ANGPT2 levels were decreased in HHT2 patients and unchanged in HHT1 patients [106,107]. Further,
cultured blood outgrowth ECs from HHT1 and HHT?2 patients, along with several tissues collected
from Eng*- mice exhibited substantial decreases in Angpt2 levels [108,109]. Studies have also
indicated that ANGPT2 expression is depended on the type of HHT, and tissue/organ assessed
[107,110,111]. Nevertheless, an inductive role for ANGPT2 in both brain and retinal AVMs has been
suggested [105]. In clinical trials anti-ANGPT2 antibodies have shown potential in normalizing vessel
caliber in HHT patients [104]. A Robust and ectopic Angpt2 expression in the brain ECs was evident
in all the 3 mouse models that have Smad4, Alkl, or Eng knockout in ECs. Loss of HHT signaling in
HUVECs, via ALK1-Fc, resulted in increased secretion of ANGPT2 into the media [105]. Thus,
Angpt2-targeted therapies may represent a novel approach for treating vascular abnormalities in
HHT patients.

3.4. PI3-Kinase Inhibitor and Other Agents

Because the PI3-kinase pathway operates downstream of both VEGF and ANGPT?2, researchers
have tested PI3-kinase inhibitors in HHT patients. Treatment with Buparlisib, a PI3-kinase inhibitor,
reduced the frequency of epistaxis in HHT?2 patient [112,113]. However, long-term utilization of this
inhibitor could pose substantial challenges related to safety and tolerability. Adverse effects like
depression, increased lipase, hyperglycemia, and anxiety of first-generation PI3 kinase inhibitors
warrant careful consideration for prolonged use [114]. Among the AKT inhibitors, perifosine and
uprosertib, VAD044 (a small molecule) exhibited superior efficacy in inhibiting retinal AVM
formation by reducing phospho-56 and AKT activity [115]. A phase I trial known as INSIGHT is
currently underway to investigate the benefits and risks of VAD044 [116].

In addition to PI3-kinase inhibitors, other drugs with anti-angiogenic property have been tested.
Non-selective beta-blockers, such as propranolol and timolol have been applied locally to reduce
bleeding from telangiectasia [117]. Etamsylate (a nasal spray) has recently approved to treat HHT
patients with high susceptibility to nosebleeds [118].

3.5. Modulation of BMP9-10/ENG/ALK1/SMAD Pathway as an Emerging Therapeutic Target

Based on the insights gained from genetic studies, it becomes feasible to develop tailored
treatments or repurposing existing medications to modulate the BMP9-10/ENG /ALK1/SMAD
pathway (Figure 2) [62]. Various therapeutic approaches targeting Alkl are under investigation,
including monoclonal antibodies, small molecule inhibitors, and gene therapy to modulate Alkl
expression and signaling [69,119]. Ruiz et al. found that Sirolimus and nintedanib in combination
prevented vascular pathology in the oral mucosa, lungs and liver of the BMP9/BMP10-
immunoblocked mice [120]. Sirolimus binds FKBP12 and inhibits mTOR downstream of PI3K and
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AKT. Post-liver transplantation, Sirolimus ameliorated HHT symptoms by correcting
haploinsufficiency or upregulating protein levels of ENG and ALK1. HHT?2 patients with hepatic
AVMs and high-output cardiac failure experienced significant improvement in epistaxis after
receiving treatment of immunosuppressive agent tacrolimus or sirolimus after liver transplantation
[71,121].

Ruiz et al. found that Sirolimus and nintedanib in combination prevented vascular pathology in
the oral mucosa, lungs and liver of the BMP9/BMP10-immunoblocked mice [120]. Tacrolimus is a
strong activator of the BMP9/ALK1/Smad signaling cascade and it has been used for treatment of
animal HHT and decreased the development of retinal AVMs [71]. A case study reported a substantial
decrease in epistaxis in HHT2 patients following orally administration of a low dose of tacrolimus
[72].

Together, these data shown that agents that can modulate gene expression in BMP9-10/ENG
/ALK1/SMAD pathway have potential to reduce bleeding from telangiectasia and AVM.
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Figure 2. Targets of therapeutic agents. Anti-VEGF antibodies bind VEGF in tissue prevent it interact
with its receptors and thus reduce angiogenesis and AVM severity. ANGPT2 monoclonal
antibodies bind with ANGPT?2 in tissue prevent it interact with its receptors and thus reduce its
downstream signaling and AVM severity. Sirolimus and Tacrolimus inhibit BMP9/BMP10
downstream signaling, which resulting in reduction of AVM severity. Tacrolimus can also reduce
AVM severity through inhibit PI3K signaling pathway.

4. Summary and Future Perspective

In this review, we summarized the advances in HHT pathophysiology and newly explode
therapeutic strategies. The identification of second-somatic hit and enhanced ALK1 expression in ECs
rescues the phenotype of Alkl and Eng knockout mice, thus opening new revenues in our
understanding of HHT pathogenesis and therapeutic targets. Furthermore, the exploration of drugs
like Tacrolimus and Sirolimus, which have the potential to reactivate the BMP9-10/
ENG/ALK1/Smad1/5/9 signaling pathway, offers a novel direction in addressing the disrupted
molecular mechanisms central to the HHT pathogenesis. ANGPT2 antibodies and AAV mediated
gene therapies are also promising therapeutic strategy for reducing phenotype severity of HHT
patients.
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Further research should focus on exploring future potential treatments comprehensively
utilizing existing data. Although the existence of somatic second hit has been proven, further
investigations on how the few ECs with biallelic mutations can lead to the development of vascular
malformations are needed. Although the above-mentioned therapeutic strategies are promising, they
are still in the experimental and research stages. Clinical trials and further studies are necessary to
determine their safety and effectiveness in treating HHT patients.
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