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Abstract: Recently, methods to detect DoS and spoofing attacks that occur on in-vehicle networks using CAN
Protocol are being studied through deep learning models such as CNN, RNN, and LSTM. These studies have
produced significant results in the field of In-Vehicle Network attack detection using deep learning models. In
addition, significant results are being achieved through research on applying time series-based deep learning
models such as LSTM to detect DoS attacks and replay attacks occurring in in-drone networks by expanding
them to drones using the UAVCAN protocol. In this paper, we conducted an experiment to detect in-drone
network attacks through non-time series analysis using machine learning models and deep learning models,
and through appropriate learning for each attack type, it can also be analyzed through non-time series analysis.
The results showed that it was possible to detect attacks.

Keywords: controller area network (CAN); shapley additive explanations (SHAP); machine
learning(ML); deep learning(DL); unmanned aerial vehicles (UAVs)

1. Introduction

Recently as unmanned aerial vehicle (UAV) and internet of things (IoT) technologies develop,
the use of UAVs is expanding to weather observation, agriculture, and military purposes. However
not only physical signal attacks such as GPS Signal Spoofing and Jamming Signals, but also malware
and malicious communication [1]. Additionally, attacks through software and communication
protocols such as spoofed signals also occur. These attacks are classified as a major threat because
they can also be used against unmanned aerial vehicles (UAVs). These attacks are classified as a major
threat because they can also be used against unmanned aerial vehicles (UAVs). Accordingly, cyber-
attack attempts targeting unmanned aerial vehicles (UAVs) are increasing, and research to detect
them is actively underway [2,3]. Representative attack types include spoofing, DoS, and Replay
attacks on CAN protocols against UAVs.

Research is also underway using machine learning (ML) and deep learning (DL) models to
detect network intrusions occurring in the CAN protocol, but performance is not stable because the
dataset's feature learning process of ML/DL models cannot be verified. There is a limitation that
Researcher cannot utilize the patterns analyzed by the ML/DL model. In addition, stacking
techniques that ensemble different types of models are being attempted to improve detection
performance, but problems are occurring that result in lower detection performance. These
limitations have recently become possible to analyze the feature importance and SHAP value of
ML/DL models through Lunderberg's explainable artificial intelligence (XAI) research [5,7], and by
applying the SHAP technique that can specifically analyze ML/DL models. Solving cases [8,9] are
also emerging.

Therefore, we compared the binary detection performance of single models and the binary
detection performance of ensemble models for each type of attack that occurs in an in-drone network,
and estimated the cause of the performance difference between models through SHAP analysis.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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This paper consists of a total of 5 chapters. In chapter 2 the attack scenario that generated the
related work and dataset for CAN protocol, ML/DL model, and SHAP was analyzed. The chapter 3
analyzes the dataset using pearson correlation and SHAP techniques and performs performance
evaluation by learning single models for a single attack. The chapter 4 experiments with a model that
performs binary classification on whether network intrusion occurs by combining models with
excellent performance and analyzes the results. The chapter 5 describes the conclusions and
limitations of this study.

2. Related Works

2.1. Controller Area Network (CAN) Protocol

The CAN protocol [4] is a message-oriented protocol for communication between the ECU,
sensors, and control equipment in the car. Unlike the existing UART's Point to Point method, which
used a 1:1 dedicated line for data communication, it uses the multi master method to reduce the
weight of the car by reducing the required wiring. And the price could be reduced.

Table 1. Classification of tasks by Layer.

Layer Description
Application Performs vendor-defined tasks
Object Performs message processing
(Presentation)
Transfer Performs message transmission reception and Detects signal defects and message
erTors
Physical Defines how to convert physical signals such as signal level and signal

optimization

To give instructions directly to the drone, UAVCAN payload according to CAN 2.0 B is used,
and the structure is shown in Figure 1. And the task to be performed by the drone or status
information is stored in the transfer payload, which consists of a total of 8 bytes. Therefore, Fuzzy
and Relay attacks on drones occur centered on CAN payload packets.

CAN payload

Start of transfer
Field name Transfer payload End of transfer
Toggle
I Transter ID
Payload byte Up to 7 bytes Tall byte
Bit position TIGIE’]"I:‘I:‘]‘IO

Figure 1. UAVCAN payload Frame [10].

2.2. Network Intrusion Detection Model for CAN Protocol

There are mainly five types of attacks that mainly occur in the UAVCAN protocol. [22] Denial
of service (DoS) is an attack that paralyzes system resources and delays work by injecting a large
amount of data into a specific system or network. This paper targets DoS of the flooding method,
which injects messages into the CAN Bus at 15ms intervals.

Fuzzy is an attack in which an attacker injects a message using dictionary or brute forcing
method to infer a valid CAN ID[23].
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Table 2. CAN attack Machine Learning-Based detection Research.

Model Paper Platform
Tanksale, V. (2019, November) [11] In-Vehicle Network
Support Vector Machine  Alsoliman, A., Rigoni, G., Callegaro, D., In-Vehicle Network
Random Forest Levorato, M., Pinotti, C. M., & Conti, M.
(2023) [12],
Moulahi, T., Zidi, S., Alabdulatif, A., & In-Vehicle Network

Atiquzzaman, M. (2021) [13]
Kang, M. ], & Kang, J. W. (2016) [11]

Deep Neglr\?ll\INehNork Javed, A. R, Ur Rehman, S, Khan, M. U,, In-Vehicle Network
Alazab, M., & Reddy, T. (2021) [14] .

Kou, L., Ding, S, Wu, T, Dong, W., & Yin, Y. L ehicle Network

CNN+LSTM D MG 9 WL Ly DONg, W * % In-Vehicle Network

(2022)[15]
Convolutional Neural Network Song, H. M., Woo, J., & Kim, H. K. (2020) [16] In-Vehicle Network
Tariq, S., Lee, S., Kim, H. K., & Woo, S. S.
Recurrent Neural Network  (2020) [17]
LSTM (Long Short-Term  Qin, H., Yan, M., & Ji, H. (2021) [18]
Memory) Model Tlili, F., Ayed, S., & CHAARI FOURATI, L.
(2023, August) [19]
Seo, E., Song, H. M., & Kim, H. K. (2018,
GAN August) [20]

Ensemble Learing Model =~ Khan, M. H,, Javed, A. R, Igbal, Z., Asim, M.,

& Awad, A. L. (2024) [21]

In-Vehicle Network

In-Vehicle Network
In-Drone Network

In-Vehicle Network

In-Vehicle Network

Replay is an attack that intercepts a valid message and maliciously retransmits it, disguising it
as a valid message and repeating a specific action. [24] Spoofing is an attack that disguises the CAN
ID of a specific message and tricks other nodes in the CAN Bus into performing the task intended by
the attacker. Impersonation is an attack that disguises itself as an appropriate node in CAN
communication and performs malicious attacks or data modification on other nodes. Research on
detect model for network attacks using CAN packets are shown in Figure 2.

_ injected messages

‘m‘;‘: ox1 0x2
ECUA [ ox1 S ox1 a ox1
ECU_B 0x2 %o ox2 |
cANbus [ Oxt || 0x2 | | oxt | [oxt | [ox2 | [ ox2 | ox1
—
IFS > 3 bits Time (t)

Figure 2. Diagram of attack through message injection in CAN Protocol [17].

2.3. SHAP

The SHAP (SHapley Additive exPlanations) [7] is a method of calculating SHAP values for each
feature in a machine learning model, helps humans to understand the influence of features on the
machine learning model. The SHAP value is the Shapley value for a feature value which is calculated
using the conditional expected value function of the machine learning model. The Shapley value is a
solution concept in cooperative game theory that distributes the total gain obtained through
cooperation among game participants on each participant's marginal contribution.
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Shapley regression value assigns importance (importance value) to each variable based on how
much it affects the model's performance when included in learning.
This is Shapley Interaction Value of an equation:
[N (M — || = 1)! )
b0 =D I [1.(2) = £e(Z\i)]

ZCx'

, )
where f is the model, M is the number of X/, and x' is simplified input that maps to the original input
through a mapping function x = hx(x’).

Hx maps 1 or 0 to the original input space, where 1 indicates that the input is included in the
model while 0 indicates exclusion from the model. |Zz'| is the number of non-zero entries in z'and z’
€ X' represents all z'vectors where the non-zero entries are a subset of the nonzero entries in x'.
Feature importance through Shapley Value is calculated using the following equation (2).

This is Feature Importance of an equation:

n
L=l
i=1 , 2

The Shapley value assigns an importance value to each feature that represents the effect on the
model prediction. The effects of the i-th feature is computed as the difference between a model trained
with the i-th feature and another model trained with the feature withheld on the current input. Since
the effect of withholding a feature depends on other features in the model, the preceding differences
are computed for all possible subsets z'\i. As a result, the Shapley value is the weighted average of
all possible differences, a unique measure of additive feature attribution method that satisfies all three
axioms (local accuracy, missingness and consistency). The SHAP value in machine learning is
designed to closely align with the Shapley value, using the conditional expectations to define
simplified inputs.[9] Feature importance in a linear model with multicollinearity. Although
multicollinearity is a property that violates the independence assumption in linear models, it is
mentioned that the Shapley regression value is a value that can be used even in linear models with
multicollinearity.

2.4. Explainable Artificial Intelligence (XAI)

According to Capuano, N., Fenza, G., Loia, V., & Stanzione, C. (2022) [25], Artificial Intelligence
Models such as Machine Learning and Deep Learning have important impacts such as Cyber Security
due to the opacity of Internal Mechanisms. It was of limited use in areas where decisions were needed.
However, if explainability is provided for the AI Model provided by techniques such as SHAP [5],
LIME [26], a novel auto-encoding-based scheme for LSTM model, and sufficient framework research
is followed, it can satisfy the transparency required in the cyber security area. post-analysis of Al
models and reduction of workload through AI models can be expected. Additionally, in the study
[27] Current As a result of reviewing related techniques, it was evaluated that XAI has the potential
to develop into TAI through framework research, although there are limitations such as "post-
explainability, replicability of methodology" and lack of "integrated understanding."

2.5. Deep Neural Network Model

The DNN (Deep Neural Network) model is a representative deep learning model and consists
of several hidden layers between the input layer and the output layer. These DNN models can be
applied to classification and regression problems, and a representative DNN model application study
is the YouTube video recommendation algorithm [28].

On the other side, the RNN (Recurrent Neural Network) model is similar to the DNN model,
but the hidden layer is composed of Recurrent Cells, so it can store past information and make
predictions about the sequence. When learning long-term relationships, these RNN models have the
problem that the weight of the model becomes extremely small or large, so the LSTM model that
introduces Memory Cell instead of Recurrent Cell is mainly used for time series analysis.
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Table 3. Diagram of Deep Learning Models [29].
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2.6. Attack Scenario Analysis

2.6.1. Flooding Attack Scenario Analysis

Flooding attack is a type of Denial of Service (DoS) attack that consists of two frames and injects
them into the CAN bus. It is performed repeatedly in short cycles, delaying the transmission of
messages on the CAN bus, and consuming the resources of the target ECU, thereby interfering with

the service.
The following Figure 3 is a function written in Python 3 code for the Flooding Attack Mechanism
used when creating the dataset for Scenario types 01 & 02.

1 def floodingAttack(endTime):
framel = [0xA6, 0x35, 0, O, 0, 0, 0, 0x80]
frame2 = [0, 0, 0, 0, 0, O, 0x60]
idx = 0

while True:

framel [-1] = (idx)}0x20 + 0x80

frame2 [-1] = (idx)¥0x20 + 0x60

try:
msgl = can.Message(arbitration_id=0x05040601, data=framel)
msg2 = can.Message(arbitration_id=0x05040601, data=frame?2)
bus.send (msgl)
bus.send (msg2)

except can.CanError:
print ("Message Not Send")

time.sleep(0.005)

idx += 1

if time.time() > endTime:
break

Figure 3. Flooding attack’s Mechanism [24].

The Flooding Attack Mechanism is executed at 0.005 second intervals, generates a payload
consisting of 7 bytes and 8 bytes of data, respectively, modifies the Message ID to '0x05040601', and
injects it into the CAN Bus. Therefore, the Motor ECU processes a payload consisting of 8 Bytes, and
there may be a delay in processing the Main ECU's message.

Flooding attack process analysis over time was performed as shown in Table 4. A flooding attack
occurred between 50sec and 90sec, but the flight was normal. However, the motor stopped in the
90sec to 120sec and 130sec to 160sec sections due to flooding attack.

Table 4. The Method Proceeds of Flooding attack Scenario (Type 01 & 02).

TimeSt
‘m(zz’c;‘mp 10/20 30/40/50  60/70/80/90 100 110/120 130  140/150/160 170/180

Motors Motors
Stop Stop
Label ~ Normal Normal Flooding Normal Flooding Floodng Normal Flooding Normal

status  Booting Take Off Hovering Hovering Motors Stop Landing
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Table 5. Massage injection progresses according to time sequence on CAN Bus.

Time(s)
ECU 1 2 3 4 5 6 7 8
Attacker - - 0x1 - - 0x2 - -
Main ECU 0x1 - - - 0x1 - - 0x1
Motor ECU 0x2 - - - - - 0x2 -
CAN bus 0x1 0x2 0x1 0x1 0x2 0x2 0x1

The Main ECU and Motor ECU exchange messages on the CAN bus, and at this time, the attacker
injects messages into the CAN bus. Therefore, the Motor ECU does not receive messages from the
Main ECU, or processing delays occur, causing the UAV's motor to stop operating.

Table 6. Structure of Flooding Payload.

Byte [1] [2] [81 [4 (51 6] [71 I[8] [o1 101 1] [2] [13]
8 08 A6 35 00 00 00 00 00 - 166 53 00 00
7 07 00 00 00 00 00 00 00 Null 00 00 00 00

There are two types of payload injected by the attacker, of which the payload with a data length
of 8 bytes stores the Transfer ID in the 9th data byte. Transfer ID is an Integer value used by message
type and destination node to distinguish it from other messages, and the payload uses the Transfer
ID value of the previously transmitted message plus 1 as the new Transfer ID. Currently, the Transfer
ID of the first Flooding Payload starts from 80.

The main features of flooding payload are three: First, the Data Length is 7 and 8. Second, the
9th Data Byte storing the Transfer ID increases by 1. Third, 6th, and 7th Data Byte is always 00.

2.6.2. Fuzzy Attack Scenario Analysis

Fuzzy attacks in Scenario Type 03 & 04 perform message injection by changing the message
composition until the attacker obtains the desired information or action. For the injected message, the
message id is set to '0x05040601', the data byte configuration is changed by brute forcing to a value
between 0 and 255, and the message is injected at 0.001 second intervals. This fuzzy attack mechanism
was written as python code in Figure 4.

def fuzzyAttack(endTime):
sign = 0x217f5c87d7ec951d
sign = sign.to_bytes(8, byteorder="little")
tmp_crc = transCRC(sign)
idx=0

while True:
paylead0 = [random.randint (0, 265) for x in range(5)]
payleadl = [random.randint (0, 265) for x in range(6)]
frame0, framel = data_gen(payload0, paylcocadl, tmp_crc)
frame0Q[-1] = (idx)¥%0x20 + 0x80
framel [-1] = (idx)¥%0x20 + 0x60
try:
msgl = can.Message(arbitration_id=0x05040601, data=frame0)
msg2 = can.Message(arbitration_id=0x05040601, data=framel)
bus.send (msgl)
bus.send (msg2)
except can.CanError:
print ("Message Not Send")
time.sleep(0.001)
idx += 1
if time.time() > endTime:
break

Figure 4. Fuzzy Attack mechanism [24].
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Table 7 is written according to Timestamp of the UAV status during the Fuzzy attack Scenario
experiment. A situation occurred in which the UAV's motor stopped in all sections where the fuzzy
attack occurred.

Table 7. The Method Proceeds of Fuzzy attack Scenario (Type 03 & 04).

Time 140/150

Stamp(sec) 10/20  30/40/50 60/70/80 90 100/110 120 130 160 170/180
Hovering Hovering Hovering Hovering
Status  Booting Hovering Motors Hovering Motors Motors Hovering Motors Landing
stop stop stop stop
Label Normal Fuzzy Normal Fuzzy Fuzzy Normal Fuzzy Normal

2.6.3. Replay Attack Scenario Analysis

Replay attack is an attack in which an attacker collects normal messages in advance and
repeatedly retransmits them to induce a specific action. Scenario types 05 & 06 perform this Replay
attack according to the time when the message should be transmitted.

Replay attack Scenario differs from other attack scenarios in that the attack conditions for types
05 and 06 are somewhat different. Table 8 is shows the difference in attack conditions between the
two scenarios.

Table 8. Dataset comparison by scenario.

. Number of . Propotion of
Scenario type Attack Interval(s) Total time(s) Label(normal:attack)
05 3 0.005 210 2.5:1
06 4 0.005 280 2:1

The Replay attack mechanism used in Scenario types 05 & 06 is written as python code in Figure

def replayAttack(endTime):
idx = 0
replayStart = time.time()

while True:
while time.time() - replayStart >= frames([idx][0]-frames[0][0]:
try:
msg = can.Message(arbitration_id=0x05040601, data=frames|[
idx] [1])

bus.sand(mseg)
ept can.CanError:

print ("Message Not Send")
idx += 1|
if idx »>= len(frames):

if time.time() > endTime:

Figure 5. Relay Attack mechanism [24].

3. Dataset Analysis and Preprocessing

In this chapter, the dataset for each scenario type is analyzed. By comparing the SHAP analysis
results of the attack scenario and the ML model, we confirmed whether the ML model effectively
analyzes patterns within the dataset.

3.1. Dataset Analysis for Each Datasets with SHAP Analysis

In this chapter, normal/attack data ratio, pearson correlation coefficient analysis, and SHAP
value analysis with Tree Explainer (XG Boost) were performed on the dataset for each scenario type
to measure the SHAP interaction value between Feature Importance and Important Features.
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The analyzed dataset was preprocessed as follows.

Train/Test datasets split was split at a 7:3

ratio under the condition of stratifying the label. Timestamps was included for the time series models
LSTM and Simple RNN model, and data sets with timestamps rows removed were used for ML
models. Additionally, in all scenario type datasets, there was an error of less than 2 seconds in
timestamp between the experiment for data collection and the collected data set.

Attack dataset proportion for each scenario type is as follows Table 9.

Table 9. Single Attack Dataset Proportion.

Type 01. Dataset Proportion by Label

Type 02. Dataset Proportion by Label

Normal, Attack Counts

120000 {

100000 4

80000

60000 4

count

40000 4

20000

o 1
Label

Normal, Attack Counts

100000

80000

60000

H

40000

20000

o

0 1
Label

Type 03. Dataset Proportion by Label

Type 04. Dataset Proportion by Label

Mormal, Attack Counts

100000 -

EDOOD 4

EDDO0D

caunt

40000 -

20000 4

a 1
Label

Normal, Attack Counts

100000 -

80000 1

60000

count

40000 4

20000 4

Label

Type 05. Dataset Proportion by Label

Type 06. Dataset Proportion by Label

Normal, Attack Counts

120000

100000

80000 q

count

60000 -

40000 4

20000

o4

Label

Normal, Attack Counts

160000

140000

120000

100000

€
g 80000 1

60000 -

Label

Normal is labeled 0 and attack is labeled 1. Types 01 and 03 have relatively balanced ratios, and

Types 02, 04, 05, and 06 have relatively unbalanced ratios.
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Table 10. Pearson Correlation Heatmap of dataset by Scenario Type.

Pearson Correlation Heatmap (Type 01 Dataset) Pearson Correlation Heatmap (Type 02 Dataset)
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Datal] int el
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75 Datald int-
m 0 -L0d
Daal3 it Detalengh Dwbint DTt st Dl DsaOjm  Dallat  Owalzié  Delldjut
T u u i ==100
Datalength Dats6m  Detalint  Detaéint  Detadint  Detalomt  Detallit  Defal2nt  Datal3nt
Pearson Correlation Heatmap (Type 03 Dataset) Pearson Correlation Heatmap (Type 04 Dataset)
Correlation Heatmap Comelation Heatmap
100 10
Dtz Lengn SR g DitaLegth
075 ars
00003 1 5t) o ol
00018 £) o 04z [ on 025 s
20089 00 o
Datal0 it =025 [
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Tata L2 it
e Y] -
Dats13 it
Y v T -1
Dealergth  Daaé b Dl ladm  Ddabint  Dotaloint Delalliet  Dealzint  Dataliint . Orviowh sk Dt DeiR DoAEE Dl DLW Dl )i
Pearson Correlation Heatmap .
Pearson Correlation Heatmap (Type 06 Dataset)
(Type 05 Dataset)
Correlation Heatmap Carrelation Heatmap
it 100
Data Legth. Data Length-
o1 on
050 050
025 025
o 000
Data10_int 0 Cetal0 - 02
DatalLint Detall it
-050 - 050
Dala12_int- Datald int-
-1 =075

-=100
Data Length

Detsent sl Cetsdint Dot Dabeloir  Dtallnt Dl Detal3mt

Detalength  Detabint  atamt  Dowagnt  Datadint  Datalomt  Detallint  Dwtal2in  Cetaldint

As a result of Pearson correlation analysis, the data length of all scenario datasets shows a high
correlation coefficient with other data bits. It is assumed that the composition of the payload varies
depending on the data length.

3.1.1. Flooding Scenario Dataset Analysis

As a result of SHAP analysis of flooding scenario datasets (Scenario Type 01 and Type 02), the
9th and 7th data byte and data length were derived as the features with high importability among all
features. These results are consistent with the flooding payload analysis analyzed in Chapter 3.1.1,

and it was derived from this that the model analyzed key features of flooding payload such as data
length and transfer ID.
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Table 11 is a graph of SHAP value distribution analysis between feature value, feature
importance, and important features through SHAP value analysis for scenario type 01 dataset. In the
feature value graph, you can see that data Length is concentrated in two values near SHAP value 0.0.
This shows that the data length of the flooding payload is all 7 and 8, and feature values are
concentrated in that section. Additionally, the blue dots with relatively low feature values are
concentrated in the range of -0.6 to -0.2 based on the SHAP value, and you can see that most of the
normal driving data is distributed with a data length other than 7 or 8.

Table 11. SHAP Analysis for Scenario Type 01.

SHAP Value Distribution by Feature through
Tree Explainer (Type 01 Dataset)

Feature Importance through Tree Explainer
(Type 01 Dataset)
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Figure 6 is a SHAP force plot for 3 random rows of data. The red section is where the SHAP
value is high, and the blue section is where the SHAP value is low. The 1st and 2nd graphs in Figure
6 are clearly different from the 3rd graph in the 9th data byte and data length. This means that the
flooding payload has a feature for flooding attacks in the 9th data byte and is judged according to the
data length. We can confirm that the evidence is being classified.

Datas_int = 166

Data9_int=0 Data7_int=0

)30 D
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N
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= lower
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>
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Figure 6. SHAP Force plot for 3 random rows of data.

SHAP value analysis was performed with data length, which had a high correlation coefficient
with other data, and Data 9, which had the highest feature importance.
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Figure 7. SHAP Force plot for 4 random rows of data (Type 02).

Scenario Datasets 01 and 02 are all data related to flooding attacks, and in the SHAP analysis
results, the 6th, 7th, and 9th data bytes were commonly selected as important features. Additionally,
when analyzing the SHAP value distribution of the 6th and 7th data bytes of Scenario Type 01, a
specific pattern is confirmed.

Table 12 is a graph of the SHAP value distribution analysis between feature value, feature
importance, and important features through SHAP value analysis for the scenario Type 02 dataset. It
is an analysis of the same flooding attack dataset as the previous Table 11. Therefore, in the Feature
Importance graph, the 9th Data byte, 7th data byte, and data length are selected as important features.
However, in the SHAP value distribution graph, both blue and red dots show a more biased
distribution, and because type 02 has a more unbalanced normal and attack ratio than type 01, SHAP
analysis was performed in which the explainer model of type 02 over-fitted compared to type 01. It
is estimated that.

Table 12. SHAP Analysis for Scenario Type 02.

SHAP Value Distribution by Feature through Feature Importance through Tree Explainer
Tree Explainer (Type 02 Dataset) (Type 02 Dataset)
High
O A S
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The analysis of feature importance for each scenario type dataset through SHAP value analysis
based on the XG boost model is as follows. Scenario Type 1 and Type 2 Datasets, in which flooding
attack data, a type of DDoS attack, were collected, commonly measured the 9th, 7th, and 6th data
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bytes and data length as high Importance. This was consistently observed despite the difference in

proportions between the two data sets.

3.1.2. Fuzzy Attack Scenario Dataset Analysis (Type 03 & 04)

We can check the features of the fuzzy attack through the SHAP value distribution graph in
Table 13. Except for data length, all data byte items have high feature values in the section with high
SHAP value, and low feature values in the section with low SHAP value. This is presumed to be a
pattern caused by the attacker injecting the payload using the brute forcing method. Therefore, unlike
the previous flooding dataset, the feature importance of data length was measured to be relatively

low.

Table 13. SHAP Analysis for Scenario Type 03.

SHAP Value Distribution by Feature through

Feature Importance through Tree Explainer

Tree Explainer (Type 03 Dataset) (Type 03 Dataset)
High
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Figure 8 is the SHAP force plot for three rows of the scenario dataset. We can check the pattern
that matches the previous SHAP analysis. Unlike the flooding dataset, a different data byte was
selected for each row and the SHAP value was analyzed separately, and the characteristic of the fuzzy
attack being brute forcing for each data byte is observed.
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Figure 8. SHAP Force plot for 3 random rows of data (Type 03).
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Table 14 is a dataset for the same fuzzy attack as Scenario type 03, but it is unbalanced due to
the low rate of attack data. However, in the section where the SHAP value was high, the feature value
was high, the feature importance of the data length was measured to be low, and the SHAP value
distribution between features was observed to be clustered in blue and red.

Table 14. SHAP Analysis for Scenario Type 04.

SHAP Value Distribution by Feature through

Feature Importance through Tree Explainer

Tree Explainer (Type 04 Dataset) (Type 04 Dataset)
High
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Figure 9. SHAP Force plot for 3 random rows of data (Type 04).

The above pattern can be confirmed in the SHAP force plot for three random rows. In all three
rows, the SHAP value was high in the section with a low base value, and the SHAP value was
measured to be low in the section with a high base value, and the target Features are also different

for each row.
3.1.3. Replay Attack Scenario Dataset Analysis (Type 05, Type 06)

Table 15 is a graph of the SHAP value analysis results for scenario type 05, which collected replay
attacks. In the SHAP value distribution plot for the 6th and 7th data bytes and the 11th and 9th SHAP
value distribution plot, the distribution of blue and red dots is more clustered than other previous
datasets. This is presumed to be a result of the Replay attack’s principle of injecting the same payload
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repeatedly. Therefore, normal driving data using various forms can be classified into blue dots with

low SHAP values and clustered in a straight line.

Table 15. SHAP Analysis for Scenario Type 05.

SHAP Value Distribution by Feature through

Feature Importance through Tree Explainer

Tree Explainer (Type 05 Dataset) (Type 05 Dataset)
High
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The pattern of the above replay attack can be seen in the SHAP Force plot in Figure 10. It is
observed that the SHAP value for some features is not high due to repeated injection of replay's
payload, and the SHAP value is evenly distributed for several features. This model is assumed to
analyze whether it is a replay payload through the data bytes of the entire message rather than

finding patterns for attacks in some features.
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Figure 10. SHAP Force plot for 3 random rows of data (Type 05).
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Table 16 consists of a SHAP value distribution plot, feature importance plot, and distribution
graph between SHAP value and feature value for each feature for scenario type 06, which collected
replay attack data as in Table 15. We can see the clustering of blue and red dots in the SHAP value
distribution plot of the 6th and 7th data bytes.

Table 16. SHAP Analysis for Scenario Type 06.

SHAP Value Distribution by Feature through

Feature Importance through Tree Explainer

Tree Explainer (Type 06 Dataset) (Type 06 Dataset)
High
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In Figure 11 unlike the previous Figure 10, features with high SHAP values are observed, which
suggests that scenario type 06 collected more diverse normal driving data than scenario type 05. This
is because the dataset of Scenario type 06 consists of more rows of data, and the rate of attack data is

also higher.
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Figure 11. SHAP Force plot for 3 random rows of data (Type 06).
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3.2. Single Model Performance Evaluation by Scenario Type
3.2.1. Experiment Environment

Table 18. Hardware and Software Environments Configuration.

Division Description
Memory 32 GB
CPU AMD Ryzen 7 5700X
GPU NVIDIA GeForce RTX 3060
OS Microsoft Windows 11 Pro 64bit

The criteria used to evaluate the performance of each model are as follows. The elements of each
matrix, TP, FP, TN, and FN, follow the definition of confusion matrix.

3.2.2. Performance Evaluation Metrics

In this Experiment, the relationship between the model's detection results and the labels of the
actual data was defined according to the confusion matrix in Table 19. TP (True Positive) when an
actual attack is normally detected, FN (False Negative) when an actual attack is not detected, FP (False
Positive) when a normal attack is detected, and TN (True Negative) when a normal is classified as

normal.
Table 19. Confusion Matrix.
Label
Positive Negative
L Positive TP (True Positive) FP (False Positive)
Prediction - ; B
Negative FP (False Negative) TN (True Negative)

TP, FP, TN, and FN classified according to the definition in Table 19 are substituted into the
evaluation matrix definitions in Table 20 to verify the model.

Table 20. Evaluation Matrix Definitions.

TP+ TN Precision™® Recall
Accuarcy = *100 — arore — O *
Y TP+ TN+ FP+FN Fl—score =2 Precision+ Recall 100
TP
Precision = %* 100 Recall = m*mu

Accuracy is an indicator of how well a model classifies actual data, and is a commonly used
indicator for model evaluation. However, the bias problem caused by model over-fit can be
overlooked, so it is used together with the F1-Score indicator, which consists of precision and recall.
3.2.3. Performance Evaluation Results

Accuracy and F1-Score in Table 14 were used as indicators for model performance evaluation,

and the performance evaluation results for each attack are shown in Table 15.

Table 21. Evaluation Results for each base models.

< Scenario Type 01 > < Scenario Type 02 Accuracy >

Model Accuracy | F1-Score
Logistic Regression 98.028% | 98.028%
K-Neighbors Classifier | 98.635% | 98.635%
Decision Tree #1 98.440% | 98.440%

Model Accuracy F1-
Score
Logistic Regression | 97.771% | 97.771%
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Decision Tree #2 98.632% | 98.798% K-Neighbors 98.519% | 98.519%
Random Forest 98.637% | 98.801% Classifier
Classifier Decision Tree #1 98.005% | 98.005%
DNN #1 98.549% | 99.00% Decision Tree #2 96.977% | 98.517%
DNN #2 98.400% 71.959 Random Forest 96.982% | 98.519%
RNN 98.786% | 98.788% Classifier
LSTM 98.621% | 98.786% DNN #1 98.295% | 97.921%
DNN #2 98.253% | 98.241%
RNN 98.519% | 96.983%
LSTM 96.983 % | 96.983%
< Scenario Type 03 Accuracy > < Scenario Type 04 Accuracy >
Model Accuracy | F1-Score Model Accuracy F1-
Logistic Regression 93.383% 93.383 Score
K-Neighbors 97.932% 97.932 Logistic Regression 79.415% | 79.415%
Classifier K-Neighbors Classifier | 94.487% | 94.487%
Decision Tree #1 98.391% | 98.367% Decision Tree #1 95.514% | 95.514%
Decision Tree #2 98.391% | 99.518% Decision Tree #2 98.691% | 98.691%
Random Forest 99.617% | 99.650% Random Forest 98.867% | 98.867%
Classifier Classifier
DNN #1 95.086% | 95.086% DNN #1 90.045% | 73.345%
DNN #2 96.644% | 96.944% DNN #2 94.272% | 87.673%
RNN 99.180% | 99.151% RNN 98.995% | 97.678%
LSTM 98.953% | 98.922% LSTM 99.025% | 97.743%
< Scenario Type 05 Accuracy > Scenario Type 06 Accuracy >
Model Accuracy | F1-Score Model Accuracy | F1-Score
Logistic Regression | 79.769% | 79.769% Logistic Regression | 86.929% | 86.929%
K-Neighbors 95.890% | 95.889% K-Neighbors 98.778% | 98.185%
Classifier Classifier
Decision Tree #1 92.208% | 84.422% Decision Tree #1 92.68% 92.679%
Decision Tree #2 97.414% | 97.414% Decision Tree #2 99.465% | 99.465%
Random Forest 97.840% | 97.840% Random Forest 99.601% | 99.743%
Classifier Classifier
DNN #1 82.697% | 82.698% DNN #1 84.347% | 78.306%
DNN #2 84.118% | 84.119% DNN #2 90.886% | 84.477%
RNN 89.458% | 89.986% RNN 98.338% | 97.539%
LSTM 94.487% | 89.458% LSTM 98.512% | 97.800%

Scenario type 1 and scenario type 2 are flooding attack datasets, a type of DoS attack. Despite
the conditions in which Timestamp and data order are shuffled, time series analysis models RNN
and LSTM models show excellent performance of over 95% in accuracy and F1-Score indicators is
showed. In addition, scenario type 3 and scenario type 4, which are fuzzy attack datasets, and
scenario type 6, which are relay attack datasets, showed excellent performance of over 95% in both
Accuracy and F1-Score indicators. However, in scenario type 5's dataset, the f1-score of both models
fell below 90%. On the other hand, the LSTM model that performed time series analysis shows
accuracy of over 99% [22]

Decision Tree single model, Random Forest, K-Neighbors Classifier, and dual classification
DNN model showed excellent performance with accuracy and F1-Score indicators of over 95% in all
datasets, and Logistic Regression model's Accuracy varied between 79% ~ 97%. The F1-Score of ML
model is 97%, which is like the existing model. Over-fit due to data imbalance was not observed.
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4. Experiments

In Performance Evaluation in Chapter 3.2, models with excellent detection performance for each
attack type are selected as base models to design a stacking-based ensemble model.

The base models independently detect flooding, fuzzy, and replay attacks from the input CAN
Traffic Data and deliver these detection results to the Meta model. The decision tree-based the Meta
model synthesizes the detection results of each base model to determine whether an attack has
occurred in a binary sense. Perform classification.

4.1. Experiment Model

Flooding Model
(LSTM)

v

Fuzzy Model Meta Model

(LSTM) (o") Detection Results

CAN Traffic >
Data

A 4

Replay Model
(OT)

A 4

Figure 12. Structure of Experiment model.

The base model was constructed according to the performance evaluation results in chapter 3.
Flooding detection used the LSTM model, fuzzy detection used the LSTM model, and replay
detection used the Decision Tree (DT) model, all under the same conditions as the model learned
during performance evaluation.

The Flood model and Fuzzy model were learned with 20 epochs through the LSTM model, and
the accuracy of the two models is over 98% during the train and test process. Accuracy changes
according to the learning process are shown in Table 22.

Table 22. Experiment Model’s Optimization Process History Plot for Flood, Fuzzy model.
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Figure 13. Structure of Relay Attacks model.

Unlike the previous two models, the Replay model was learned through a decision tree model
with max depth set to 5, and in the performance evaluation in chapter 3. Replay attacks were detected
with an Accuracy and F1-Score of over 97%. Through tree visualization, it was confirmed that the
model underwent balanced training.

The model that assembled these base models had an Accuracy of 83%, Precision of 62%, and F1-
Score of 68%. Therefore, the cause of lower performance than the existing base model was analyzed
through SHAP analysis in Chapter 4.2.

4.2. Base Model’s Results Analysis

As a result of performing SHAP value interaction analysis and Pearson correlation analysis on
the detection results for each base model, it is estimated that the correlation and similarity between
the detection results of the Replay model and the Fuzzy model are high.
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Table 23. Analysis Results of each model.
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4.3. Experiment Analysis

In this experiment, time stamps were removed from DL models that perform time series analysis,
such as RNN, LSTM model, and ML models, and experiments were conducted to detect fuzzing,
flooding, and relay attacks by learning data with shuffled data sequence, and all models showed
significant detection performance.

In addition, the results of analyzing this detection performance through SHAP analysis show
that the models learned the data byte associated with the algorithm used in each attack as a
meaningful feature.

Although it was effective in binary classification of a single attack through a single model,
performance was low in binary classification of multiple attack types through a stacking model.
Looking at the SHAP analysis and correlation analysis results, it is assumed that the Replay model
and the Fuzzy model have a high correlation in the detection results, causing overfitting in the
Ensemble model through stacking, adversely affecting performance.

5. Conclusions

In this study, the features analyzed by ML models in the payload of flooding, fuzzy, and replay
attacks occurring in the UAVCAN Protocol were confirmed through SHAP Analysis using the Tree
Explainer model. This can be inferred that the ML model is learning by deriving valid features from
the payload for each attack type.

For the dataset for each scenario type, SHAP value - feature value distribution comparison,
feature importance analysis, SHAP value distribution analysis between important features, and force
plot analysis for each row of the dataset were performed. In all scenario datasets, the more
imbalanced the data ratio according to label, the more biased the SHAP analysis results were.
Although this bias is not effective in the model's performance, it is easier to see how the explainer
model performs analysis on the features in the dataset, and it can be assumed that effective analysis
is being performed according to the characteristics of each attack type.
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We confirmed that the LSTM model that removed the timestamp and learned the shuffled
dataset produced an Accuracy of over 96% and an F1-Score of over 96% in all scenarios except type
5. These results show the performance of the LSTM model that learned time series data. Although it
is lower, it can be assumed that detection is possible through non-Timelines analysis. As a result, the
cause of poor performance in the heterogeneous ensemble model was estimated through SHAP
analysis, which can be used in research on applying the heterogeneous ensemble model to detecting
UAVCAN network attacks.

In the future, the performance of the detection model can be improved by creating an ensemble
model composed of base models learned to enable multi classification.

Funding: This work was supported by the Hongik University new faculty research support fund.
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