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ABSTRACT: Advancements in computer vision are rapidly revolutionizing the way traffic agencies gather
roadway geometry data, leading to significant savings in both time and money. Utilizing aerial and satellite
imagery for data collection proves to be more cost-effective, more accurate, and safer compared to traditional
field observations, considering factors such as equipment cost, crew safety, and data collection efficiency.
Consequently, there is a pressing need to develop more efficient methodologies for promptly, safely, and
economically acquiring roadway geometry data. While image processing has previously been regarded as a
time-consuming and error-prone approach for capturing these data, recent developments in computing power
and image recognition techniques have opened up new avenues for accurately detecting and mapping various
roadway features from a wide range of imagery data sources. This research introduces a novel approach
combining image processing with a YOLO-based methodology to detect turning lane pavement markings from
high-resolution aerial images, specifically focusing on Florida's public roadways. Upon comparison with
ground truth data from Leon County, Florida, the developed model achieved an average accuracy of 87% at a
25% confidence threshold for detected features. Implementation of the model in Leon County identified
approximately 3,026 left turn, 1,210 right turn, and 200 center lane features automatically. This methodology
holds paramount significance for transportation agencies in facilitating tasks such as identifying deteriorated
markings, comparing turning lane positions with other roadway features like crosswalks, and analyzing
intersection-related accidents. The extracted roadway geometry data can also be seamlessly integrated with
crash and traffic data, providing crucial insights for policymakers and road users.

Keywords: turning lanes; deep learning; roadway characteristic index (RCI); pavement markings;
machine learning (ML); roadway geometry features

Introduction

Advancement of computer vision technology is rapidly empowering traffic agencies to
streamline the collection of roadway geometry data, providing savings in both time and resources.
Traditionally, image processing has been viewed as a time-consuming and error-prone method for
capturing roadway data. However, with the evolution of computational capabilities and image
recognition techniques, new possibilities have emerged for accurately detecting and mapping various
roadway attributes from diverse imagery sources. A study conducted in 2015 [1] demonstrated that
utilizing aerial and satellite imagery for gathering geometry data offered significant advantages over
traditional field observations in terms of equipment costs, data accuracy, crew safety, data collection
expenses, and time required for collection.

Since the introduction of the Highway Safety Manual (HSM) in 2010, many state departments of
transportation (DOTs) have placed a strong emphasis on enhancing safety by aligning with the
manual's requirements for geometric data [2]. However, the manual collection of data across

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202405.0021.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 May 2024

extensive roadway networks has presented a considerable challenge for numerous state and local
transportation agencies. These agencies have a critical role in maintaining up-to-date roadway data,
which is essential for effective planning, maintenance, design, and rehabilitation efforts [3]. Roadway
Characteristics Index (RCI) data encompasses a comprehensive inventory of all elements that
constitute a roadway, including Highway Performance Monitoring System (HPMS) data, roadway
geometry, traffic signals, lane counts, traffic monitoring locations, turning restrictions, intersections,
interchanges, rest areas with or without amenities, High Occupancy Vehicle (HOV) lanes, pavement
markings, signage, pavement condition, driveways, and bridges. DOTs utilize various
methodologies for RCI data collection, ranging from field inventory and satellite imagery to mobile
and airborne Light Detection and Ranging (LiDAR), integrated Geographic Information System
(GIS)/Global Positioning System (GPS) mapping systems, static terrestrial laser scanning, and
photo/video logging [2].

These methods fall into two main categories: ground observation/field surveying and aerial
imagery/photogrammetry. The process of gathering RCI data involves considerable expenses, with
each approach requiring specific equipment and time allocation for data collection, thereby
impacting overall costs. Ground surveying entails conducting measurements along the roadside
using total stations, while field inventory involves traversing the roadway to document current
conditions and inputting this information into the inventory database. On the other hand, aerial
imagery or photogrammetry entails extracting RCI data from georeferenced images captured by
airborne systems such as satellites, aircraft, or drones. Each approach has its own advantages and
disadvantages in terms of data acquisition costs, accuracy, quality, constraints on collection, storage
requirements, labor intensity, acquisition and processing time, and crew safety. Additionally,
pavement markings typically have a lifespan of 0.5 to 3 years [4]. Because of their short lifespan,
frequent inspection and maintenance are necessary. However, road inspectors generally adopt a
periodic manual inspection approach to assess pavement marking conditions, which is both time-
consuming and risky.

Despite the prevalent use of direct field observations by highway agencies and DOTs for
gathering roadway data [3], these methods pose numerous challenges, including difficulty, time
consumption, risk, and limitations, especially in adverse weather conditions. Therefore, there is a
critical need to explore alternative and more efficient approaches for collecting roadway inventory
data. Researchers have explored novel and emerging technologies, such as image processing and
computer vision methods [2], for this purpose. Over the past decade, satellite and aerial imagery have
been extensively utilized for acquiring earth-related information [2]. High-resolution images
obtained from aircraft or satellites can quickly provide RCI data upon processing [5-7]. In a previous
study, artificial intelligence (AI) was employed to extract school zones from high-resolution aerial
images [7]. The increasing availability of such images, coupled with advancements in data extraction
techniques, highlights the importance of optimizing their use for efficiently extracting roadway
inventory data. While there may be challenges in extracting obscure or small objects, recent
advancements in machine learning research have lessened this limitation. Well-trained models can
significantly enhance output accuracy. Furthermore, this method entails minimal to no field costs,
making it economically advantageous.

RCI data encompass critical features like center, left, or right turning lanes, which are significant
to be known to both State DOTs and local transportation agencies in the context of traffic operations
and safety. These pavement markings, primarily situated near intersections, indicate permissible
turns from each lane, effectively guiding and managing traffic flow. They offer continuous assistance
in vehicle positioning, lane navigation, and maintaining roadway alignment, as highlighted in a
USDOT study [8]. Many DOTs have expressed keen interest in automated methods for detecting and
evaluating these markings [9]. Although turning lane information plays a pivotal role in optimizing
roadway efficiency and minimizing accidents, particularly at intersections, a comprehensive
geospatial inventory of turning lanes is currently lacking, spanning both local- and state-operated
roadways in Florida. Therefore, it is crucial to develop innovative, efficient, and rapid methods for
gathering such data. This is of paramount importance for Florida DOT, serving various purposes
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such as identifying outdated or obscured markings, juxtaposing turning lane positions with other
geometric features like crosswalks and school zones, and analyzing accidents occurring in these
zones and at intersections.

To the best of the authors' knowledge, there has been no prior research exploring the utilization
of computer vision techniques to extract and compile an inventory of turning lane markings using
high-resolution aerial images. As such, this study seeks to address this gap by developing automated
tools for detecting these crucial roadway features through deep learning-based object detection
models. Specifically, the focus will be on creating a You Only Look Once (YOLO)-based artificial
intelligence model and framework to identify and extract turning lane markings, including left, right,
and center lanes, from high-resolution aerial images. The primary objective is to devise an image
processing and object detection methodology tailored to identify and extract these lane features
across the State of Florida using high-resolution aerial imagery. This initiative holds significant
importance for FDOT and other transportation agencies for various reasons, including infrastructure
management, such as identifying aging or obscured markings, comparing turning lane locations with
other geometric features like crosswalks and school zones, and analyzing accidents occurring within
these zones and at intersections. Additionally, the automated extraction of road geometry data can
be seamlessly integrated with crash and traffic data, offering valuable insights to policymakers and
roadway users.

Literature Review

Research on using artificial intelligence (AI) techniques to extract Roadway Characteristics
Inventory (RCI) data—particularly that pertaining to pavement markings—has significantly
increased in the last few years. By using detection models, Al approaches are essential in obtaining
information about roadways from such data. For example, a study [7] used high-resolution aerial
pictures and YOLO to locate school zones. Although a lot of research has focused on employing
LiDAR technology to capture RCI data, this method has drawbacks including expensive equipment,
complicated data processing, and long processing periods. For instance, a study [3] used precision
navigation and powerful computers to use LiDAR to compile inventories of various roadway
elements. Furthermore, in other studies, Mobile Terrestrial Laser Scanning (MTLS) has been utilized
to gather data from highway inventories [5]. Furthermore, computer vision, sensor technology, and
artificial intelligence (Al) techniques have been combined in recent autonomous driving research to
recognize pavement markings for vehicle navigation [10-14].

The majority of previous research has been on conventional approaches, which are linked to
longer data gathering times, traffic flow disruptions, and possible dangers to crew members.
Conversely, there hasn't been much focus on developing technologies like computer vision, object
detection, and deep learning. With the help of these cutting-edge technologies, roadway features may
be extracted from high-resolution aerial photos, doing away with the necessity for labor-intensive
fieldwork and drastically cutting down on data gathering time. In addition, the data collected using
these cutting-edge techniques is readily available, protects crew safety by averting traffic-related
risks, and quickly captures roadway characteristics over wide areas. Standardized image collection
is not the only criteria to consider when choosing the best object detection model [15]. While the
fundamental ideas of many popular models, such as those offered by TensorFlow, are similar, their
accuracy, speed, and memory usage vary according to the demands of the particular project.

Utilizing Computer Vision and Deep Learning for Roadway Geometry Feature Extraction

Experts in transportation are beginning to recognize convolutional neural networks (CNN) and
recurrent neural networks (RNN) as two new instances of computer vision and deep learning
methods [16]. Notable progress has been made in the extraction of roadway geometry data by
researchers using CNN and R-CNN. These methods have proven to be effective in quickly
identifying, detecting, and mapping roadway geometry features over large regions with no need for
human interaction. For example, in [4], photogrammetric data from Google Maps was utilized to
automatically identify pavement marking issues on roadways using R-CNN to evaluate pavement
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conditions. With an average accuracy of 30%, the developed model in this study was trained to detect
flaws in the pavement markings, such as incorrect alignment, ghost marking, missing, or fading
edges, corners, segments, and cracks.

In one study, Google Street View (GSV) photos taken along interstate segments were used to
recognize and categorize traffic signs using computer vision algorithms [17].In order to classify road
signs according to their pattern and color information, the researchers used a machine learning
technique that paired Histograms of Oriented Gradients (HOG) data with a linear Support Vector
Machine (SVM) classifier. 94.63% classification accuracy was attained by them. However, neither
local nor non-interstate roads were used to test the methodology. The research by [18] used ground-
level photos and a technique known as ROI-wise reverse reweighting network to recognize road
markers. Using ROI-wise reverse reweighting and multi-layer pooling operation based on Faster
RCNN, the study achieved a 69.95% detection accuracy for road markers in images by highlighting
multi-layer features.

In [12], inverse perspective mapped photos were used to estimate roadway geometry and
identify lane markings on roadways using CNN. Researchers used CNN in [19] to detect, measure,
and extract the geometric properties of hidden cracks in roads using ground-penetrating radar
pictures. CNN was used by the authors in [20] to extract roadway features from remotely sensed
photos. These methods have been used to detect images for a variety of purposes. For example,
driverless cars use them to instantly identify objects and road infrastructure. Using the Caltech-101
and Caltech pedestrian datasets, a novel hybrid local multiple system (LM-CNN-5VM) incorporating
convolutional neural network (CNN) and SVMs was tested for item and pedestrian detection [21].
Several CNNs were tasked with learning the properties of local areas and objects after the full image
was divided into local regions. Significant characteristics were chosen using principal component
analysis, and in order to improve the classifier system's ability to generalize, these features were then
fed into several SVMs using empirical and structural risk reduction strategies rather than only using
CNN. Moreover, an original CNN architecture and a pre-trained AlexNet were both used, and the
SVM output was mixed. Between 89.80% and 92.80% was the accuracy range that the approach
showed.

Convolutional neural networks (CNNs) based on deep learning have demonstrated impressive
capabilities in object detection recently [22-25]. These algorithms have been greatly enhanced by their
progression from region-based CNN (R-CNN) to fast R-CNN [26], and ultimately faster R-CNN [27].
The CNN method basically involves computing CNN features after extracting region proposals as
possible object placements. By adding another Region Proposal Network (RPN) to the object
detection network, Faster R-CNN improves performance even further. In a study [28], the vehicle
detection and tracking skills of machine learning algorithms and deep learning techniques —faster R-
CNN and ACF—were thoroughly compared. The results show that quicker R-CNN performs better
in this area than ACF. Therefore, choosing the algorithm to perform the analysis requires significant
thought. The output of vehicle identification and tracking algorithms may include parameters like
speed, volume, or vehicle trajectories, depending on the analysis's goals. Vehicle detection algorithms
differ from point tracking techniques in that they can also classify automobiles.

Obtaining Roadway Geometry Data through LiDAR and Aerial Imagery Techniques

Road markings can be extracted from photos by taking advantage of their high reflectivity,
which is a characteristic that they usually display. In [29] researchers developed an algorithm that
uses pixel extraction to recognize and locate road markers in pictures taken by cameras installed on
moving cars. Initially, a median local threshold (MLT) image filtering technique was used by the
system to extract marking pixels. After then, a recognition algorithm was used to identify markings
according to their dimensions and forms. For the identified markers, the average true positive rate
was 84%.Researchers in [30] extracted highway markers from aerial photographs using a CNN-based
semantic segmentation technique. The paper presented a novel method for processing high-
resolution images for lane marking extraction that makes use of a discrete wavelet transform (DWT)
and a fully convolutional neural network (FCNN). In contrast to earlier techniques, this strategy —
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which used a symmetric FCNN —focused on small-sized lane markers and investigated the best
places for DWT insertion sites inside the architecture. The accuracy of lane detection could be
enhanced by the model's ability to collect high-frequency information with the integration of DWT
into the FCNN architecture. Aerial LaneNet architecture consisted of a sequence of pooling, wavelet
transform, and convolutional layers. The model's effectiveness was assessed using an aerial lane
detection dataset that was made available to the general audience. The study found that washed-out
lane markers and shadowed areas presented constraints.

Researchers used the scan line method in [31], which allows them to recover road markings from
LiDAR point clouds. The team efficiently structured the data by timestamp-sequentially ordering the
LiDAR point clouds and grouping them into scan lines based on the scanner angle. They then isolated
seed roadway points, which formed the foundation for determining complete roadway points, by
taking advantage of the height difference between trajectory data and the road surface. Using these
points, a line was drawn that encircled the scan line's seed points as well as every other point. After
that, points that fell within a given range of this line were kept and classified as asphalt points or road
markings according to how intense they were. In order to smooth out intensity values and improve
data quality by lowering noise, a dynamic window median filter was used. Finally, the research team
identified and extracted roadway markers using edge detection algorithms and limitations. Roadway
data was gathered by researchers in [3] using two-meter resolution aerial images and six-inch
accuracy LiDAR data saved in ASCII comma-delimited text files. Using ArcView, they added height
information to LiDAR point shapefiles and then converted the data points into Triangular Irregular
Networks (TIN). The analytical process was started by combining the aerial photos and LiDAR
boundaries. To find obstructions in the observer's line of sight, ArcView's object obstruction tool was
utilized. Tracing the line of sight—visible terrain represented by green line segments, obscured
terrain by red line segments—was used to calculate the stopping sight distance. With ArcView's
identification and contour capabilities, side slope and contours were determined. The grade was also
determined by the researchers by calculating the elevation difference between a segment's two ends.
Conversely [32], built a deep learning model for the automated recognition and extraction of road
markings using a 3D profile of pavement data obtained by laser scanning. They were able to detect
with 90.8% accuracy. As part of the project, a step-shaped operator was designed to identify possible
locations for pavement marking edges. The road markings were subsequently extracted using CNN
by combining the geometric properties and convolution information of these locations.

In [33] pavement markings were extracted from camera images and pavement conditions were
assessed using computer vision techniques. Preprocessing was applied to videos that were taken of
cars from the frontal perspective for the research. The preprocessing involved the extraction of image
sequences, the Gaussian blur median filter for filtering and smoothing the images, and the inverse
perspective transform for correcting the photos. A hybrid detector that relied on color and gradient
features was used to find pavement markings. After that, regions with marks were identified using
image segmentation and then categorized into edge, dividing, barrier, and continuity lines according
to their characteristics. Building on a prior study [34] that used Yolov3 to extract turning lane features
from aerial images, this research will use additional image processing techniques along with a more
advanced version of yolo to extract turning lane features, including left, right, and center, from
extremely high resolution aerial images in Leon County, Florida.

To the authors’ knowledge, there has not been any research done on how to make an inventory
of turning lane markings using image processing and computer vision techniques. Thus, by creating
automated methods for identifying these turning lane markings (e.g., left, right, and center), our
research attempts to close this gap. To achieve this, the study will specifically concentrate on
developing an artificial intelligence model based on the You Only Look Once (YOLO) methodology.

Study Area

The case study region for turning lanes and configurations detection has been chosen to be Leon
County (Figure 1). There are 292,198 people residing in Leon County, which is home to the City of
Tallahassee, the capital city of Florida, and it is 668 square miles in total size [35]. It shares boundaries
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with Georgia's Grady and Thomas counties as well as other Florida counties like Gadsden, Wakulla,
Liberty, and Jefferson. The county was taken into consideration because of the variety of its roadway
infrastructure development. The models' performance was verified using ground truth data from
Leon County, Florida.

Map of Leon County and Road Networks
-

0 385 77 154 Miles

Florida Counties
-Leon_state_roads
-Leon_local_roads
-Leon_boundary

Figure 1. Map of Leon County, Florida with the roadway network.

Materials and Methodology

The selection of the methodology for gathering roadway inventory data is contingent upon
various factors including data collection time (e.g., data collection, reduction, and processing), cost
(e.g., data collection, and reduction), as well as accuracy, safety, and data storage demands. In this
study, our objective was to develop a deep learning object detection model tailored to identify turning
lane markings from high-resolution aerial images within Leon County, Florida.

Data Description

The proposed algorithm for detecting turning lanes relies on high-resolution aerial images and
recent advancements in computer vision and object detection techniques. The goal is to automate the
process of identifying pavement markings for turning lanes, offering a novel solution for
transportation agencies. The aerial images used in this study were sourced from the Florida Aerial
Photo Look-Up System (APLUS), an aerial imagery database managed by the Surveying and
Mapping Office of the Florida Department of Transportation (FDOT). Specifically, images from Leon
(2018) and Miami-Dade (2017) Counties, Florida, were utilized. These images have a resolution
ranging from 1.5 ft down to 0.25 ft, ensuring sufficient detail for accurate detection of turning lanes.
The model's resolution requirement allows for the utilization of any imagery falling within or
exceeding this resolution threshold. The majority of the images were in 0.5 ft/pixel resolution, with a
size of 5,000 x 5,000 and a 3-band (RGB) image format, although precise resolutions varied by county.
Additionally, state, and local roadway shapefiles were obtained from FDOT’s GIS database,
providing further data for the detection algorithm. The images are given in MrSID format, which
enables GIS projection onto maps, enhancing spatial analysis capabilities. Also, state, and local
roadway shapefiles were acquired from FDOT's GIS database, complementing the image data, and
enriching the dataset for further analysis.
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This study focuses on identifying turning lanes present on roadways managed by counties or
cities, as well as those situated on state highway system routes, excluding interstate highways. State
highway system routes are termed ON System Roadways or state roadways, while county or city-
managed roads are referred to as OFF System Roadways or local roadways, according to FDOT
classification. Our proposed approach involves merging all centerlines from the shapefile of county
and city-managed roadways. While FDOT's GIS data can provide various geometric data points
crucial for mobility and safety assessments, it lacks information on the locations of turning
configurations on the local roadways. Therefore, the main objective of this project is to utilize an
advanced object identification model to compile an inventory of turning lane markers, specifically
left-only, right-only, and center lanes, on both state and local roadways in Leon County, Florida.

Pre-Processing

Due to the volume of data and the complexity of object recognition, preprocessing is essential.
This method involves selecting and discarding images that do not intersect with a roadway centerline
and mask out pixels outside a buffer zone. In this approach, the number of photos was decreased,
and the image masking model excluded objects that were 100 feet away from state and local roadways
(Figure 2). Prior to masking the images, the roadway shapefile is buffered to create overlapping
polygons, serving as reference for cropping intersecting regions of aerial images. During masking,
pixels outside the reference layer's boundary are removed. The resulting cropped images, with fewer
pixels, are then mosaiced into a single raster file, facilitating easier handling and analysis.

First, all aerial images from the selected counties are imported into a mosaic dataset using
ArcGIS Pro. Geocoded photos are then managed and visualized using mosaic databases, allowing
for the intersection with additional vector data to select specific image tiles based on location.
Following this, a subset of photos is extracted, comprising images that intersect with roadway
centerlines. An automated image masking tool is subsequently developed using ArcGIS Pro’s
ModelBuilder interface. This tool systematically processes the photo folder, applying a mask based
on a 100-foot buffer around roadway centerlines, and saves the resulting masked images as JPG files
for the object detection process. Exported images are further processed for model training and
detection.

Leon County Masking Example

1) Mosaic Dataset of all
images (N =~ 1K)
2) Selected images that
intersect with roads
(N=~0.5K)

3) Selected images
converted to jpg

4) Pixels > 100ft away

from road center lines
are masked

Masked
images

Figure 2. Preprocessing approach, and automated image masking model.
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Data Preparation for Model Training and Evaluation

High-quality image data is crucial for training deep learning models to identify various turning
lane features. The process of image preparation, depicted in Figure 3, outlines the steps from turning
lane identification to the extraction of training data or images. Significant time and effort were
dedicated to generating training data for model creation, as a substantial portion of the model's
performance hinges on the quantity, quality, and diversity of the training data used. Similarly,
additional time and effort were invested in the model training process, involving testing different
parameters, and selecting the optimal ones to train the model. This is depicted by the larger box sizes
for “Manually label turning lane features” and “training data” in Figure 3.

For the initial investigation, a 4-class object detection model was developed to identify the
turning configurations. The training data with varying classes was prepared for the model. The
training data prepared for the turning lane model comprised 4 classes: “left_only”, “right_only”,
“center”, and “none” denoted as classes 1, 2, 3, and 0, respectively. These labels were represented by
rectangular bounding boxes encompassing the turning lane markings (Table 1). The training data
initially prepared for the turning lane model was manually labelled 4,687 features on the aerial
images of Miami-Dade county using the Deep-Learning Toolbox in ArcGIS Pro. The model had 1,418
features (30.3%) for the “left_only” class, 1,328 features (28.3%) for the “right_only” class, 662
features (14.1%) for the “center” class, and 1,279 features (27.3%) for the “none” class. The “none”
class labels for the model were made up of all other visible markings or features except “left_only”,
“right_only”, and “center”. Some features which were very common for instance, left only and right
only were more prevalent in the training data for the turning lane model while less common features
like “center” had lower representation. To address this imbalance and enhance dataset diversity,
some of these less common features were duplicated. However, to prevent potential issues like model
overfitting and bias resulting from duplication, data augmentation techniques such as rotation were
employed. Rotation involved randomly rotating the training data features at various angles to
generate additional training data, thereby increasing dataset diversity. This approach enabled the
model to recognize objects in different orientations and positions, which was particularly
advantageous in this study, given that features like left-only and right-only lanes can appear in
multiple travel directions at intersections. A 90 degrees rotation was applied to the training data.
Finally, 11,036 exported image chips containing 16,564 features were used to train the model. It is
important to mention that a single image chip may contain multiple features.

Each class within the training data was distinctively labeled to ensure clarity. These classes
distinctly categorized the turning lane features and non-features identified in the input image by the
detector, thereby enhancing the model's detection accuracy. The output data was then sorted into
categories such as left only, right only, center, and none, utilizing a class value field. The metadata
generated for these labels such as the image chip size, object class, and bounding box dimensions,
were stored in an xml file. A function was then created to further convert the metadata into yolov5
format to obtain the transformed bounding box center coordinates, the box width, and height, using
the following equations:

i[xmin + xmax]

cx = 0.5 % 1)
w

cy = 0.5 i[ymin:;ymax] 2)

b — i[xmaxw— xmin] 3)

bh = i[ymaxh— ymin|

where i is the bounding box, cx is the x coordinate of the bounding box center, cy is the y
coordinate of the bounding box center, bw is width the bounding box, bh is height the bounding
box, w is width the image chip, h is height the image chip, xmax is maximum x value of the

(4)
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bounding box, xmin is minimum x value of the bounding box, ymax is maximum y value of the
bounding box, and ymin is minimum y value of the bounding box. The normalization of coordinates
was performed using the image dimensions to maintain the bounding box positions relative to the
input image.

It is worth noting that object detection models perform optimally when trained on clear and
distinctive features. Given that left-only and right-only turning markings often exhibit a lateral
inversion of one another, rendering them less distinguishable, the model's performance in detecting
them is expected to be lower. To ensure uniqueness, the labels for training the center lane class
featured both left arrows facing each other from different travel directions. This approach was
similarly applied to label all other features to maintain uniqueness in the training features. The input
mosaic data comprised high-resolution aerial images covering Miami-Dade County, Florida, with a
tile size of 5000x5000 square feet.

s )

Manually label
turning lane
features

. J

Figure 3. Model training data preparation framework.

Identify
turning
lanes

Extract
image and
metadata

Table 1. Training data description.

1
ID :a;i: Description Example/Picture Training Example

1  left only  Leftonly

2 right only Rightonly

Center lane (left turn possible

3 center in both direction or two way)
None: Yield, left through,
0  mone right through, bicycle, merge,

u-turn, Stop, Parking, Speed
limits, etc

YOLOu5 — Turning Lane Detection Model

You Only Look Once (YOLO) is predominantly utilized for real-time object detection. Compared
to other models such as R-CNN or Faster R-CNN, YOLO's standout advantage lies in its speed.
Specifically, YOLO surpasses R-CNN and Faster R-CNN architectures by a factor of 1000 and 100,
respectively [36]. This notable speed advantage stems from the fact that while other models first
classify potential regions and then identify items based on the classification probability of those
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regions, YOLO can predict based on the entire image context and perform the entire image analysis
with just one network evaluation. Initially introduced in 2016 [37], YOLO has seen subsequent
versions including YOLOv2 [38] and YOLOv3, which introduced improvements in multi-scale
predictions. YOLOv4 [39] and YOLOv5 [40] were subsequently released in 2020 and 2022,
respectively.

YOLOV5 architecture is made up of the backbone, the neck (PANet), and the head (output).
Unlike other detection models, YOLOVS5 uses cross-stage partial network (CSP) -Darknet-53 as its
backbone, uses PANET as its neck and yolo layer as its head. CSP-Darknet is a better version of
Darknet-53 which was the backbone of YOLOvV3 with higher accuracy and processing speed [40]. The
architecture of the backbone and 6x6 convolution 2d structure improves model’s efficiency [41].
Making the feature extractor perform better and faster than other object detection models including
the previous versions [42]. Compared to the previous versions, it has a higher speed, higher precision,
and a smaller volume. YOLOvV5’s backbone enhances both the accuracy and speed of the model,
performing twice as fast as ResNet152 [36]. Utilizing multiple pooling and convolution, YOLOv5
forms image features at different levels using the CSP and the spatial pyramid pooling (SPP) to extract
different-sized features from input images [43]. The architecture has a significant advantage in the
area of computational complexity: on the one hand, the BottleneckCSP architecture reduces
complexity and improves speed in the inference process; on the other hand, SPP allows to extract
features from images in different parts of the input image, creating three-scale feature maps which
improve detection quality. Moreover, the neural network neck is a series of layers that are zones
between the input and output layers, which is made up of Feature Pyramid Network (FPN) and Path
Aggregation Network (PAN) structures, the task of which is to integrate and synthesize image
features in various proportions before transferring it to the prediction. FPN enables semantic features
of high level to be passed to the lower feature maps and PAN enables localization features of high
accuracy to be passed to the higher feature maps, finally moving into the detection phase where
targets of different sizes in feature maps are generated in the output head [43]. Figure 4 shows the
network architecture of YOLOVS, illustrating the three-scale detection process. This process involves
applying a 1x1 detection kernel on feature maps situated at three distinct areas and sizes within the
network.

Overview of YOLOvV5

BackBone PANet Output

[ Convixi
|

BottleNeckCSP

—————
Convlxl

- Concat BottleNeckCSP

|

Conv3x3 52

Convlxl

> BottleNeckCSP

BottleNeckCSP

Figure 4. YOLOvV5 network architecture, adapted from [40].
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Turning Lane Detector

The object detection model's adjustable parameters and hyperparameters encompass various
factors such as the learning rate, input image dimensions, number of epochs, batch size, anchor box
dimensions and ratios, as well as the percentages of training and testing data. Visualization of the
machine learning model's evaluation metrics was presented through graphs depicting precision-
recall, validation and training loss, F1-confidence curve, precision confidence, and confusion matrix.
Validation loss and mean average precision were computed on the validation dataset, which
constituted 20% of the input training dataset. Key parameters influencing object detection
performance include the batch size, learning rate, and training epoch. The learning rate dictates the
rate at which the model acquires new insights from training data, striking a balance between
precision and convergence speed. Optimal learning rates of 3.0e-4 was used to train the model. Batch
size refers to the number of training samples processed per iteration, with larger sizes facilitating
parallel processing for faster training, albeit requiring more memory. In contrast, smaller batch sizes
enhance model performance on new data by increasing randomness during training. Given the multi-
class nature and high data complexity of the developed model, a batch size of 64 was adopted to
enhance performance. Also, the anchor box represents the size, shape and location of the object being
detected. 4 sizes of initial detection anchor boxes were used to train the model. The epoch number
denotes the iterations the model undergoes during training, representing the number of times the
training dataset is processed through the neural network. The model was trained using 100 epochs.
In this study, 80% of the training data was utilized for model training, selected randomly to ensure
representativeness. A 20% (10% test-10% validation) split of the training dataset was used for
validating and testing the model's performance during training. In other words, 2,202 image chips
were used to assess the model’s accuracy during the model training process.

The determination of the training and test data split primarily hinged on the size of the training
dataset. For datasets exceeding 10,000 samples, a validation size of 20-30% was deemed sufficient to
provide randomly sampled data for evaluating the model's performance. A default 50% overlap
between the label and detection bounding boxes was considered a valid prediction criterion.
Subsequently, recall and precision were computed to assess the true prediction rate among the
original labels and all other predictions, respectively. During the model training, a binary cross-
entropy loss was used for each label to calculate the classification loss, rather than using mean square
error. Therefore, logistic regression was used to predict both object confidence and class predictions.
This approach reduces the complexity of computations involved and improves the model’s
performance [36]. The calculation methods for the loss function for Yolov5 is the summation of the
class loss, object confidence loss, and the location or box loss, which are formulated as follows [40]:

LOSS = Al LClS + Az LObj + Ag LlOC (5)
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4 w9t %
V= — (arctanﬁ - arctanﬁ ) (11)
where Loss is the overall loss, Lis the classification loss, L,p; is the object confidence loss, L.
is the location or box loss, 4;, 1,, A; are the weights for the classification loss, object confidence
loss, and location or box loss respectively. 1??1” is the probability predictor for the object category, c
is the diagonal distance of the smallest closure area that can contain both the predicted box and the

real box, c; is the confidence score, € is the intersection of prediction boundary box and basic facts,
noobj
?
classification error, IoU is the intersection over union, p? is the Euclidean distance between the
centroids of the prediction box and the real box, b, b9" are the center point of the predicted box and

the real box, a is the positive trade-off parameter, v measures the consistency of aspect ratio, and
w3t
hgt

Anoopnj 1s the weights for the classification error, is the probability predictor of the

and % are the aspect ratios of the target and predictions.

After model training, the performance was evaluated. The confusion matrix describes the true
positive rate as well as the misclassified rate. The diagonal values show very high true positive
predictions for each class in the confusion matrix (Figure 5a). It can also be observed that the model
has extremely low misclassified features with center features showing a 100% correct classification
and 0 misclassification. The graph of the train-validation loss for the model is shown in Figure 5b.
The validation loss examined how well the model fits new data, whereas the training loss evaluated
how well the model fits training data. A high loss indicates that the product of the model has errors
while a low loss value shows there are fewer errors present in the model. From the graph, it can be
noted that the model had a very low training and validation loss difference with the training loss is
slightly higher than validation loss (Figure 5b). This shows that the model is very accurate and
performs well on new and existing data however the model performed better on the new dataset.
The model has a very good precision-recall curve as shown in Figure 5c. This describes how sensitive
the model is in detecting true positives and how well it predicts the positive values. A good classifier
has both high precision and high recall across the graph. The developed model has a precision of
0.969, and a recall value of 0.970. The F1 value is a metric calculated from the harmonic mean between
the precision and accuracy values. Higher F1 values indicate a better performance. When the F1 value
is compared with the confidence thresholds, the optimum threshold can be identified. From the F1-
Confidence curve (Figure 5d), the model performs very well between 0.90 and 0.98 F1-score when
the confidence threshold is set between 0.05 — 0.8. The optimum threshold of 0.622 returns an F1 value
of 0.97 for all classes. Observing the precision-confidence curve, the precision gently increases with
higher confidence thresholds. Therefore, the model is very precise even at lower confidence of 0.2
reaching an ideal precision at 0.98 (Figure 5e). The average accuracy of the developed model was
0.987. Therefore, we can conclude that the developed detector performs quite well.
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Figure 5. Developed YOLOvV3 turning lane model (a) confusion matrix, (b) training and validation
loss graph (c) precision-recall curve, (d) F1 confidence curve, and (e) precision-confidence curve.
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Mapping Turning Lanes

The turning lane detector was initially tested on individual photos. Figure 6¢c demonstrates how
the detector correctly outlines turning lanes with bounding boxes using the detection's confidence
score. A threshold of 0.1 was employed to capture all features detected with very low confidence
levels. It is important to note that lower detection thresholds generally increase false positives which
results in lower precision, increases computational workload as well as detection time, and irrelevant
features or noise. On the other hand, lower detection thresholds increase model’s sensitivity to
detecting faint or partially visible features, while increasing recall. With higher recall, the model is
more likely to identify and detect all instances of the target object class and reduce the chances of
missing any objects. More than 10% overlap between two bounding boxes was avoided to minimize
duplicate detections. The detector was trained on 512 x 512 sub-images, and a resolution of 0.5 feet
per pixel. It should be noted that utilizing huge photos with object detection techniques is impractical
since the cost of computing grows rapidly. Therefore, another image processing step was utilized to
split detection images into tiles of 512 X 512 or less to carry out tile detections on the input aerial
images (Figure 6a). The output detection labels with coordinates were converted into shapefiles and
visualized in ArcGIS for further processing and analysis.

The detection and mapping procedure was carried out at the county level since the detector
performed very well on single photos. Figure 6b provides a summary of this procedure. The
photographs in the folder with a label of "masked images" were first picked out and iterated through
the detector. An output file of all the identified turning lanes in that county was created once all
photos had been sent to the detector. Confidence scores were included in the output file. This file was
used to map turning lanes. Note that the model can detect turning lane markings from images with
a resolution ranging from 1.5 ft down to 0.25 ft or higher. However, the model has not been tried on
any images with resolution lower than the ones provided by the Florida APLUS system. From the
observations, the model made some false detections in a few instances. These were outlined and
discussed in the results. Figure 6¢c shows some examples of the detected features.

1 #Function to split Image into tiles

def splitImage(image path, output_path, num_rows, num_columns):
# Read the image using cv2
image = cvZ.imread(image_path)

# Get the dimensions of the image
height, width, z = image.shape

# Calculate the width and height of each grid cell
11 cell_width = width // num_columns
12 cell_height = height // num_rows

# Create the output directory if it doesn’'t exist
os.makedirs(output_path, exist ok=True)

# Loop through rows and columns to split the image
for row in range(num_rows):
for col in range(num_columns):
# Calculate the coordinates of the current cell
left = col * cell width

upper = row * cell_height
right = left + cell width
lower = upper + cell height

# Crop the image to extract the current cell
cell image = image[upper:lower, left:right]

# Save the cell image

cell filename = os.path.join(output_path, f'_{row+1:82d}_ {col+1:82d}.jpg’)
cv2.imwrite(cell filename, cell image)

(@)
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Nam (§ Examples of turning lane feature detection from images

Multiple features
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Center

None

Figure 6 (a) Image processing step for tile detection, (b) turning lane detection framework, and (c) turning lane

detection polygons and confidence scores on images.

Post-Processing

Finally, after applying the model on the obtained aerial images in Leon County, the total number
of observed left, right, and center detections in Leon County was found to be 4,795 using the model.
Redundant detections caused by the overlapping distance on image were removed at the post-
processing stage . The turning configurations for state and local roadways can also be classified into
groups depending on analytical objectives. The filters non-maximum suppression was applied,
which kept the detection that overlapped and had the highest confidence level. Therefore, all the
detected turning lane marking with over 10% overlap with lower confidence levels were removed.
The detected features were converted from polygon shapefiles to point shapefiles for analysis.

Results and Discussions

The model's performance was assessed during the model training using precision, recall, and F1
scores. Afterwards, Leon County was utilized as the county where ground truth data were collected
and the developed model’s performances were assessed with respect to completeness, correctness,
quality, and F1 score. The GT dataset of turning lane features on Leon County roadways were used
as a proof of concept. After detection of left, right and center features, a total of 4,795 detections were
observed, where 3,101 were classified as left, 1,478 were classified as right and 216 were classified as
center lanes features. After visual inspection, a total of 5,515 visible turning lane markings for left,
right, and center lane features were collected as GT dataset using the masked photographs as the
background. Note that each turning lane may exhibit a range of 1-6 features, such as left-only or
right-only markings. Consequently, a single lane may contain multiple consecutive turning features
aligned in a straight line and each lane may consist of several features that collectively define that
lane. However, to perform a robust analysis, the assessment was done by directly comparing
individual turning features on the aerial images. Figure 7 shows the GT dataset and detected turning
lane markings in Leon County. Although some of the turning lane markings, especially the left only
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marking, were missed by the model, the overall performance of the model was reliable. This is mainly
because of various reasons such as occlusions, faded markings, shadows, poor image resolution, and
variety of the pavement marking design.

As noted, the suggested model has identified turning lane markers with a minimum confidence
score of 10%. For the purposes of this case study, the model identified turning lane markers (M) on
the local roads in Leon County were retrieved. On the GT, a similar location-based selection
methodology was used. The suggested model's performance was assessed by examining the points
that were discovered within the polygons and vice versa at various confidence levels of 90%, 75%,
50%, 25%, and 10%, respectively (Table 2). A confusion matrix was used to visualize the model’s
performance against the GT dataset of Leon County (Figure 8a).

This study's major goal was to assess the accuracy and performance of the proposed model's
predictions and contrast them with a ground truth dataset. Separate evaluation analysis has been
performed using each “left_only”, “right_only”, and “center” detections of the developed model. The
accuracy and performance on turning lane model were assessed after testing the model’s correctness
(precision) and completeness (recall) using a complete ground truth dataset and measuring the F1-
score. The Fl-score calculates the harmonic mean using the precision and recall values. It is the
appropriate evaluation metric when dealing with imbalanced datasets. It is crucial in object detection
tasks where missing actual objects is more detrimental than incorrectly classifying background
regions as objects.

Finally, the suggested model’s performance was assessed using the criteria of completeness
(recall), correctness (precision), quality (intersection over union), and F1. The model’s performance
was also visualized using a circus plot [44] in Figure 8b. These criteria were initially utilized in [45]
and [46] for the goal of highway extraction, and they are now often used for performance evaluation
of the related models [47,48]. The following selection criteria are necessary to determine the
performance evaluation metrics:

i. GT: Number of GT turning lane polygon,
ii. M: Number of Model detected turning lane points
iii. False Negative (FN): # of GT turning lane polygon without M turning lane point,
iv. False Positive (EP): # of M turning lane points not found within GT turning lane polygon,

v. True Positive (TP): # of M turning lane points within GT turning lane polygon,

Performance evaluation metrics:

GT-FN
Completeness =

_M-FP

* 100%, true detection rate among GT turning lane (recall)

Correctness

lity ~ST=FN
Quality GT+FP

lane (Intersection over Union: IoU)

* 100%, True detection rate among M turning lane (precision)

* 100%, True detection among M turning lane plus the undetected GT turning
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Leon County Ground Truth and Detected Turning Lane Features

*Leon Turning Lane Points
Ground Truth (GT) Labels
-Leon_state_roads
-Leon_local_roads
-Leon_boundary

-Red: Band_1

-Green: Band_2

=Blue: Band_3

0 5 10 ) 20Miles

0.1Miles

0 40 80 160US Feet

Figure 7. Manually labeled Ground Truth turning lane markings (GT) and detected turning lane
markings in Leon County, Florida.

Based on the findings, we observe that this automated turning lane detection and mapping
model can averagely detect and map 57% of the turning lanes with 99% precision at 75% confidence
level and an F1-score of 71%. At a lower confidence level of 25%, it can detect ~80% of the turning
lanes with 96% precision and an F1-score of 87% . At 75% confidence level, the average quality of the
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model’s detection is 58% whereas the average quality of the model is also 77% at 25% confidence
level.

Higher accuracy was achieved at low confidence levels since there is a higher recall and more
room is given to increase the number of detections. That is, from the observations, detected turning
lane markings that had occlusions from vehicle or trees, shadows, and faded markings generally had
lower confidence levels. Therefore, reducing the confidence level threshold adds these detected
features to the total number of detections. The new detections allowed into the pool for valuation
relatively includes more true positives, zero or less false positives and less or zero false negatives.
With the increase in the number of true positives as confidence decreases, the accuracy of the model
increases since the accuracy is described based on the relationship between the number of true
positives and the total number of detections. It can also be observed that the poor distinctiveness of
the detection features affected detection performance. As stated earlier, the observed difference
between the left only and right only turning markings, which is just a lateral inversion of the other
marking, made it less unique and therefore resulted in lower detection confidence levels. When the
left turn is flipped horizontally, it becomes a right turn and vice versa. On the other hand, center lane,
which was trained using a relatively distinct shape, recorded better detection results than the left
only and right only lanes.
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Figure 8. (a) Confusion matrix of predicted versus GT (true) turning features in Leon County, Florida,
(b) Visualization (circus plot) of performance evaluation metrics between the ground truth (GT) and
predictions made by the YOLOvV5 based turning lane model for detecting left_only (turquoise),
right_only (blue), and center (red). The circus plot also shows the distribution of the true positives
(magenta), false negatives (yellow), and false positives (green). The links between the classes show
the number of true positives (correctly classified), false negatives (unclassified), and false positives
(misclassified) in each class; the thickness of the links describe their percentages. The size of the radii
of the inner segments depicts the total value of the fields in ascending order. The outer concentric bars
depict the percentages of the values in descending order. From the plot, about 72% of right only
detections are true positives while about 18% are false negatives. Also, over 76% of left_only are true
positives.

The detected turning lanes were classified under different confidence levels. The final list is
shown in Table 2. The extracted roadway geometry data can be integrated with crash and traffic data
especially at intersections to advise policy makers and roadway users. That is, they can be used for a
variety of purposes such as identifying those markings that are old and invisible, comparing the
turning lane locations with other geometric features like crosswalks, school zones, and analyzing the
crashes occurring around the turning lanes at intersections
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Table 2. Model performance evaluations.

Leon County Ground Truth Comparison Analysis

Turning Lane Model

left_only: GT = 3891

Confidenc Completen Correctne Qualit Fl-score
e (%) M TP FP EN ess (%) ss (%) y (%) (%)
90 251 251 O 384 6.45 100.00 6.45
1 2
75 1392 38 9 :0 35.54 99.35 35.46
50 2146 2;2 21 126 54.61 99.02 54.32
25 2683 224 35 1§4 68.05 98.70 67.45
302
10 3101 6 75 865 77.77 97.58 76.30
right_only: GT = 1409
Confidenc Completen Correctne Qualit Fl-score
TP FP F
e (%) M N ess (%) ss (%) y (%) (%)
90 197 1% 1 151 13.91 99.49 13.90
75 887 871 16 538 61.82 98.20 61.12
50 1108 126 42 343 75.66 96.21 73.47
25 1262 1:135 190 256 81.83 91.36 75.96
10 1478 131 286 199 85.88 81.87 72.15
center: GT =215
Confidenc Completen Correctne Qualit Fl-score
M TP FP FN
e (%) ess (%) ss (%) y (%) (%)
90 13 13 0 202 6.05 100.00 6.05
75 162 160 2 55 74.42 98.77 73.73
50 191 188 3 27 87.44 98.43 86.24
25 200 195 5 20 90.70 97.50 88.64
10 216 200 16 15 93.02 92.59 86.58

Conclusions and Future Work

This study investigates the utilization of computer vision tools for roadway geometry extraction
focusing on Florida turning lanes as a proof of concept. This is a creative approach that uses computer
vision technology to possibly replace labor- and error-intensive traditional manual inventory. The
created system can extract recognizable turning marks from images using high quality images. By
removing the requirement for a human inventory procedure and improving highway geometry data
quality by removing mistakes from manual data entry, the findings will assist stakeholders in saving
money. The benefits of such roadway data extraction from imagery for transportation agencies are
numerous and include identifying markings that are outdated and invisible, comparing the locations
of turning lanes with other geometric features like crosswalks, school zones, and analyzing crashes
that take place close to these locations.

However, the study also identifies notable limitations and offers recommendations for future
research. Challenges arise from aerial images of roadways obstructed by tree canopies, limiting the
identification of turning lane markings. Moving forward, the developed model can be integrated into
roadway geometry inventory datasets, such as those used in the Highway Safety Manual (HSM) and
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the Model Inventory of Roadway Elements (MIRE), to identify and rectify outdated or missing lane
markings. Future research endeavors will also focus on refining and expanding the capabilities of the
model to detect and extract additional roadway geometric features. Additionally, there are plans to
integrate the extracted left-only, right-only, and center lanes with crash data, traffic data, and
demographic information for a more comprehensive analysis.
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