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Abstract: This paper proposes an enhanced Quantum Key Distribution (QKD) protocol by incorporating a Three-
Dimensional Angular Momentum Representation (3D AMR) to address vulnerabilities inherent in traditional
two-dimensional polarization states-based systems. The 3D AMR method expands the state space, potentially
increasing security against sophisticated quantum attacks. We present a theoretical and computational framework
that transitions from the conventional two-dimensional polarization to a three-dimensional angular momentum

space, which inherently increases the complexity and security of the quantum states used in QKD.
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1. Introduction

The rapid advancement of quantum computing technologies necessitates more secure crypto-
graphic systems, particularly for Quantum Key Distribution (QKD). Traditional QKD systems, based
on two-dimensional polarization states, face potential vulnerabilities against sophisticated quantum
attacks [1]. Here in this paper, we introduce a theoretical and computational approach to Quantum
Key Distribution (QKD) by employing a Three-Dimensional Angular Momentum Representation
(3D AMR). The implementation of 3D AMR in QKD represents a significant shift from conventional
methods, offering an expanded state space and potential for increased security. This approach intro-
duces new quantum mechanical phenomena, such as complex superposition states and entanglement
properties, which could strengthen quantum communication [2]. The transition from a 2D polarization
representation to a 3D Angular Momentum Representation (3D AMR) in Quantum Key Distribution
(QKD) like the BB84 protocol can potentially strengthen certain aspects that are considered weaker or
more vulnerable in the 2D approach [8]. The 2D representation, typically using two orthogonal states
(like horizontal /vertical or diagonal/anti-diagonal polarization), offers a limited state space. This
limitation can make certain eavesdropping strategies more feasible, especially as quantum technology
advances. A 3D representation inherently offers a larger and more complex state space. This com-
plexity can increase the difficulty for an eavesdropper to correctly guess the state, measure it without
disturbing it, and thus remain undetected. In parallel certain quantum attacks, like the Photon Number
Splitting (PNS) attack, exploit the vulnerabilities in 2D systems, particularly in weak coherent pulse
implementations of QKD [7]. However the increased complexity of the 3D states could potentially offer
more robustness against such attacks, making it harder for eavesdroppers to gain information without
introducing noticeable errors [4]. Additionally in 2D polarization, the error rates can sometimes limit
the maximum secure transmission distance and the key generation rate [3] and The 2D representation
is limited in its ability to exploit the full potential of quantum mechanics in terms of non-orthogonal
state discrimination.. But with a more complex state space, 3D AMR could potentially tolerate a higher
quantum bit error rate (QBER) before security is compromised. This could extend the effective range
and improve the key generation rate under certain conditions the same time [9] by employing a more
extensive set of quantum states, 3D AMR can potentially utilize non-orthogonal quantum states in a
more sophisticated manner, offering enhanced security features [10].
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2. Mathematical Framework

Our model represents quantum states in 3D AMR as combinations of spin states, enhancing
the complexity compared to the 2D model [5]. Here we include the state preparation, transmission,
and measurement processes within the 3D framework and a redefined BB84 protocol [6]. We detail
the mathematical representation of quantum states in 3D space, using spherical coordinates for state
representation. The adaptation of the BB84 protocol to this framework is mathematically formulated,
emphasizing its distinction from conventional methods. The same time We demonstrate how tradi-
tional 2D polarization states are special cases of the 3D AMR model. Through a series of mathematical
transformations, we show the transition from the complex 3D state space to the simpler 2D polarization
states, underscoring the versatility of the 3D AMR approach.

For simplicity, let’s define our states in terms of the eigenstates of the Pauli spin matrices, but
adapted for a photon-like system. The eigenstates of the Pauli spin matrices o;.
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These states are used to construct a more complex representation for the photon states used in
QKD.The BB84 protocol is then adapted to this 3D framework. We define two non-orthogonal bases
using combinations of these spin states

e Basis 1: {|¢x1), [¥x—)},
* Basis 2: {|¢y+), [¢y-)}

absolute similarity we emphasize for oy, 0,
Each pair of eigenstates for a given Pauli spin matrix is orthogonal.

<¢x+| |¢’x—> =0 3)

Superposition states can be formed as linear combinations of these orthogonal states and general
state hold completeness condition.

The limit from 3D AMR to 2D Polarization state we switch to use a mathematical approach that
demonstrates this transition as following : in 3D AMR, a photon’s quantum state is represented in
terms of its angular momentum. Considering spin states |(x+), [x), [Py+), [y—), [P=+), [P=—)

To transition to 2D, we focus on the o,

Eigenstate which represent the spin along the z-axis. These states can be directly mapped to
linear polarization states in 2D. The z-component of sigma matrices corresponds to horizontal and
vertical polarization of 2D case. There is possibility to diagonalize in unique matrix this horizontal and
vertical. Indeed diagonal states of 2D case is superpositions of these horizontal and vertical state basis.
Therefore they can be derived as following.

=S
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The "limit" here is conceptual rather than a strict mathematical limit. It involves reducing the
complexity of the state space from 3D to 2D by focusing on a subset of the angular momentum states.
This is done by:Selecting a Subset of States: Choosing the ¢, eigenstates out of the complete set of spin
states and mapping to polarization states: Directly associating these chosen spin states with linear
polarization states. This approach shows how the 2D polarization representation can be seen as a
specific case within the broader 3D AMR framework. The "limit" is a conceptual reduction of the state
space, focusing on a particular set of states that correspond to the familiar 2D polarization states.
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3. Simulation and Results

There are we simulated 2 cases in one we considered the process only between Bob and Alice, in
the second case we applied with 3D AMR method to the process among 3 people (conditionally Alice
Bob and Jack.

3.1. Scheme (Alice and Bob)

In this case of study, we investigate the robustness and security of the BB84 Quantum Key
Distribution (QKD) protocol within a two-party system, comprising the sender (Alice) and the receiver
(Bob). Our simulation aims to compare the traditional 2D polarization representation with a 3D Angular
Momentum Representation (3D AMR) to assess the potential advantages of a higher-dimensional
quantum state space. We utilize the quantum computing framework provided by Qiskit to create
and measure quantum states across multiple quantum bases, thereby mimicking the conditions of
quantum communication over a potentially insecure channel. The test is conducted under the following
conditions:

* Alice encodes a random sequence of qubits using either standard 2D bases (Z and X) or an
additional 3D basis (Y), enhancing the BB84 protocol’s complexity.

* Bob randomly selects his measurement bases to decode Alice’s qubits, unaware of her choice of
basis.

* No active eavesdropper (Eve) is introduced in the simulation, allowing us to focus on the intrinsic
error rates and the matching rates of the received qubits against the original sequence sent by
Alice.

¢ The simulation is iterated over a predefined number of qubits to generate statistically significant
results, providing insights into the practicality and reliability of using a 3D AMR in standard
QKD protocols.

The result of the simulation was following:

5 Matching Rates of 2D BB84 vs 3D AMR-like QKD
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3.2. Scheme (Alice, Bob and Jack)

In this case of study, our analysis to a three-party QKD scenario, we incorporate an additional
participant, Jack, acting as a secondary receiver following Bob. This simulation explores the sequential
QKD process where Alice first sends her encoded qubits to Bob, who then measures and subsequently
prepares new states to send to Jack. The inclusion of Jack aims to simulate a relay-based quantum
communication system, where quantum information is transferred through multiple nodes. The
specific conditions for this extended simulation are as follows:

¢ Alice’s encoding process and Bob’s initial measurements remain consistent with the two-party
simulation, ensuring comparability of results.
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* Bob, after measuring, re-encodes the qubit using the same basis before sending it to Jack, simu-
lating a “quantum repeater’ that attempts to preserve the state fidelity.

¢ Jack performs his measurements on the received qubits, with the final bit values being compared
to Alice’s original bits to evaluate the overall system fidelity.

¢ The simulation also contrasts the 2D polarization and 3D AMR approaches to determine the
impact of additional quantum bases on the protocol’s complexity and security in a multi-node
quantum network.

® Similar to the two-party simulation, no eavesdropping is considered, allowing us to focus on the
protocol’s performance metrics without external interference.

The result of this statement was following;:

i Matching Rates of 2D vs 3D QKD
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4. Conclusions

Our comparative simulations of the BB84 protocol, utilizing both traditional 2D polarization
states and a novel 3D AMR-like approach, have yielded intriguing results that may have significant
implications for the future of quantum key distribution (QKD).

In the case of 2D polarization, we observed a substantial matching rate between the original and
measured bits. This outcome reaffirms the established reliability and robustness of the 2D polarization
approach in QKD protocols. The matching rates align with expected performance, considering the lack
of an eavesdropper in our simulation, and reflect the inherent error rates associated with quantum
state preparation, transmission, and measurement processes.

Conversely, the 3D AMR-like approach demonstrated an increased matching rate, suggesting
that the incorporation of an additional basis may contribute to a more robust QKD system. This
enhancement in matching rates implies that the increased state complexity afforded by the 3D repre-
sentation could potentially improve the security and reliability of quantum communications. Notably,
the higher-dimensional state space may offer a more challenging environment for potential eavesdrop-
pers to extract information without detection, thereby strengthening the overall security of the QKD
protocol.

In summary, the findings from our simulations suggest that exploring beyond the conventional
2D state space in QKD can yield beneficial results. The 3D AMR-like model, while hypothetical and
more complex to implement, holds promise for enhancing the security and fidelity of quantum key
distribution. Future work should focus on addressing the practical challenges of 3D state preparation
and measurement, as well as rigorously assessing the security advantages through empirical testing
against a variety of quantum attack strategies.
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