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Abstract: Recently, methods to detect DoS and spoofing attacks that occur on in-vehicle networks using CAN 
Protocol are being studied through deep learning models such as CNN, RNN, and LSTM. These studies have 
produced significant results in the field of In-Vehicle Network attack detection using deep learning models. In 
addition, significant results are being achieved through research on applying time series-based deep learning 
models such as LSTM to detect DoS attacks and replay attacks occurring in in-drone networks by expanding 
them to drones using the UAVCAN protocol. In this paper, we conducted an experiment to detect in-drone 
network attacks through non-time series analysis using machine learning models and deep learning models, 
and through appropriate learning for each attack type, it can also be analyzed through non-time series analysis. 
The results showed that it was possible to detect attacks. 

Keywords: controller area network (CAN); shapley additive explanations (SHAP); machine 
learning(ML); deep learning(DL); unmanned aerial vehicles (UAVs) 
 

1. Introduction 

Recently as unmanned aerial vehicle (UAV) and internet of things (IoT) technologies develop, 
the use of UAVs is expanding to weather observation, agriculture, and military purposes. However 
not only physical signal attacks such as GPS Signal Spoofing and Jamming Signals, but also malware 
and malicious communication [1]. Additionally, attacks through software and communication 
protocols such as spoofed signals also occur. These attacks are classified as a major threat because 
they can also be used against unmanned aerial vehicles (UAVs). These attacks are classified as a major 
threat because they can also be used against unmanned aerial vehicles (UAVs). Accordingly, cyber-
attack attempts targeting unmanned aerial vehicles (UAVs) are increasing, and research to detect 
them is actively underway [2,3]. Representative attack types include spoofing, DoS, and Replay 
attacks on CAN protocols against UAVs.  

Research is also underway using machine learning (ML) and deep learning (DL) models to 
detect network intrusions occurring in the CAN protocol, but performance is not stable because the 
dataset's feature learning process of ML/DL models cannot be verified. There is a limitation that 
Researcher cannot utilize the patterns analyzed by the ML/DL model. In addition, stacking 
techniques that ensemble different types of models are being attempted to improve detection 
performance, but problems are occurring that result in lower detection performance. These 
limitations have recently become possible to analyze the feature importance and SHAP value of 
ML/DL models through Lunderberg's explainable artificial intelligence (XAI) research [5,7], and by 
applying the SHAP technique that can specifically analyze ML/DL models. Solving cases [8,9] are 
also emerging.  

Therefore, we compared the binary detection performance of single models and the binary 
detection performance of ensemble models for each type of attack that occurs in an in-drone network, 
and estimated the cause of the performance difference between models through SHAP analysis.  
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This paper consists of a total of 5 chapters. In chapter 2 the attack scenario that generated the 
related work and dataset for CAN protocol, ML/DL model, and SHAP was analyzed. The chapter 3 
analyzes the dataset using pearson correlation and SHAP techniques and performs performance 
evaluation by learning single models for a single attack. The chapter 4 experiments with a model that 
performs binary classification on whether network intrusion occurs by combining models with 
excellent performance and analyzes the results. The chapter 5 describes the conclusions and 
limitations of this study.  

2. Related Works 

2.1. Controller Area Network (CAN) Protocol 

The CAN protocol [4] is a message-oriented protocol for communication between the ECU, 
sensors, and control equipment in the car. Unlike the existing UART's Point to Point method, which 
used a 1:1 dedicated line for data communication, it uses the multi master method to reduce the 
weight of the car by reducing the required wiring. And the price could be reduced. 

Table 1. Classification of tasks by Layer. 

Layer Description 
Application Performs vendor-defined tasks 
Object 
(Presentation) Performs message processing 

Transfer Performs message transmission reception and Detects signal defects and message 
errors 

Physical Defines how to convert physical signals such as signal level and signal 
optimization 

To give instructions directly to the drone, UAVCAN payload according to CAN 2.0 B is used, 
and the structure is shown in Figure 1. And the task to be performed by the drone or status 
information is stored in the transfer payload, which consists of a total of 8 bytes. Therefore, Fuzzy 
and Relay attacks on drones occur centered on CAN payload packets.  

 
Figure 1. UAVCAN payload Frame [10]. 

2.2. Network Intrusion Detection Model for CAN Protocol 

There are mainly five types of attacks that mainly occur in the UAVCAN protocol. [22] Denial 
of service (DoS) is an attack that paralyzes system resources and delays work by injecting a large 
amount of data into a specific system or network. This paper targets DoS of the flooding method, 
which injects messages into the CAN Bus at 15ms intervals.  

Fuzzy is an attack in which an attacker injects a message using dictionary or brute forcing 
method to infer a valid CAN ID[23].  
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Table 2. CAN attack Machine Learning-Based detection Research. 

Model Paper Platform 

Support Vector Machine 
Random Forest 

 
 

Tanksale, V. (2019, November) [11] 
Alsoliman, A., Rigoni, G., Callegaro, D., 
Levorato, M., Pinotti, C. M., & Conti, M. 
(2023) [12],  
Moulahi, T., Zidi, S., Alabdulatif, A., & 
Atiquzzaman, M. (2021) [13] 

In-Vehicle Network 
In-Vehicle Network 

 
 

In-Vehicle Network 
 

Deep Neural Network 
CNN 

 
CNN+LSTM 

Kang, M. J., & Kang, J. W. (2016) [11] 
Javed, A. R., Ur Rehman, S., Khan, M. U., 
Alazab, M., & Reddy, T. (2021) [14] 
Kou, L., Ding, S., Wu, T., Dong, W., & Yin, Y. 
(2022)[15] 

In-Vehicle Network 
 

In-Vehicle Network 
In-Vehicle Network 

Convolutional Neural Network Song, H. M., Woo, J., & Kim, H. K. (2020) [16] In-Vehicle Network 

Recurrent Neural Network 
LSTM (Long Short-Term 

Memory) Model 
 
 

GAN 
Ensemble Learing Model 

Tariq, S., Lee, S., Kim, H. K., & Woo, S. S. 
(2020) [17] 
Qin, H., Yan, M., & Ji, H. (2021) [18] 
Tlili, F., Ayed, S., & CHAARI FOURATI, L. 
(2023, August) [19] 
Seo, E., Song, H. M., & Kim, H. K. (2018, 
August) [20] 
Khan, M. H., Javed, A. R., Iqbal, Z., Asim, M., 
& Awad, A. I. (2024) [21] 

In-Vehicle Network 
 

In-Vehicle Network 
In-Drone Network 

 
In-Vehicle Network 

 
In-Vehicle Network 

Replay is an attack that intercepts a valid message and maliciously retransmits it, disguising it 
as a valid message and repeating a specific action. [24] Spoofing is an attack that disguises the CAN 
ID of a specific message and tricks other nodes in the CAN Bus into performing the task intended by 
the attacker. Impersonation is an attack that disguises itself as an appropriate node in CAN 
communication and performs malicious attacks or data modification on other nodes. Research on 
detect model for network attacks using CAN packets are shown in Figure 2.  

 

Figure 2. Diagram of attack through message injection in CAN Protocol [17]. 

2.3. SHAP 

The SHAP (SHapley Additive exPlanations) [7] is a method of calculating SHAP values for each 
feature in a machine learning model, helps humans to understand the influence of features on the 
machine learning model. The SHAP value is the Shapley value for a feature value which is calculated 
using the conditional expected value function of the machine learning model. The Shapley value is a 
solution concept in cooperative game theory that distributes the total gain obtained through 
cooperation among game participants on each participant's marginal contribution.  
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Shapley regression value assigns importance (importance value) to each variable based on how 
much it affects the model's performance when included in learning.  

This is Shapley Interaction Value of an equation:  

,     (1) 
where f is the model, M is the number of x′, and x′ is simplified input that maps to the original input 
through a mapping function x = hx(x′).  

Hx maps 1 or 0 to the original input space, where 1 indicates that the input is included in the 
model while 0 indicates exclusion from the model. |z′| is the number of non-zero entries in z′and z′ 
⊆ x′ represents all z′vectors where the non-zero entries are a subset of the nonzero entries in x′. 
Feature importance through Shapley Value is calculated using the following equation (2).  

This is Feature Importance of an equation:  

,     (2) 
The Shapley value assigns an importance value to each feature that represents the effect on the 

model prediction. The effects of the i-th feature is computed as the difference between a model trained 
with the i-th feature and another model trained with the feature withheld on the current input. Since 
the effect of withholding a feature depends on other features in the model, the preceding differences 
are computed for all possible subsets z′∖i. As a result, the Shapley value is the weighted average of 
all possible differences, a unique measure of additive feature attribution method that satisfies all three 
axioms (local accuracy, missingness and consistency). The SHAP value in machine learning is 
designed to closely align with the Shapley value, using the conditional expectations to define 
simplified inputs.[9] Feature importance in a linear model with multicollinearity. Although 
multicollinearity is a property that violates the independence assumption in linear models, it is 
mentioned that the Shapley regression value is a value that can be used even in linear models with 
multicollinearity.  

2.4. Explainable Artificial Intelligence (XAI) 

According to Capuano, N., Fenza, G., Loia, V., & Stanzione, C. (2022) [25], Artificial Intelligence 
Models such as Machine Learning and Deep Learning have important impacts such as Cyber Security 
due to the opacity of Internal Mechanisms. It was of limited use in areas where decisions were needed. 
However, if explainability is provided for the AI Model provided by techniques such as SHAP [5], 
LIME [26], a novel auto-encoding-based scheme for LSTM model, and sufficient framework research 
is followed, it can satisfy the transparency required in the cyber security area. post-analysis of AI 
models and reduction of workload through AI models can be expected. Additionally, in the study 
[27] Current As a result of reviewing related techniques, it was evaluated that XAI has the potential 
to develop into TAI through framework research, although there are limitations such as "post-
explainability, replicability of methodology" and lack of "integrated understanding." 

2.5. Deep Neural Network Model 

The DNN (Deep Neural Network) model is a representative deep learning model and consists 
of several hidden layers between the input layer and the output layer. These DNN models can be 
applied to classification and regression problems, and a representative DNN model application study 
is the YouTube video recommendation algorithm [28]. 

On the other side, the RNN (Recurrent Neural Network) model is similar to the DNN model, 
but the hidden layer is composed of Recurrent Cells, so it can store past information and make 
predictions about the sequence. When learning long-term relationships, these RNN models have the 
problem that the weight of the model becomes extremely small or large, so the LSTM model that 
introduces Memory Cell instead of Recurrent Cell is mainly used for time series analysis.  
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Table 3. Diagram of Deep Learning Models [29]. 

Legend of Layers  DNN RNN LSTM 

    

2.6. Attack Scenario Analysis 

2.6.1. Flooding Attack Scenario Analysis 

Flooding attack is a type of Denial of Service (DoS) attack that consists of two frames and injects 
them into the CAN bus. It is performed repeatedly in short cycles, delaying the transmission of 
messages on the CAN bus, and consuming the resources of the target ECU, thereby interfering with 
the service.  

The following Figure 3 is a function written in Python 3 code for the Flooding Attack Mechanism 
used when creating the dataset for Scenario types 01 & 02. 

 
Figure 3. Flooding attack’s Mechanism [24]. 

The Flooding Attack Mechanism is executed at 0.005 second intervals, generates a payload 
consisting of 7 bytes and 8 bytes of data, respectively, modifies the Message ID to '0x05040601', and 
injects it into the CAN Bus. Therefore, the Motor ECU processes a payload consisting of 8 Bytes, and 
there may be a delay in processing the Main ECU's message. 

Flooding attack process analysis over time was performed as shown in Table 4. A flooding attack 
occurred between 50sec and 90sec, but the flight was normal. However, the motor stopped in the 
90sec to 120sec and 130sec to 160sec sections due to flooding attack. 

Table 4. The Method Proceeds of Flooding attack Scenario (Type 01 & 02). 

TimeStamp 
(sec) 10/20 30/40/50 60/70/80/90 100 110/120 130 140/150/160 170/180 

status Booting Take Off Hovering 
Motors 

Stop 
Motors 

Stop Hovering Motors Stop Landing 

Label Normal Normal Flooding Normal Flooding Floodng Normal Flooding Normal 
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Table 5. Massage injection progresses according to time sequence on CAN Bus. 

Time(s) 
ECU 

1 2 3 4 5 6 7 8 

Attacker - - 0x1 - - 0x2 - - 
Main ECU 0x1 - - - 0x1 - - 0x1 
Motor ECU 0x2 - - - - - 0x2 - 
CAN bus 0x1 0x2 0x1  0x1 0x2 0x2 0x1 

The Main ECU and Motor ECU exchange messages on the CAN bus, and at this time, the attacker 
injects messages into the CAN bus. Therefore, the Motor ECU does not receive messages from the 
Main ECU, or processing delays occur, causing the UAV's motor to stop operating. 

Table 6. Structure of Flooding Payload. 

Byte [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] 
8 08 A6 35 00 00 00 00 00 - 166 53 00 00 
7 07 00 00 00 00 00 00 00 Null 00 00 00 00 

There are two types of payload injected by the attacker, of which the payload with a data length 
of 8 bytes stores the Transfer ID in the 9th data byte. Transfer ID is an Integer value used by message 
type and destination node to distinguish it from other messages, and the payload uses the Transfer 
ID value of the previously transmitted message plus 1 as the new Transfer ID. Currently, the Transfer 
ID of the first Flooding Payload starts from 80. 

The main features of flooding payload are three: First, the Data Length is 7 and 8. Second, the 
9th Data Byte storing the Transfer ID increases by 1. Third, 6th, and 7th Data Byte is always 00. 

2.6.2. Fuzzy Attack Scenario Analysis 

Fuzzy attacks in Scenario Type 03 & 04 perform message injection by changing the message 
composition until the attacker obtains the desired information or action. For the injected message, the 
message id is set to '0x05040601', the data byte configuration is changed by brute forcing to a value 
between 0 and 255, and the message is injected at 0.001 second intervals. This fuzzy attack mechanism 
was written as python code in Figure 4.  

 
Figure 4. Fuzzy Attack mechanism [24]. 
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Table 7 is written according to Timestamp of the UAV status during the Fuzzy attack Scenario 
experiment. A situation occurred in which the UAV's motor stopped in all sections where the fuzzy 
attack occurred. 

Table 7. The Method Proceeds of Fuzzy attack Scenario (Type 03 & 04). 

Time 
Stamp(sec) 10/20 30/40/50 60/70/80 90 100/110 120 130 140/150 

/160 170/180 

Status Booting Hovering 
Hovering 

Motors 
stop 

Hovering 
Hovering 

Motors 
stop 

Hovering 
Motors 

stop 
Hovering 

Hovering  
Motors 

stop 
Landing 

Label Normal Fuzzy Normal Fuzzy Fuzzy Normal Fuzzy Normal 

2.6.3. Replay Attack Scenario Analysis 

Replay attack is an attack in which an attacker collects normal messages in advance and 
repeatedly retransmits them to induce a specific action. Scenario types 05 & 06 perform this Replay 
attack according to the time when the message should be transmitted.  

Replay attack Scenario differs from other attack scenarios in that the attack conditions for types 
05 and 06 are somewhat different. Table 8 is shows the difference in attack conditions between the 
two scenarios. 

Table 8. Dataset comparison by scenario. 

Scenario type 
Number of 

Attack 
Interval(s) Total time(s) 

Propotion of 
Label(normal:attack) 

05 3 0.005 210 2.5:1 
06 4 0.005 280 2:1 

The Replay attack mechanism used in Scenario types 05 & 06 is written as python code in Figure 
5. 

 

Figure 5. Relay Attack mechanism [24]. 

3. Dataset Analysis and Preprocessing 

In this chapter, the dataset for each scenario type is analyzed. By comparing the SHAP analysis 
results of the attack scenario and the ML model, we confirmed whether the ML model effectively 
analyzes patterns within the dataset.  

3.1. Dataset Analysis for Each Datasets with SHAP Analysis 

In this chapter, normal/attack data ratio, pearson correlation coefficient analysis, and SHAP 
value analysis with Tree Explainer (XG Boost) were performed on the dataset for each scenario type 
to measure the SHAP interaction value between Feature Importance and Important Features. 
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The analyzed dataset was preprocessed as follows. Train/Test datasets split was split at a 7:3 
ratio under the condition of stratifying the label. Timestamps was included for the time series models 
LSTM and Simple RNN model, and data sets with timestamps rows removed were used for ML 
models. Additionally, in all scenario type datasets, there was an error of less than 2 seconds in 
timestamp between the experiment for data collection and the collected data set. 

Attack dataset proportion for each scenario type is as follows Table 9. 

Table 9. Single Attack Dataset Proportion. 

Type 01. Dataset Proportion by Label Type 02. Dataset Proportion by Label 

  
Type 03. Dataset Proportion by Label Type 04. Dataset Proportion by Label 

  
 

Type 05. Dataset Proportion by Label Type 06. Dataset Proportion by Label 

  

Normal is labeled 0 and attack is labeled 1. Types 01 and 03 have relatively balanced ratios, and 
Types 02, 04, 05, and 06 have relatively unbalanced ratios.  
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Table 10. Pearson Correlation Heatmap of dataset by Scenario Type. 

Pearson Correlation Heatmap (Type 01 Dataset) Pearson Correlation Heatmap (Type 02 Dataset) 

 
 

Pearson Correlation Heatmap (Type 03 Dataset) Pearson Correlation Heatmap (Type 04 Dataset) 

  
Pearson Correlation Heatmap  

(Type 05 Dataset) Pearson Correlation Heatmap (Type 06 Dataset) 

  
 

As a result of Pearson correlation analysis, the data length of all scenario datasets shows a high 
correlation coefficient with other data bits. It is assumed that the composition of the payload varies 
depending on the data length.  

3.1.1. Flooding Scenario Dataset Analysis  

As a result of SHAP analysis of flooding scenario datasets (Scenario Type 01 and Type 02), the 
9th and 7th data byte and data length were derived as the features with high importability among all 
features. These results are consistent with the flooding payload analysis analyzed in Chapter 3.1.1, 
and it was derived from this that the model analyzed key features of flooding payload such as data 
length and transfer ID.  
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Table 11 is a graph of SHAP value distribution analysis between feature value, feature 
importance, and important features through SHAP value analysis for scenario type 01 dataset. In the 
feature value graph, you can see that data Length is concentrated in two values near SHAP value 0.0. 
This shows that the data length of the flooding payload is all 7 and 8, and feature values are 
concentrated in that section. Additionally, the blue dots with relatively low feature values are 
concentrated in the range of -0.6 to -0.2 based on the SHAP value, and you can see that most of the 
normal driving data is distributed with a data length other than 7 or 8. 

Table 11. SHAP Analysis for Scenario Type 01. 

SHAP Value Distribution by Feature through 
Tree Explainer (Type 01 Dataset) 

Feature Importance through Tree Explainer 
(Type 01 Dataset) 

  
Comparison of SHAP Value distribution of 7th 

Data and 6th Data 
Comparison of SHAP Value distribution of 9th 

Data and Data Length 

  

Figure 6 is a SHAP force plot for 3 random rows of data. The red section is where the SHAP 
value is high, and the blue section is where the SHAP value is low. The 1st and 2nd graphs in Figure 
6 are clearly different from the 3rd graph in the 9th data byte and data length. This means that the 
flooding payload has a feature for flooding attacks in the 9th data byte and is judged according to the 
data length. We can confirm that the evidence is being classified. 

 

Figure 6. SHAP Force plot for 3 random rows of data. 

SHAP value analysis was performed with data length, which had a high correlation coefficient 
with other data, and Data 9, which had the highest feature importance.  
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Figure 7. SHAP Force plot for 4 random rows of data (Type 02). 

Scenario Datasets 01 and 02 are all data related to flooding attacks, and in the SHAP analysis 
results, the 6th, 7th, and 9th data bytes were commonly selected as important features. Additionally, 
when analyzing the SHAP value distribution of the 6th and 7th data bytes of Scenario Type 01, a 
specific pattern is confirmed. 

Table 12 is a graph of the SHAP value distribution analysis between feature value, feature 
importance, and important features through SHAP value analysis for the scenario Type 02 dataset. It 
is an analysis of the same flooding attack dataset as the previous Table 11. Therefore, in the Feature 
Importance graph, the 9th Data byte, 7th data byte, and data length are selected as important features. 
However, in the SHAP value distribution graph, both blue and red dots show a more biased 
distribution, and because type 02 has a more unbalanced normal and attack ratio than type 01, SHAP 
analysis was performed in which the explainer model of type 02 over-fitted compared to type 01. It 
is estimated that.  

Table 12. SHAP Analysis for Scenario Type 02. 

SHAP Value Distribution by Feature through 
Tree Explainer (Type 02 Dataset) 

Feature Importance through Tree Explainer 
(Type 02 Dataset) 

  
Comparison of SHAP Value distribution of 9th 

Data and 7th Data 
Comparison of SHAP Value distribution of 7th Data 

and 9th Data 

  

The analysis of feature importance for each scenario type dataset through SHAP value analysis 
based on the XG boost model is as follows. Scenario Type 1 and Type 2 Datasets, in which flooding 
attack data, a type of DDoS attack, were collected, commonly measured the 9th, 7th, and 6th data 
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bytes and data length as high Importance. This was consistently observed despite the difference in 
proportions between the two data sets.  

3.1.2. Fuzzy Attack Scenario Dataset Analysis (Type 03 & 04) 

We can check the features of the fuzzy attack through the SHAP value distribution graph in 
Table 13. Except for data length, all data byte items have high feature values in the section with high 
SHAP value, and low feature values in the section with low SHAP value. This is presumed to be a 
pattern caused by the attacker injecting the payload using the brute forcing method. Therefore, unlike 
the previous flooding dataset, the feature importance of data length was measured to be relatively 
low.  

Table 13. SHAP Analysis for Scenario Type 03. 

SHAP Value Distribution by Feature through 
Tree Explainer (Type 03 Dataset) 

Feature Importance through Tree Explainer 
(Type 03 Dataset) 

 
 

 

Comparison of SHAP Value distribution of 12th 
Data and 11th Data 

Comparison of SHAP Value distribution of 11th 
Data and 12th Data 

  

Figure 8 is the SHAP force plot for three rows of the scenario dataset. We can check the pattern 
that matches the previous SHAP analysis. Unlike the flooding dataset, a different data byte was 
selected for each row and the SHAP value was analyzed separately, and the characteristic of the fuzzy 
attack being brute forcing for each data byte is observed. 

 
Figure 8. SHAP Force plot for 3 random rows of data (Type 03). 
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Table 14 is a dataset for the same fuzzy attack as Scenario type 03, but it is unbalanced due to 
the low rate of attack data. However, in the section where the SHAP value was high, the feature value 
was high, the feature importance of the data length was measured to be low, and the SHAP value 
distribution between features was observed to be clustered in blue and red. 

Table 14. SHAP Analysis for Scenario Type 04. 

SHAP Value Distribution by Feature through 
Tree Explainer (Type 04 Dataset) 

Feature Importance through Tree Explainer 
(Type 04 Dataset) 

  
Comparison of SHAP Value distribution of 12th 

Data and 9th Data 
Comparison of SHAP Value distribution of 11th 

Data and 12th Data 

  

 
Figure 9. SHAP Force plot for 3 random rows of data (Type 04). 

The above pattern can be confirmed in the SHAP force plot for three random rows. In all three 
rows, the SHAP value was high in the section with a low base value, and the SHAP value was 
measured to be low in the section with a high base value, and the target Features are also different 
for each row. 

3.1.3. Replay Attack Scenario Dataset Analysis (Type 05, Type 06) 

Table 15 is a graph of the SHAP value analysis results for scenario type 05, which collected replay 
attacks. In the SHAP value distribution plot for the 6th and 7th data bytes and the 11th and 9th SHAP 
value distribution plot, the distribution of blue and red dots is more clustered than other previous 
datasets. This is presumed to be a result of the Replay attack's principle of injecting the same payload 
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repeatedly. Therefore, normal driving data using various forms can be classified into blue dots with 
low SHAP values and clustered in a straight line. 

Table 15. SHAP Analysis for Scenario Type 05. 

SHAP Value Distribution by Feature through 
Tree Explainer (Type 05 Dataset) 

Feature Importance through Tree Explainer 
(Type 05 Dataset) 

  
Comparison of SHAP Value distribution of 7th 

Data and 6th Data 
Comparison of SHAP Value distribution of 11th 

Data and 9th Data 

  

The pattern of the above replay attack can be seen in the SHAP Force plot in Figure 10. It is 
observed that the SHAP value for some features is not high due to repeated injection of replay's 
payload, and the SHAP value is evenly distributed for several features. This model is assumed to 
analyze whether it is a replay payload through the data bytes of the entire message rather than 
finding patterns for attacks in some features. 

 

Figure 10. SHAP Force plot for 3 random rows of data (Type 05). 
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Table 16 consists of a SHAP value distribution plot, feature importance plot, and distribution 
graph between SHAP value and feature value for each feature for scenario type 06, which collected 
replay attack data as in Table 15. We can see the clustering of blue and red dots in the SHAP value 
distribution plot of the 6th and 7th data bytes.  

Table 16. SHAP Analysis for Scenario Type 06. 

SHAP Value Distribution by Feature through 
Tree Explainer (Type 06 Dataset) 

Feature Importance through Tree Explainer 
(Type 06 Dataset) 

  
Comparison of SHAP Value distribution of 7th 

Data and 6th Data 
Comparison of SHAP Value distribution of 11th 

Data and 6th Data 

  

In Figure 11 unlike the previous Figure 10, features with high SHAP values are observed, which 
suggests that scenario type 06 collected more diverse normal driving data than scenario type 05. This 
is because the dataset of Scenario type 06 consists of more rows of data, and the rate of attack data is 
also higher. 

 
Figure 11. SHAP Force plot for 3 random rows of data (Type 06). 
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3.2. Single Model Performance Evaluation by Scenario Type 

3.2.1. Experiment Environment 

Table 18. Hardware and Software Environments Configuration. 

Division Description 
Memory 32 GB 

CPU AMD Ryzen 7 5700X 
GPU NVIDIA GeForce RTX 3060 
OS Microsoft Windows 11 Pro 64bit 

The criteria used to evaluate the performance of each model are as follows. The elements of each 
matrix, TP, FP, TN, and FN, follow the definition of confusion matrix.  

3.2.2. Performance Evaluation Metrics 

In this Experiment, the relationship between the model's detection results and the labels of the 
actual data was defined according to the confusion matrix in Table 19. TP (True Positive) when an 
actual attack is normally detected, FN (False Negative) when an actual attack is not detected, FP (False 
Positive) when a normal attack is detected, and TN (True Negative) when a normal is classified as 
normal. 

Table 19. Confusion Matrix. 

 
Label 

Positive Negative 

Prediction 
Positive TP (True Positive) FP (False Positive) 
Negative FP (False Negative) TN (True Negative) 

TP, FP, TN, and FN classified according to the definition in Table 19 are substituted into the 
evaluation matrix definitions in Table 20 to verify the model.  

Table 20. Evaluation Matrix Definitions. 

  

  

Accuracy is an indicator of how well a model classifies actual data, and is a commonly used 
indicator for model evaluation. However, the bias problem caused by model over-fit can be 
overlooked, so it is used together with the F1-Score indicator, which consists of precision and recall.  

3.2.3. Performance Evaluation Results 

Accuracy and F1-Score in Table 14 were used as indicators for model performance evaluation, 
and the performance evaluation results for each attack are shown in Table 15.  

Table 21. Evaluation Results for each base models. 

< Scenario Type 01 > < Scenario Type 02 Accuracy > 
Model Accuracy F1-Score 

Logistic Regression 98.028% 98.028% 
K-Neighbors Classifier 98.635% 98.635% 

Decision Tree #1 98.440% 98.440% 

Model Accuracy F1-
Score 

Logistic Regression 97.771% 97.771% 
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Decision Tree #2 98.632% 98.798% 
Random Forest 

Classifier 
98.637% 98.801% 

DNN #1 98.549% 99.00% 
DNN #2 98.400% 71.959 

RNN 98.786% 98.788% 
LSTM 98.621% 98.786% 

 

K-Neighbors 
Classifier 

98.519% 98.519% 

Decision Tree #1 98.005% 98.005% 
Decision Tree #2 96.977% 98.517% 
Random Forest 

Classifier 
96.982% 98.519% 

DNN #1 98.295% 97.921% 
DNN #2 98.253% 98.241% 

RNN 98.519% 96.983% 
LSTM 96.983 % 96.983% 

 

< Scenario Type 03 Accuracy > < Scenario Type 04 Accuracy > 
Model Accuracy F1-Score 

Logistic Regression 93.383% 93.383 
K-Neighbors 

Classifier 
97.932% 97.932 

Decision Tree #1 98.391% 98.367% 
Decision Tree #2 98.391% 99.518% 
Random Forest 

Classifier 
99.617% 99.650% 

DNN #1 95.086% 95.086% 
DNN #2 96.644% 96.944% 

RNN 99.180% 99.151% 
LSTM 98.953% 98.922% 

 

Model Accuracy F1-
Score 

Logistic Regression 79.415% 79.415% 
K-Neighbors Classifier 94.487% 94.487% 

Decision Tree #1 95.514% 95.514% 
Decision Tree #2 98.691% 98.691% 
Random Forest 

Classifier 
98.867% 98.867% 

DNN #1 90.045% 73.345% 
DNN #2 94.272% 87.673% 

RNN 98.995% 97.678% 
LSTM 99.025% 97.743% 

 

< Scenario Type 05 Accuracy > Scenario Type 06 Accuracy > 
Model Accuracy F1-Score 

Logistic Regression 79.769% 79.769% 
K-Neighbors 

Classifier 
95.890% 95.889% 

Decision Tree #1 92.208% 84.422% 
Decision Tree #2 97.414% 97.414% 
Random Forest 

Classifier 
97.840% 97.840% 

DNN #1 82.697% 82.698% 
DNN #2 84.118% 84.119% 

RNN 89.458% 89.986% 
LSTM 94.487% 89.458% 

 

Model Accuracy F1-Score 
Logistic Regression 86.929% 86.929% 

K-Neighbors 
Classifier 

98.778% 98.185% 

Decision Tree #1 92.68% 92.679% 
Decision Tree #2 99.465% 99.465% 
Random Forest 

Classifier 
99.601% 99.743% 

DNN #1 84.347% 78.306% 
DNN #2 90.886% 84.477% 

RNN 98.338% 97.539% 
LSTM 98.512% 97.800% 

 

Scenario type 1 and scenario type 2 are flooding attack datasets, a type of DoS attack. Despite 
the conditions in which Timestamp and data order are shuffled, time series analysis models RNN 
and LSTM models show excellent performance of over 95% in accuracy and F1-Score indicators is 
showed. In addition, scenario type 3 and scenario type 4, which are fuzzy attack datasets, and 
scenario type 6, which are relay attack datasets, showed excellent performance of over 95% in both 
Accuracy and F1-Score indicators. However, in scenario type 5's dataset, the f1-score of both models 
fell below 90%. On the other hand, the LSTM model that performed time series analysis shows 
accuracy of over 99% [22] 

Decision Tree single model, Random Forest, K-Neighbors Classifier, and dual classification 
DNN model showed excellent performance with accuracy and F1-Score indicators of over 95% in all 
datasets, and Logistic Regression model's Accuracy varied between 79% ~ 97%. The F1-Score of ML 
model is 97%, which is like the existing model. Over-fit due to data imbalance was not observed.  
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4. Experiments 

In Performance Evaluation in Chapter 3.2, models with excellent detection performance for each 
attack type are selected as base models to design a stacking-based ensemble model. 

The base models independently detect flooding, fuzzy, and replay attacks from the input CAN 
Traffic Data and deliver these detection results to the Meta model. The decision tree-based the Meta 
model synthesizes the detection results of each base model to determine whether an attack has 
occurred in a binary sense. Perform classification.  

4.1. Experiment Model  

 
Figure 12. Structure of Experiment model. 

The base model was constructed according to the performance evaluation results in chapter 3. 
Flooding detection used the LSTM model, fuzzy detection used the LSTM model, and replay 
detection used the Decision Tree (DT) model, all under the same conditions as the model learned 
during performance evaluation. 

The Flood model and Fuzzy model were learned with 20 epochs through the LSTM model, and 
the accuracy of the two models is over 98% during the train and test process. Accuracy changes 
according to the learning process are shown in Table 22.  

Table 22. Experiment Model’s Optimization Process History Plot for Flood, Fuzzy model. 

Flood  Fuzzy 
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Figure 13. Structure of Relay Attacks model. 

Unlike the previous two models, the Replay model was learned through a decision tree model 
with max depth set to 5, and in the performance evaluation in chapter 3. Replay attacks were detected 
with an Accuracy and F1-Score of over 97%. Through tree visualization, it was confirmed that the 
model underwent balanced training.  

The model that assembled these base models had an Accuracy of 83%, Precision of 62%, and F1-
Score of 68%. Therefore, the cause of lower performance than the existing base model was analyzed 
through SHAP analysis in Chapter 4.2.  

4.2. Base Model’s Results Analysis 

As a result of performing SHAP value interaction analysis and Pearson correlation analysis on 
the detection results for each base model, it is estimated that the correlation and similarity between 
the detection results of the Replay model and the Fuzzy model are high. 
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Table 23. Analysis Results of each model. 

Flooding-fuzz Fuzz-flooding 

  
Replay-flooding Heatmap of Pearson correlation 

  

4.3. Experiment Analysis 

In this experiment, time stamps were removed from DL models that perform time series analysis, 
such as RNN, LSTM model, and ML models, and experiments were conducted to detect fuzzing, 
flooding, and relay attacks by learning data with shuffled data sequence, and all models showed 
significant detection performance.  

In addition, the results of analyzing this detection performance through SHAP analysis show 
that the models learned the data byte associated with the algorithm used in each attack as a 
meaningful feature.  

Although it was effective in binary classification of a single attack through a single model, 
performance was low in binary classification of multiple attack types through a stacking model. 
Looking at the SHAP analysis and correlation analysis results, it is assumed that the Replay model 
and the Fuzzy model have a high correlation in the detection results, causing overfitting in the 
Ensemble model through stacking, adversely affecting performance. 

5. Conclusions 

In this study, the features analyzed by ML models in the payload of flooding, fuzzy, and replay 
attacks occurring in the UAVCAN Protocol were confirmed through SHAP Analysis using the Tree 
Explainer model. This can be inferred that the ML model is learning by deriving valid features from 
the payload for each attack type.  

For the dataset for each scenario type, SHAP value - feature value distribution comparison, 
feature importance analysis, SHAP value distribution analysis between important features, and force 
plot analysis for each row of the dataset were performed. In all scenario datasets, the more 
imbalanced the data ratio according to label, the more biased the SHAP analysis results were. 
Although this bias is not effective in the model's performance, it is easier to see how the explainer 
model performs analysis on the features in the dataset, and it can be assumed that effective analysis 
is being performed according to the characteristics of each attack type.  
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We confirmed that the LSTM model that removed the timestamp and learned the shuffled 
dataset produced an Accuracy of over 96% and an F1-Score of over 96% in all scenarios except type 
5. These results show the performance of the LSTM model that learned time series data. Although it 
is lower, it can be assumed that detection is possible through non-Timelines analysis. As a result, the 
cause of poor performance in the heterogeneous ensemble model was estimated through SHAP 
analysis, which can be used in research on applying the heterogeneous ensemble model to detecting 
UAVCAN network attacks.  

In the future, the performance of the detection model can be improved by creating an ensemble 
model composed of base models learned to enable multi classification.  

Funding: This work was supported by the Hongik University new faculty research support fund. 
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