
Article Not peer-reviewed version

Strategic Engineering: Mastering the Art

of Proactive Problem Solving and

Database Security in Software

Development

Andrii Kolobych *

Posted Date: 23 May 2024

doi: 10.20944/preprints202405.1521.v1

Keywords: software engineering; stakeholder engagement; problem solving; best practices; database

security; kubernetes; continuous improvement; professional practices

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3586780

Article

Strategic Engineering: Mastering the Art of Proactive

Problem Solving and Database Security in Software

Development

Andrii Kolobych

Senior Cloud Software Engineer at Apple; a.kolobych@gmail.com

Abstract: In the intricate landscape of software development, the distinction between average and exceptional

outcomes often hinges on the approach taken by the engineers involved. This paper explores the core aspects

that characterize responsible and professional software engineering, emphasizing the importance of

stakeholder engagement, innovative problem-solving, and adherence to standards and best practices. Through

detailed real-life examples, we illustrate how professional engineers ensure the creation of robust, efficient, and

adaptable software solutions. Additionally, the paper delves into advanced strategies for enhancing database

security, including the implementation of Sealed Secrets in Kubernetes environments, continuous

improvement, and future enhancements. The goal is to provide a comprehensive understanding of professional

software engineering practices and their impact on delivering superior value to projects and organizations.

Keywords: software engineering; stakeholder engagement; problem solving; best practices; database security;

kubernetes; continuous improvement; professional practices

1. Introduction

In the intricate landscape of software development, the distinction between average and

exceptional outcomes often hinges on the approach taken by the engineers involved. Professional

software engineers set themselves apart not merely through their technical prowess but also through

their strategic engagement with clients, innovative problem-solving capabilities, and their rigorous

adherence to industry standards and quality assurance practices. These professionals understand

that successful software development is a holistic process that aligns closely with business needs,

adapts to technological advancements, and maintains a strong focus on the end user’s requirements.

This article delves into the core aspects that characterize responsible and professional software

engineering, emphasizing the importance of stakeholder engagement, problem-solving and

innovation, and adherence to standards and best practices. Through a detailed exploration of these

areas, I illustrate with real-life examples how professional engineers ensure the creation of robust,

efficient, and adaptable software solutions that are not only technically sound but also strategically

aligned with business objectives. The aim is to provide a clearer understanding of what sets

professional software engineers apart from their counterparts and how they deliver superior value

to projects and organizations.

2. Key Aspects of Professional and Responsible Software Engineering

Professional software engineers stand out not only by mastering technical domains but also by

demonstrating a deep commitment to understanding and fulfilling business objectives through

strategic client engagement, innovative problem-solving, and meticulous adherence to best

practices and quality standards.

Based on my research, I can emphasize the most important aspects engineers must keep in

mind to provide high-quality solutions.

2.1. Client and Stakeholder Engagement

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 doi:10.20944/preprints202405.1521.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202405.1521.v1
http://creativecommons.org/licenses/by/4.0/

 2

Effective software solutions begin with a deep understanding of the business needs, which is

why professional software engineers prioritize client and stakeholder engagement. This phase is

critical for ensuring that the developed software aligns perfectly with the intended goals and

requirements.

● Requirement Analysis: By actively engaging with clients and stakeholders, engineers can

capture detailed and precise requirements. This collaborative approach ensures that all

functionalities are aligned with business objectives, ultimately resulting in software that truly

meets user needs.

● Communication: Clear, consistent, and open communication channels between engineers,

clients, and stakeholders are essential for aligning project objectives with business strategies.

Regular updates and feedback loops help in adjusting project trajectories and ensuring that all

parties remain in sync throughout the development process.

2.2. Problem Solving and Innovation

In the rapidly evolving tech landscape, the ability to innovate and effectively solve problems is

what sets professional engineers apart.

● Analytical Thinking: Engineers use advanced analytical thinking to dissect complex problems

into manageable components, allowing for more efficient and effective solutions. This skill is

particularly crucial in troubleshooting and optimizing systems to meet unique business

challenges [Mar08].

● Innovation: Professional engineers are continually on the lookout for innovative solutions and

technologies that can drive business value. Whether it’s adopting new software patterns or

integrating emerging technologies, innovation is key to maintaining competitive advantage

and adapting to market changes [Fow02].

2.3. Adherence to Standards and Best Practices

Adopting these standards, patterns, and practices ensures that software is well-designed, easy

to maintain, and scalable, thereby enhancing the overall quality and longevity of software products.

● Coding Standards: Coding standards ensure that code is uniform and predictable, making it

easier to maintain and debug. They help new developers understand the existing codebase

quickly.

○ Examples: PEP 8 for Python [Pyt23], Google Java Style Guide [Goo23], ESLint for

JavaScript [Esl23], RuboCop for Ruby [Rub23].

● Design Patterns: Design patterns provide solutions to common software design problems,

making code more modular and reusable. They also facilitate communication among

developers by providing a common vocabulary.

○ Examples: Singleton ensures a single instance of a class, Observer facilitates

communication between objects, Factory Method enables flexibility in object creation,

Strategy allows for easy swapping of algorithms [GHJV94].

● Architectural Patterns: Architectural patterns shape the system architecture, promoting

scalability and facilitating the management of complexities in large systems.

○ Examples: MVC separates concerns within the application, making it clean and

manageable; Microservices allow independent scaling and development of application

components; Event-Driven Architecture supports asynchronous processing and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 doi:10.20944/preprints202405.1521.v1

https://doi.org/10.20944/preprints202405.1521.v1

 3

responsiveness; Layered Architecture defines a clear structure that simplifies

development and maintenance [Fow02].

● Code Best Practices: Code best practices enhance code quality and maintainability. They

prevent common coding pitfalls and foster the development of reliable and robust software.

○ Examples: SOLID principles guide object-oriented design for more robust and

maintainable code; KISS principle advocates for simplicity, reducing complexity; DRY

principle minimizes code duplication, enhancing maintainability; YAGNI prevents over-

engineering by focusing on necessary functionalities [Mar08].

● Security Practices: Integrating security into the software development lifecycle to prevent

vulnerabilities and protect data.

○ Examples: Secure coding standards, threat modeling, and using security-focused design

patterns [OWA20], [Sch15].

● Performance Optimization: Performance optimization practices are crucial for creating

efficient and scalable software systems.

○ Examples: Profiling and benchmarking tools, optimization techniques for databases, and

efficient use of resources [Kim16].

● Code Review and Pair Programming: Peer review processes like code reviews and pair

programming improve code quality and foster collaborative team environments.

○ Examples: Pull request reviews, interactive code review tools, and best practices for

effective pair programming sessions [Bec02].

● Technical Debt Management: Addressing the impact of technical debt on project health and

strategies for managing it effectively to ensure long-term project sustainability.

○ Examples: Refactoring, prioritizing debt reduction in project planning, and using code

quality metrics to measure and manage technical debt [Som11].

● User-Centric Design: Emphasizing the role of user experience (UX) design in software

engineering to ensure the software meets user expectations and needs.

○ Examples: User stories, usability testing, and UX design principles [Pre14].

● Sustainability and Ethics in Software Engineering: Discussing ethical considerations and the

pursuit of environmentally sustainable practices within software engineering.

○ Examples: Ethical algorithms, reducing energy consumption through efficient coding, and

compliance with GDPR and other regulations [Sch15].

2.4. Quality Assurance

Quality assurance is integrated throughout the software development process, ensuring that

the final product is robust and dependable.

● Testing: Comprehensive testing strategies are employed to detect and resolve issues early,

reducing the risk of costly post-deployment fixes. This includes a variety of tests from unit

testing to system integration testing, each tailored to ensure that every component functions as

expected under varied conditions [Mye11].

● Documentation: Detailed documentation plays a critical role in the sustainability of software

systems. It provides future maintainers with the necessary information to understand system

functionalities and architectures without requiring extensive briefings, thus facilitating

smoother transitions and updates [Bec02].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 doi:10.20944/preprints202405.1521.v1

https://doi.org/10.20944/preprints202405.1521.v1

 4

● Continuous Integration/Continuous Deployment (CI/CD): CI/CD practices are crucial for

maintaining a high pace of development while ensuring the stability of the software. These

practices allow for the quick integration of changes and continuous delivery of enhancements,

keeping the software aligned with ongoing business needs without disrupting existing

operations [Kim16].

3. Real-World Example: Proactive Approach

I joined a team as a cloud software engineer tasked with migrating our on-premises

infrastructure to the cloud. The project had been actively developed for nearly two decades. Early

on, I observed that the team had long neglected best practices, leading to significant technical debt

and challenges with system availability and resilience. The primary focus had been on maintaining

operational stability and addressing critical issues as they arose.

Among several pressing concerns, the absence of database security was particularly alarming:

● Exposure of Sensitive Credentials: Database user credentials, including those for the root

user, had been exposed in over seven repositories.

● Shared Database Access: More than 30 applications related to our product used a single

database user account that lacked password protection.

● Common Access for Engineers: All engineers accessed this unsecured account for their daily

work needs.

● Wide Access: The same unsecured database account was accessible to our partners’ products

and projects, providing them direct database access.

● Hardcoded Credentials: Some partners had access to a Python package with hardcoded

database credentials, uploaded to the PyPI repository, which they used to connect to our

database.

During a team meeting and a subsequent meeting with my manager, I outlined the risks

associated with these security lapses:

1. Data Breaches: The absence of password protection and the exposure of credentials

significantly increase the risk of unauthorized access and potential data theft [OWA20].

2. Compliance Violations: Inadequate security measures could lead to violations of regulatory

requirements such as GDPR, HIPAA, or PCI DSS, resulting in legal and financial repercussions

[Sch15].

3. Lack of Accountability: Without individual user accounts or tracking mechanisms, it’s

challenging to trace actions back to specific users, complicating the assignment of

responsibility for changes or breaches [Mar08].

4. Reputation Damage: Security incidents can harm the company’s reputation, leading to a loss

of client trust and potential business opportunities [Pre14].

The primary reason for not prioritizing these security issues was a lack of awareness among

engineers and stakeholders about the risks. To address this, I proposed the following initiatives:

1. Education: Conduct training sessions to educate the team on database security best practices,

highlighting the importance of protecting sensitive information [OWA20].

2. Policy Development: Develop and enforce security policies, including password protection

and regular audits, to ensure compliance and accountability [Sch15].

3. Segregation of Duties: Implement role-based access controls to limit database access based on

job responsibilities, reducing the risk of unauthorized actions [Kim16].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 doi:10.20944/preprints202405.1521.v1

https://doi.org/10.20944/preprints202405.1521.v1

 5

4. Monitoring: Set up monitoring and logging mechanisms to track database access and actions,

providing an audit trail for accountability and forensic analysis [Bur19].

The implementation of these initiatives significantly improved the security posture of our

database systems, reducing risks and enhancing our overall operational resilience.

4. Continuous Improvement and Future Enhancements

Professional software engineering is not a one-time effort but an ongoing process of continuous

improvement. Engineers must stay abreast of technological advancements, industry trends, and

emerging best practices to ensure that their skills and solutions remain relevant and effective. This

involves regular training, participation in professional communities, and a commitment to lifelong

learning.

5. Conclusions

Professional and responsible software engineering is a multifaceted discipline that goes beyond

mere technical expertise. It encompasses strategic client engagement, innovative problem-solving,

and strict adherence to standards and best practices. By embracing these principles, software

engineers can deliver solutions that are not only technically sound but also aligned with business

goals and adaptable to future needs. The emphasis on continuous improvement and staying

updated with industry trends ensures that these professionals remain at the forefront of

technological advancements, consistently delivering exceptional value to their projects and

organizations.

References

1. Beck, K. Test Driven Development: By Example. Addison-Wesley, 2002. pp. 45-67.

2. Burns, B., Beda, J., & Hightower, K. Kubernetes: Up and Running: Dive into the Future of Infrastructure.

O'Reilly Media, 2019. pp. 89-112.

3. Fowler, M. Patterns of Enterprise Application Architecture. Addison-Wesley Professional, 2002. pp. 23-47.

4. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley Professional, 1994. pp. 12-34.

5. Kim, G., Humble, J., Debois, P., & Willis, J. The DevOps Handbook: How to Create World-Class Agility,

Reliability, & Security in Technology Organizations. IT Revolution Press, 2016. pp. 103-126.

6. Martin, R. C. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall, 2008. pp. 56-78.

7. Myers, G. J., Sandler, C., & Badgett, T. The Art of Software Testing. John Wiley & Sons, 2011. pp. 143-167.

8. OWASP Foundation. OWASP Top Ten, 2020. Retrieved from https://owasp.org/www-project-top-ten/

9. PEP 8 – Style Guide for Python Code. Python Software Foundation. Retrieved from

https://www.python.org/dev/peps/pep-0008/

10. Pressman, R. S. Software Engineering: A Practitioner's Approach (8th Edition). McGraw-Hill, 2014. pp. 233-

256.

11. "Bitnami Sealed Secrets." GitHub, Bitnami-labs. Retrieved from https://github.com/bitnami-labs/sealed-

secrets

12. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C. Wiley, 2015. pp. 123-145.

13. Sommerville, I. Software Engineering (9th Edition). Addison-Wesley, 2011. pp. 345-367.

14. "Google Java Style Guide." Retrieved from https://google.github.io/styleguide/javaguide.html

15. "ESLint." Retrieved from https://eslint.org/

16. "RuboCop." Retrieved from https://rubocop.org/

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of

the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 May 2024 doi:10.20944/preprints202405.1521.v1

https://doi.org/10.20944/preprints202405.1521.v1

