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Abstract: Clustering coefficient measures are key complex network analysis tools. We examine local and global

clustering coefficient measures with respect to the lexicographic graph product. As a preliminary condition, we

analyze the K3 subgraph structure focused on vertex inclusion with respect to the product graph. From this

structure, we determine both the clustering coefficient for the product graph vertices and the average clustering

coefficient for the product graph.

Keywords: lexicographic graph product; clustering coefficient; average clustering coefficient

MSC: primary 05C82; secondary 05C75

1. Introduction

Clustering coefficient is a widely used tool in complex network analysis, particularly in social
and neural networks. Introduced by Holland and Leinhardt (1971) [7], it is Strogatz and Watts (1998)
who are credited with popularizing the average clustering coefficient of a graph as the small world
property of a network [14]. Network analysis is a key area of study in applied graph theory that
includes lexicographic networks (an example paper is [11].)

As mentioned, the various clustering coefficients are utilized in aspects of network structure
analysis, especially with respect to community structure and information flow. A network vertex group
with high local clustering coefficients indicates an area of high connectivity thus wide information
exchange, while low clustering reflects structural holes. In information networks, the holes can indicate
the presence of “gatekeepers" who control the information flow. Mark Newman’s Networks,Newman
covers the various clustering coefficient measures in some detail. Although the number of triangles
in a graph can be determined in polynomial time, this calculation relays little information about
the relationship of the clustering in the lexicographic product as it relates to factor graph structure.
In this note, we take a mathematical approach to the clustering coefficient so analysis of network
structure is beyond the scope of this note. However, the information given here aids in network model
construction and clustering investigation.

In this paper, the clustering coefficient calculations, and surrounding discussion, convey how
the resulting community structure in the product graph is formed from the factor graph clustering.
Theorem 1 gives the number of triangles in which a lexicographic product graph vertex can be found
provided that the factor graphs are finite and simple. Theorem 2 provides the clustering coefficient of
a lexicographic product graph vertex, while Corollary 3 presents the average clustering coefficient for
this product graph.

As far as we know, there are only two other papers, [3,4], addressing clustering coefficient
measures with respect to product graphs; and neither paper considers the lexicographic product.
Calculating the clustering coefficient of any vertex, and the average clustering coefficient of the graph
containing that vertex, provides little information regarding vertex K3 subgraph inclusion structure for
the chosen graph. Several papers have been written regarding the minimum cycle basis structure of
the lexicographic product graph ([1,8–10] as stated in [9]); but none of these papers address vertex K3

subgraph inclusion that is given in this note.
In Section 2 we provide notation and background information regarding the lexicographic graph

product and regarding clustering coefficient measures. Section 3 contains the equation for the number
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of K3 subgraphs in which a product graph vertex can be found. The determination of the clustering
coefficient for vertices, and the more global average clustering coefficient, are found in Section 4.

2. Background

Define a finite graph G by its vertex set V(G) and its edge set E(G); and let |V(G)| and |E(G)|
denote the number of elements in these two sets respectively. We assume general graph knowledge as
found in [2]. Here, all graphs are finite and simple, thus disallowing both multiedges or loops. We
give all graphs the same vertex labeling of {0, 1, . . . , n − 1} where graph order is n = |V(G)|. Graph
size is denoted with m = |E(G)|. When reference is given concerning a specific graph G, then order
and size are given by nG and mG, respectively. The open neighborhood of vertex x is N(x) while the
closed neighborhood is N[x]. For graph order n, path graphs are Pn, complete graphs are Kn and
empty graphs with n isolated vertices are denoted by Dn.

2.1. Lexicographic Graph Product

Graph product operations act on two graphs G and H referred to as the factor graphs. In graph
theory, a homomorphism ϕ : G → H is a vertex set mapping such that {ϕ(x), ϕ(y)} ∈ E(H) implies that
edge {x, y} is in E(G) where x, y ∈ V(G); thus preserving adjacency. A weak homomorphism is vertex
map ψ : G → H where an edge {x, y} in G implies either {ψ(x), ψ(y)} ∈ E(H) or ψ(x) = ψ(y) in H.
For additional general information regarding graph products see [5].

The lexicographic graph product has vertex set of ordered pairs (g, h) produced by the Cartesian
product V(G)× V(H), where g ∈ V(G), h ∈ V(H). Pair {(g, h), (g′h′)} is an edge in G ◦ H if either
{g, g′} ∈ E(G) or g = g′ and {h, h′} ∈ E(H). Note that the operator g = g′ and {h, h′} ∈ E(H) is a
weak homomorphism. K1 is the unit for this product.

We sometimes indicate vertices in G ◦ H by gh instead of (g, h) as shown in Figure 1 displaying
P2 ◦ P3 and P3 ◦ P2. In this figure, operator {g, g′} ∈ E(G) is in dashed edges and operator g = g′ and
{h, h′} ∈ E(H) is in solid. As with other product graphs, G ◦ H has projections from the product graph
to its factors (see [5] for more information.) This results in the existence of “copies" of the two factors
in the product graph. In Figure 1, note that the solid edges in the product are copies of H referred to as
H layers; and some of the dashed lines are copies of G, analogously called G layers.
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Figure 1. P2 ◦ P3 and P3 ◦ P2 showing noncommutativity of lexicographic product.

We refer to the edges generated by operator {g, g′} ∈ E(G) as “spider edges". Notice that the
spider edges join two adjacent H layers. Based on the definition for this product, G ◦ H has order of
nG · nH and size nG(mH) + mG(n2

H). When referencing a vertex in G, we use gG; and similarly, a vertex
in H is hH unless otherwise noted. The degree of a vertex in one of the factors is indicated by deg(gG)

(or deg(hH)) where gG (or hH) is the specifric vertex in G (or in H).
For a specific vertex x := (g, h), denote the H layers that contain x as Hx, and let H′ indicate the

H layers that do not contain x but do contain the vertices in N(x).
The lexicographic product is associative but, with a few exceptions, it is not commutative. Dis-

playing both P2 ◦ P3 and P3 ◦ P2, Figure 1 shows this product aspect. Although the graph order for
both of these product graphs is the same, P2 ◦ P3 has 13 edges while the size of P3 ◦ P2 is 11.

When G is connected, then G ◦ H is connected. But when G is disconnected the product is
disconnected with the number of connected components dependent on the number of components in
G and in H.
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2.2. Clustering Coefficient and Average Clustering Coefficient

The phrase “clustering coefficient" needs clarification as its usage varies in the literature. In this
note, clustering coefficient refers specifically to the commonly utilized ratio focused on each vertex as
calculated in Sage. To emphasize a vertex focus, we sometimes refer to the clustering coefficient as the
vertex clustering coefficient. Given a specific vertex x, the clustering coefficient of x is:

cc(x) =
total number of triangles that include x

maximum number of triangles that could include x
(1)

The average clustering coefficient of a graph G, acc(G), is a global measure for G that can be
compared to the density of K3 subgraphs in G. Utilizing the vertex clustering coefficient cc(x) over all
x ∈ V(G), average clustering coefficient is:

acc(G) =
∑n

i=1 cc(xi)

n
(2)

Based on vertex degree, the denominator of cc(x) is (deg(x)
2 ). As a ratio, clustering coefficient

has a maximum of 1 and a minimum of 0. Bipartite graphs have acc(G) = 0 as they are triangle free;
while Kn with n > 2 have cc(x) = acc(G) = 1. Since K1 is the unit for the lexicographic product,
acc(K1 ◦ G) = acc(G ◦ K1) = acc(G). In this note, we interchange the use of “K3 subgraph" with
“triangle". For additional information regarding clustering coefficient measures, see Newman [12].

3. Preliminaries

This section covers two topics: vertex degree and K3 subgraph inclusion structure of the product
graph vertices. Both of these topics are essential to the next section that discusses the two product
graph clustering coefficient measures.

3.1. Vertex Degree

The denominator of cc((g, h)) depends on the degree of a particular (g, h) in G ◦ H where
deg(g, h) = deg(hH) + deg(gG)(nH) for any (g, h).

3.2. Vertex Inclusion in Triangle Subgraph Structure

This note has much focus on determining the triangle inclusion structure with respect to any
vertex in a lexicographic product graph. Let k3(x) be the K3 inclusion number of a vertex x ∈ V(G)

where k3(x) is defined as the total number of K3 subgraphs in G that include x.
Let n1 and n2 be two graph orders that may, or may not, be equal. Given two complete graphs

Kn, we know that Kn1 ◦ Kn2 produces the complete graph Kn1n2 where the triangle structure is already
known. As empty graph Dn has no edges, then it follows that Dn1 ◦ Dn2 also has no K3 subgraphs.

Figure 2 displays, on the left, the incident edges for only vertex 11 in G ◦ H where G is in gray and
disconnected H is in solid. As shown in this figure, the concept of the four K3 subgraph partitions is
utilized in the proof of Theorem 1. Dotted edges represent spider edges in N(11) while dashed edges
are spider edges for vertex 11.
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33 G ◦ H for vertex 11 only:
• {g, g′} ∈ E(G) dashed,
• g = g′ and {h, h′} ∈ E(H) solid.
• dotted edges: generated by N(11).
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Figure 2. G ◦ H with four K3 subgraph partition examples for only vertex 11.

In Figure 2, there are four edge partitions. The partition in the upper right reflects K3 subgraphs
formed from a single H′ edge and two of 11’s spider edges. The lower left partition shows the triangle
in H11 formed from two H11 edges and one H11 edge from N(11). This K3 is not included in any of
the other partitions. The bottom middle partition shows K3 subgraphs formed from one H11 edge,
one 11 spider edge and one spider edge from N(11). For greater clarity, this partition only displays
two vertices in N(11). Notice that as H is disconnected, spider edges from vertices 03 and 33 map
to 10; but an edge from 11 to 10 does not exist so there is no triangle here. Lastly, the bottom right
partition displays triangles that contain a single 11 spider edge and two spider edges for 20 ∈ N(11).
As mentioned in the previous paragraph, the proof of Theorem 1 refers to this figure; thus providing
additional explanation.

Theorem 1. Let G and H be connected simple graphs. Then the number of K3 subgraphs in G ◦ H that include
specific vertex (g, h) is:

k3(g, h) = deg(gG)
(

mH + deg(hH) · nH

)
+ k3(hH) + k3(gG) · (n2

H) (3)

Proof. Suppose G ◦ H has finite and simple factor graphs G and H. Let (g, h) be any vertex in G ◦ H.
There exist three types of edges with respect to (g, h): the set of H layer edges (H′ edges plus H(g,h)

edges incident to (g, h)), the set of spider edges incident to (g, h) and the spider edges of vertices
in N((g, h)) that are not incident to (g, h) but are incident to other members of N((g, h)). After
addressing disconnected factor graphs, we divide this proof into sections based on K3 subgraph
partitions determined by the three edge types as shown in Figure 2.

Given a disconnected G ◦ H, k3((g, h)) is exclusive to any particular (g, h), whether G ◦ H is
connected or not. In other words, k3((g, h)) is relative to each vertex in each connected component. If
H is disconnected, then the number of possible triangles in which (g, h) is located is reduced by the
absence of an edge, or edges, in each H layer. This is similar for a disconnected G that generates a
disconnected G ◦ H.

(1) One H′ edge, and two (g, h) spider edges:
As operator {g, g′} ∈ E(G) generates edges between adjacent H layers for any (g, h), follow a

spider edge s of (g, h) to a neighbor incident to an edge e in H′. Then there exists another neighbor of
(g, h) incident to e that is incident to another spider edge s′ of (g, h). Denote this path by these edges.
There are deg(gG) number of (g, h)’s neighbors; and for these neighbors, one can find deg(gG) · mH
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number of distinct (s, e, s′) paths in this partition. This gives deg(gG) · mH of this triangle type that
contain (g, h).

(2) Two H(g,h) edges and one H(g,h) edge from N((g, h)):
For (g, h) in the product graph, let hH be the vertex in H that is in (g, h); and suppose that hH

shares a triangle in H with vertices y and z. Then (g, h) shares a triangle in G ◦ H with (g, y) and
(g, z). In other words, (g, h), (g, y) and (g, z) are all in the same H(g,h) layer; and they are contained in
a K3 subgraph in that layer. The vertex set {(g, h), (g, y), (g, z)} triangle consists of two H(g,h) edges
incident to (g, h) and the H(g,h) edge {(g, y), (g, z)}. Thus this triangle is not counted by the first set of
partitions. This holds for any number of triangles in H that contain hH , and k3(hH) counts all of them
by its definition.

(3) One H(g,h) edge, one (g, h) spider edge, one N((g, h)) spider edge:

For (g, h), let y be a neighbor of (g, h) in H(g,h). For all vertices z in N((g, h)) that are also adjacent
to y due to operator {g, g′} ∈ E(G), there exist ((g, h), y, z, (g, h)) paths. As these paths involve one
H(g,h) edge, then the number of these paths for each such neighbor depends on deg(hH) and on nH .
The total number of these triangles is determined by deg(gG) resulting in deg(gG) · deg(hH) · nH of
these K3 subgraphs that distinctly include (g, h).

(4) Two (g, h) spider edges and one N((g, h)) spider edge:
Now let gG, y and z be vertices in G where set {gG, y, z} forms a triangle in G and gG is in (g, h).

Then there exists a K3 subgraph in G ◦ H that contains vertices (g, h), (y, h) and (z, h). Thus, vertex
(g, h) has spider edges to not only (y, h) and (z, h) but also to all vertices in layers Hy and Hz. For any
(g, h) spider edge to a neighbor in Hy, that neighbor has a spider edge to a vertex in Hz that is adjacent
to (g, h). Hence, a path exists for each vertex in Hz. Each path traces a K3 subgraph formed from
two (g, h) spider edges plus one (z, hz) spider edge to (y, hy) so all H layer edges are excluded. There
are nH number of (z, hz) vertices, each of which has nH number of spider edges to the vertices in Hy,
and each is distinct from the others and distinct from the (g, h) to (z, hz) spider edge. As all previous
counts contained at least one H layer edge, these n2

H number of triangles are not previously counted
by the other terms in equation 3. For a specific vertex gG in G, if gG is in more than one triangle in G,
then k3(gG) · (n2

H) in equation (3) counts the additional triangles in the product graph.
Concerning any vertex (g, h) ∈ V(G ◦ H), there are deg(gG) · mH number of H′ edges in triangles

with (g, h) that are counted in partition (1). Vertex (g, h) has deg(g, h) = deg(hH) + deg(gG)(nH)

incident spider edges, all of which are counted in partitions (1), (3) and (4). There are deg(gG) ·
deg(hH) · nH neighbors of (g, h), all of whose spider edges to other vertices in N((g, h)) are counted.
The number of factor graph triangles that include gG and hH are counted. If an edge e has been missed,
then e must be in a G layer but not in a triangle in that layer, all of which are counted by equation (3).

Therefore, k3(g, h) = deg(gG)
(

mH + deg(hH) · nH

)
+ k3(hH) + k3(gG) · (n2

H). ■

4. Clustering Coefficient for Lexicographic Product

We now address the clustering measures for G ◦ H. Equation (4) gives the clustering coefficient
for (g, h) while equation (5) presents the acc(G ◦ H) utilizing vertex partitions.

Consider K1 that has average clustering coefficient of zero. As K1 is the unit for the lexicographic
product, then for any Kn, product K1 ◦ Kn (or Kn ◦ K1 due to commutativity of Kn1 ◦ Kn2 ) results in Kn.
This produces the vertex clustering coefficient and average clustering coefficient of Kn. When n = 2,
K2 = P2 which has acc(P2) = 0. Thus acc(K1 ◦ K2) = acc(K2) = 0.

For n1, n2 ≥ 3, allowing both equality and inequality of n1 and n2, it is a fact that all Kn1 ◦ Kn2

result in Kn1n2 . Thus acc(Kn1 ◦ Kn2) = acc(Kn1n2) = 1 when n1, n2 ≥ 3. However, take note that K2 ◦ K2

produces K4. Although acc(K2) = 0, this product results in K4 with acc(K4) = 1. In fact, for any
K2 ◦ Kn ∼= Kn ◦ K2 where n ≥ 2, even though acc(K2) = 0, acc(K2 ◦ Kn) = 1.

Now contemplate Dn1 , the graph of n1 isolated vertices, and its lexicographic product with Dn2 ,
where equality of the orders is permitted. As no edges exist, the definition of lexicographic product
fails to generate edges in Dn1 ◦ Dn2 . Hence, acc(Dn1 ◦ Dn2) = 0. Also note that K1 = D1.
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The proof of the following theorem is found in the definition of clustering coefficient given by
equation (1) and the proof of equation (3), plus the fact that the maximum K3 inclusion number is
(deg(g,h)

2 ).

Theorem 2. Suppose G and H are both simple graphs. Then the vertex clustering coefficient cc(g, h) of any
vertex (g, h) in G ◦ H is:

cc(g, h) =
deg(gG)

(
mH + deg(hH) · nH

)
+ k3(hH) + k3(gG) · (n2

H)

(deg(g,h)
2 )

. (4)

■
Based on the definition of the average clustering coefficient, we give Theorem 3 without proof.

Theorem 3. For finite and simple graphs G and H, the average clustering coefficient of G ◦ H with order nGnH
over all vertices (g, h) is:

acc(G ◦ H) =
∑n1n2

i=1 cc((g, h)i)

nGnH
. (5)

■
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