Submitted:
28 May 2024
Posted:
29 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Determination of Pb
1.1.1. Simultaneous Determination of Pb and Cd
1.1.2. Simultaneous Determination of Pb, Cd and Hg
1.1.3. Simultaneous Determination of Pb and Cu
1.1.4. Simultaneous Determination of Pb, Cd and Cu
1.1.5. Simultaneous Determination of Pb, Cd, Cu and Hg
1.1.6. Simultaneous Determination of Pb, Cd and Zn
1.1.7. Simultaneous Determination of Pb, Cu and Zn
1.1.8. Simultaneous Determination of Pb, Cd, Cu and Zn
1.1.9. Simultaneous Determination of Pb and Other Heavy Metals
1.1.10. Simultaneous Determination of Cd, Cu and Zn
1.1.11. Simultaneous Determination of Cd and Cu
1.2. Determination of Cd
1.3. Determination of Cu
1.4. Determination of Zn
2. Conclusions
References
- Ali, H.; Khan, E. What are heavy metals? Long-standing controversy over the scientific use of the term 'heavy metals’ – proposal of a comprehensive. Toxicol. Environ. Chem. 2018, 100, 6–19. [Google Scholar] [CrossRef]
- Stankovic, S.; Kalaba, P.; Stankovic, A.R. Biota as toxic metal indicators. Environ. Chem. Lett. 2014, 12, 63–84. [Google Scholar] [CrossRef]
- Kissinger; Heineman, W.R.1996-01-23). Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Revised and Expanded (2 ed.).
- A. J. Bard, L. R. Faulkner and H. S. White, Electrochemical Methods: Fundamentals and Applications, 3th ed., John Wiley amp; Sons, 2022,.
- Oriakhi, C.O.; Electrochemistry, F.O. . in Chemistry in Quantitative Language: Fundamentals of General Chemistry Calculations, New York, Oxford Academic, 2020, pp. 406–431. [CrossRef]
- Hawkes, S.J. «What is a "Heavy Metal"?». Journal of Chemical Education. 1997, vol. 74.
- Duffus, J.H. «Heavy Metals"—A Meaningless Term? ». Pure and Applied Chemistry. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- J. Wang, Analytical Electrochemistry, 2th ed., Wiley-VCH, 2000. [CrossRef]
- Savéant, J.-M. J: Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry, Hoboken, New Jersey: John Wiley amp; Sons, 2006.
- Kasuno, M.; Osuga, H.; Shina, K.; Yamazaki, T. , «Coulometric Anodic Stripping Voltammetry of Lead at Copper Column Electrode. Electroanalysis 2021, 33, 1502–1509. [Google Scholar] [CrossRef]
- Huseinov, A.; Hoque, A.; Ruble, K.A.; Dee, B.J.; Alvarez, N.T. Reagentless Dissolution and Quantification of Particulate Lead in Tap Water via Membrane Electrolysis. Anal. Chem. 2023, 95, 9297–9303. [Google Scholar] [CrossRef] [PubMed]
- Pengou, M.; Ngassa, G.B.; Boutianala, M.; Tchakouté, H.K.; Nanseu-Njiki, C.P.; Ngameni, E. Geopolymer cement–modified carbon paste electrode: application to electroanalysis of traces of lead(II) ions in aqueous solution. J. Solid State Electrochem. 2021, 25, 1183–1195. [Google Scholar] [CrossRef]
- Rahm, C.E.; Torres-Canas, F.; Gupta, P.; Poulin, P.; Alvarez, N.T. Inkjet Printed Multi-walled Carbon Nanotube Sensor for the Detection of Lead in Drinking Water. Electroanalysis 2020, 32, 1533–1545. [Google Scholar] [CrossRef]
- Chen, X.; Lu, K.; Lin, D.; Li, Y.; Yin, S.; Zhang, Z.; Tang, M.; Chen, G. Hierarchical Porous Tubular Biochar Based Sensor for Detection of Trace Lead (II). Electroanalysis 2021, 33, 473–482. [Google Scholar] [CrossRef]
- Zhong, J.; Zhao, H.; Cheng, Y.; Feng, T.; Lan, M.; Zuo, S. A high-performance electrochemical sensor for the determination of Pb(II) based on conductive dopamine polymer doped polypyrrole hydrogel. J. Electroanal. Chem. 2021, 902, 115815. [Google Scholar] [CrossRef]
- Sarvestani, M.R.J.; Madrakian, T.; Afkhami, A. Ultra-trace levels voltammetric determination of Pb2+ in the presence of Bi3+ at food samples by a Fe3O4@Schiff base Network1 modified glassy carbon electrode. Talanta 2022, 250, 123716. [Google Scholar] [CrossRef]
- Wang, C.-T.; Chen, W.-S.; Fan, K.-H.; Chiang, C.-Y.; Wu, C.-W. Bismuth and nitrogen co-doped graphene oxide for efficient electrochemical sensing of Pb(II) by synergistic dual-site interaction. J. Solid State Electrochem. 2022, 26, 2699–2711. [Google Scholar] [CrossRef]
- Wang, C.; Niu, Q.; Liu, D.; Dong, X.; You, T. Electrochemical sensor based on Bi/Bi2O3 doped porous carbon composite derived from Bi-MOFs for Pb2+ sensitive detection. Talanta 2023, 258, 124281. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, Y.; Ge, H.; Zhang, J.; Yang, P.; Wu, Z. Facile fabrication of 2D MXene loading Co-doped Prussian blue nanoparticles for ultrasensitive electrochemical assay of trace lead ion. J. Electroanal. Chem. 2023, 935, 117320. [Google Scholar] [CrossRef]
- Jaber, L.; Elgamouz, A.; Kawde, A.-N. An insight to the filtration mechanism of Pb(II) at the surface of a clay ceramic membrane through its preconcentration at the surface of a graphite/clay composite working electrode. Arab. J. Chem. 2022, 15, 104303. [Google Scholar] [CrossRef]
- Barros, T.M.; de Araújo, D.M.; de Melo, L.A.T.; Martínez-Huitle, C.A.; Vocciante, M.; Ferro, S.; Santos, V.E.D. An Electroanalytical Solution for the Determination of Pb2+ in Progressive Hair Dyes Using the Cork–Graphite Sensor. Sensors 2022, 22, 1466. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chang, C.; Xue, Q.; Wang, R.; Chen, L.; Liu, Z. Highly efficient detection of Pb(II) ion in water by polypyrrole and metal-organic frame modify glassy carbon electrode. Diam. Relat. Mater. 2022, 130, 109477. [Google Scholar] [CrossRef]
- Xu, C.; Liu, J.; Bi, Y.; Ma, C.; Bai, J.; Hu, Z.; Zhou, M. Biomass derived worm-like nitrogen-doped-carbon framework for trace determination of toxic heavy metal lead (II). Anal. Chim. Acta 2020, 1116, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Caetano, M.; Santos, M.M.C.D.; Rosa, N.; Carvalho, I.; Rodríguez, J.G.; Belzunce-Segarra, M.J.; Menchaca, I.; Larreta, J.; Sanz, M.R.; Millán-Gabet, V.; Gonzalez, J.-L.; Amouroux, I.; Guesdon, S.; Menet-Nédélec, F.; White, B.; Regan, F.; Nolan, M.; McHugh, B.; Bersuder, P.; Bolam, T.; Robinson, C.D.; Fones, G.R.; Zhang, H.; Schintu, M.; Montero, N.; Marras, B. Metals concentrations in transitional and coastal waters by ICPMS and voltammetry analysis of spot samples and passive samplers (DGT). Mar. Pollut. Bull. 2022, 179, 113715. [Google Scholar] [CrossRef] [PubMed]
- Drwal, K.; Górska, Z.; Bończak, P.; Krasnodębska-Ostręga, B. Voltammetric Analysis of Cadmium and Lead (Undesirable Elements) in Brine, Supported by Solid Phase Extraction – the Right Solution of the Analytical Challenge. Electroanalysis 2023, 35. [Google Scholar] [CrossRef]
- Obrez, D.; Kolar, M.; Tasić, N.; Hočevar, S.B. Study of different types of copper electrodes for anodic stripping voltammetric detection of trace metal ions. Electrochim. Acta 2023, 457, 142480. [Google Scholar] [CrossRef]
- de Oliveira, C.; Maciel, J.V.; Christ-Ribeiro, A.; Guarda, A.; Dias, D. A Voltammetric Approach for the Simultaneous Determination of Cd and Pb in Water Applying Carbon Paste Electrode Modified with Bismuth Film. J. Anal. Chem. 2022, 77, 369–375. [Google Scholar] [CrossRef]
- Colozza, N.; Cacciotti, I.; Moscone, D.; Arduini, F.; Humidity, E.O. , Temperature and Bismuth Electrodeposition on Electroanalytical Performances of Nafion-coated Printed Electrodes for Cd2+ and Pb2+ Detection. Electroanalysis 2020, 32, 345–357. [Google Scholar] [CrossRef]
- Majidian, M.; Raoof, J.B.; Hosseini, S.R.; Ojani, R.; Barek, J.; Fischer, J. Novel Type of Carbon Nanotube Paste Electrode Modified by Sb2O3 for Square Wave Anodic Stripping Voltammetric Determination of Cd2+ and Pb2+. Electroanalysis 2020, 32, 2260–2265. [Google Scholar] [CrossRef]
- Mazzaracchio, V.; Tshwenya, L.; Moscone, D.; Arduini, F.; Arotiba, O.A. A Poly(Propylene Imine) Dendrimer and Carbon Black Modified Flexible Screen Printed Electrochemical Sensor for Lead and Cadmium Co-detection. Electroanalysis 2020, 32, 3009–3016. [Google Scholar] [CrossRef]
- Zhao, G.; Sedki, M.; Ma, S.; Villarreal, C.; Mulchandani, A.; Jassby, D. Bismuth subcarbonate decorated reduced graphene oxide nanocomposite for the sensitive stripping voltammetry analysis of Pb(II) and Cd(II) in water. Sensors (Switzerland) 2020, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Seifi, A.; Afkhami, A.; Madrakian, T. Highly sensitive and simultaneous electrochemical determination of lead and cadmium ions by poly(thionine)/MWCNTs-modified glassy carbon electrode in the presence of bismuth ions. J. Appl. Electrochem. 2022, 52, 1513–1523. [Google Scholar] [CrossRef]
- Zhang, X.; An, D.; Bi, Z.; Shan, W.; Zhu, B.; Zhou, L.; Yu, L.; Zhang, H.; Xia, S.; Qiu, M. Ti3C2-MXene@N-doped carbon heterostructure-based electrochemical sensor for simultaneous detection of heavy metals. J. Electroanal. Chem. 2022, 911, 116239. [Google Scholar] [CrossRef]
- Shishov, A.; Volodina, N.; Semenova, E.; Navolotskaya, D.; Ermakov, S.; Bulatov, A. Reversed-phase dispersive liquid-liquid microextraction based on decomposition of deep eutectic solvent for the determination of lead and cadmium in vegetable oil. Food Chem. 2022, 373, 131456. [Google Scholar] [CrossRef] [PubMed]
- Wang; Wu, X. ; Sun, J.; Wang, C.; Zhu, G.; Bai, L.-P.; Jiang, Z.-H.; Zhang, W. Stripping voltammetric determination of cadmium and lead ions based on a bismuth oxide surface-decorated nanoporous bismuth electrode. Electrochem. Commun. 2022, 136, 107233. [CrossRef]
- Gayathri, J.; Sivalingam, S.; Narayanan, S.S. , «Novel synthesized SABA/MWCNTs composite to detect Cd2+ and Pb2+ ions in real samples of rice water, tobacco extract and raw milk. J. Mol. Liq. 2023, 387, 122586. [Google Scholar] [CrossRef]
- Ong, C.S.; Zaharum, N.H.B.; Nor, N.M.; Ahmad, A.L.; Ng, Q.H., K. Abdul Razak and S. C. Low, «Morphology and atomic configuration control of heavy metal attraction modified layer on screen-printed electrode to enhance electrochemical sensing performance. J. Electroanal. Chem. 2023, 939, 117477. [Google Scholar] [CrossRef]
- Tapia, M.A.; Pérez-Ràfols, C.; Gusmão, R.; Serrano, N.; Sofer, Z.; Díaz-Cruz, J.M. Enhanced voltammetric determination of metal ions by using a bismuthene-modified screen-printed electrode. Electrochim. Acta 2020, 362, 137144. [Google Scholar] [CrossRef]
- Lalmalsawmi, J. ; Sarikokba; Tiwari, D. ; Kim, D.-J. Simultaneous detection of Cd2+ and Pb2+ by differential pulse anodic stripping voltammetry: Use of highly efficient novel Ag0(NPs) decorated silane grafted bentonite material. J. Electroanal. Chem. 2022, 918, 116490. [Google Scholar] [CrossRef]
- Liuzhu, Z.; Sekar, S.; Chen, J.; Lee, S.; Kim, D.Y.; Manikandan, R. A polyrutin/AgNPs coated GCE for simultaneous anodic stripping voltammetric determination of Pb(II) and Cd(II)ions in environmental samples. Colloids Surf. A: Physicochem. Eng. 2022, 648, 129082. [Google Scholar] [CrossRef]
- Poudel, A.; Sunder, G.S.S.; Rohanifar, A.; Adhikari, S. Electrochemical determination of Pb2+ and Cd2+ with a poly(pyrrole-1-carboxylic acid) modified electrode. J. Electroanal. Chem. 2022, 911, 116221. [Google Scholar] [CrossRef]
- Muna, G.W.; Barrera, E.; Robinson, L.; Majeed, H.; Jones, K.; Damschroder, A.; Vila, A. , «Electroanalytical performance of a Bismuth/Antimony composite glassy carbon electrode in detecting lead and cadmium. Electroanalysis 2023, 35, 202300019. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Park, H.; Jo, W.; Lee, W.; Park, J. Detection of Heavy Metals in Water Environment Using Nafion-Blanketed Bismuth Nanoplates. ACS Sustain. Chem. Eng. 2023, 11, 6844–6855. [Google Scholar] [CrossRef]
- Tapia, M.A.; Pérez-Ràfols, C.; Oliveira, F.M.; Gusmão, R.; Serrano, N.; Sofer, Z.; Díaz-Cruz, J.M. Antimonene-Modified Screen-Printed Carbon Nanofibers Electrode for Enhanced Electroanalytical Response of Metal Ions. Chemosensors 2023, 11, 11040219. [Google Scholar] [CrossRef]
- Huo, R.; Liu, L.; Chanthasa, C.; Okazaki, T.; Sazawa, K.; Sugawara, K.; Kuramitz, H. Microdroplet anodic stripping voltammetry at the in situ preparing antimony-modified rotating disk electrode for determination of Cd(II) and Pb(II). Electroanalysis 2023, 35, 202200528. [Google Scholar] [CrossRef]
- Karazan, Z.M.; Roushani, M. Selective determination of cadmium and lead ions in different food samples by poly (riboflavin)/carbon black-modified glassy carbon electrode. Food Chem. 2023, 423, 136283. [Google Scholar] [CrossRef]
- Mendonça, M.Z.M.; de Oliveira, F.M.; Petroni, J.M.; Lucca, B.G.; da Silva, R.A.B.; Cardoso, V.L.; de Melo, E.I. Biochar from coffee husks: a green electrode modifier for sensitive determination of heavy metal ions. J. Appl. Electrochem. 2023, 53, 1461–1471. [Google Scholar] [CrossRef]
- Liu, N.; Ye, W.; Liu, G.; Zhao, G. Improving the accuracy of stripping voltammetry detection of Cd2+ and Pb2+ in the presence of Cu2+ and Zn2+ by machine learning: Understanding and inhibiting the interactive interference among multiple heavy metals. Anal. Chim. Acta 2022, 1213, 339956. [Google Scholar] [CrossRef] [PubMed]
- Baghayeri, M.; Alinezhad, H.; Fayazi, M.; Tarahomi, M.; Ghanei-Motlagh, R.; Maleki, B. A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochim. Acta, vol. 2019, 312, 80–88. [Google Scholar] [CrossRef]
- Walters, J.G.; Ahmed, S., I. M. Terrero Rodríguez and G. D. O'Neil, «Trace Analysis of Heavy Metals (Cd, Pb, Hg) Using Native and Modified 3D Printed Graphene/Poly(Lactic Acid) Composite Electrodes. Electroanalysis 2020, 32, 859–866. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Liu, F.; Zou, X.; Xu, Y.; Xu, X. A smart-phone-based electrochemical platform with programmable solid-state-microwave flow digestion for determination of heavy metals in liquid food. Food Chem. 2020, 303, 125378. [Google Scholar] [CrossRef] [PubMed]
- Djemmoe, L.G.; Njanja, E.; Tchieno, F.M.M.; Ndinteh, D.T.; Ndungu, P.G.; Tonle, I.K. Activated Hordeum vulgare L. dust as carbon paste electrode modifier for the sensitive electrochemical detection of Cd2+, Pb2+ and Hg2+ ions. Int. J. Environ. Anal. Chem. 2020, 100, 1429–1445. [Google Scholar] [CrossRef]
- AntunoviĆ, V.; TRIPKOVIĆ, T.; TomaŠeviĆ, B.; BaoŠiĆ, R.; JeliĆ, D.; LoliĆ, A. Voltammetric Determination of Lead and Copper in Wine by Modified Glassy Carbon Electrode. Anal. Sci. 2021, 37, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Magni, M.; Sironi, D.; Ferri, M.; Trasatti, S.; Campisi, S.; Gervasini, A.; Papacchini, M.; Cristiani, P. High-Content Hydroxyapatite Carbon Composites for the Electrochemical Detection of Heavy Metal Cations in Water. Chem. Electro. Chem. 2023, 10, 202201017. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Liu, T.; Li, W.; Hao, X.; Lu, Q.; Liang, X.; Liu, F.; Liu, F.; Wang, C.; Yang, C.; Zhu, H.; Lu, G. Highly sensitive detection of Pb2+ and Cu2+ based on ZIF-67/MWCNT/Nafion-modified glassy carbon electrode. Anal. Chim. Acta 2020, 1124, 166–175. [Google Scholar] [CrossRef]
- Soares, P.I.; Lima, T.M.; Nascimento, L.A.D.; Coelho, R.M.; Franco, D.L.; Pereira, A.C.; Ferreira, L.F. Co-detection of Copper and Lead in Artisanal Sugarcane Spirit Using Caffeic Acid-modified Graphite Electrodes. Electroanalysis 2023, 35, 202200302. [Google Scholar] [CrossRef]
- Hermouche, L.; Aqil, Y.; Abbi, K.; El Hamdouni, Y.; Ouanji, F.; El Hajjaji, S.; El Mahi, M.; Lotfi, E.M.; Labjar, N. Eco-friendly modified carbon paste electrode by Bigarreau Burlat kernel shells for simultaneous trace detection of cadmium, lead, and copper. Chem. Data Collect. 2021, 32, 100642. [Google Scholar] [CrossRef]
- Gupta, P.; Rahm, C.E.; Jiang, D.; Gupta, V.K.; Heineman, W.R.; Justin, G.; Alvarez, N.T. Parts per trillion detection of heavy metals in as-is tap water using carbon nanotube microelectrodes. Anal. Chim. Acta 2021, 1155, 338353. [Google Scholar] [CrossRef] [PubMed]
- Abdou, M.; Tercier-Waeber, M.-L. New insights into trace metal speciation and interaction with phytoplankton in estuarine coastal waters. Mar. Pollut. Bull. 2022, 181, 113845. [Google Scholar] [CrossRef]
- Kumara, K.S.M.; Nagaraju, D.H.; Yhobu, Z.; Kumar, H.N.N.; Budagumpi, S.; Bose, S.K.; Shivakumar, P.; Palakollu, V.N. Tuning the Surface Functionality of Fe3O4 for Sensitive and Selective Detection of Heavy Metal Ions. Sensors 2022, 22, 2022–22228895. [Google Scholar] [CrossRef]
- Belcovici, A.; Fort, C.I.; Mureşan, L.E.; Perhaiţa, I.; Borodi, G.; Turdean, G.L. Zinc oxide nanostructured platform for electrochemical detection of heavy metals. Electroanalysis 2023, 35, 202200395. [Google Scholar] [CrossRef]
- Kulpa-Koterwa, A.; Ryl, J.; Górnicka, K.; Niedziałkowski, P. New nanoadsorbent based on magnetic iron oxide containing 1,4,7,10-tetraazacyclododecane in outer chain (Fe3O4@SiO2-cyclen) for adsorption and removal of selected heavy metal ions Cd2+, Pb2+, Cu2+. J. Mol. Liq. 2022, 368, 120710. [Google Scholar] [CrossRef]
- Shen, Y.; Xue, Y.; Xia, X.; Zeng, S.; Zhang, J.; Li, K. Metallic-like boron-modified bio-carbon electrodes for simultaneous electroanalysis for Cd2+, Pb2+ and Cu2+: Theoretical insight into the role of CxBOy(H). Carbon 2023, 214, 118350. [Google Scholar] [CrossRef]
- Naseri, M.; Mohammadniaei, M.; Ghosh, K.; Sarkar, S.; Sankar, R.; Mukherjee, S.; Pal, S.; Dezfouli, E.A.; Halder, A.; Qiao, J.; Bhattacharyya, N.; Sun, Y. A Robust Electrochemical Sensor Based on Butterfly-shaped Silver Nanostructure for Concurrent Quantification of Heavy Metals in Water Samples. Electroanalysis 2023, 35, 202200114. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, W. Simultaneous electrochemical detection of multiple heavy metal ions in milk based on silica-modified magnetic nanoparticles. Food Chem. 2023, 406, 135034. [Google Scholar] [CrossRef]
- Partheni, V.; Svarnias, K.; Economou, A.; Kokkinos, C.; Fielden, P.R.; Baldock, S.J.; Goddard, N.J. Voltammetric Determination of Trace Heavy Metals by Sequential-injection Analysis at Plastic Fluidic Chips with Integrated Carbon Fiber-based Electrodes. Electroanalysis, 2021, 33, 1930–1935. [Google Scholar] [CrossRef]
- Ustabasi, G.S.; Yilmaz, I.; Ozcan, M.; Cetinkaya, E. ; Simultaneous, Selective and Highly Sensitive Voltammetric Determination of Lead, Cadmium, and Zinc via Modified Pencil Graphite Electrodes. Electroanalysis, 2022, 34, 1237–1244. [Google Scholar] [CrossRef]
- Ngoensawat, U.; Pisuchpen, T.; Sritana-anant, Y.; Rodthongkum, N.; Hoven, V.P. Conductive electrospun composite fibers based on solid-state polymerized Poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of metal ions. Talanta 2022, 241, 123253. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi-Moghaddam, H.; Amiri, M.; Javar, H.A.; Yousif, Q.A.; Salavati-Niasari, M. Green synthesis and characterization of Tb-Fe-O-Cu ceramic nanocomposite and its application in simultaneous electrochemical sensing of zinc, cadmium and lead. Arab. J. Chem. 2022, 15, 103988. [Google Scholar] [CrossRef]
- Shalaby, E.A.; Beltagi, A.M.; Hathoot, A.A.; Azzem, M.A. Simultaneous voltammetric sensing of Zn2+, Cd2+, and Pb2+ using an electrodeposited Bi-Sb nanocomposite modified carbon paste electrode. RSC Adv. 2023, 13, 7118–7128. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Dong, Y.; Bin, L.; Fan, L.; Wang, L.; Yuan, X.; Li, D.; Liu, X.; Zhao, S. Application of gold nanoparticles/polyaniline-multi-walled carbon nanotubes modified screen-printed carbon electrode for electrochemical sensing of zinc, lead, and copper. Microchem. J. 2021, 170. [Google Scholar] [CrossRef]
- Yıldız, C., D. Eskiköy Bayraktepe and Z. Yazan, «Highly sensitive direct simultaneous determination of zinc(II), cadmium(II), lead(II), and copper(II) based on in-situ-bismuth and mercury thin-film plated screen-printed carbon electrode. Monatsh. Chem. 2021, 152, 1527–1537. [Google Scholar] [CrossRef]
- Yıldız, C.; Bayraktepe, D.E.; Yazan, Z.; Önal, M. Bismuth nanoparticles decorated on Na-montmorillonite-multiwall carbon nanotube for simultaneous determination of heavy metal ions- electrochemical methods. J. Electroanal. Chem. 2022, 910, 116205. [Google Scholar] [CrossRef]
- Sarvestani, M.R.J.; Madrakian, T.; Afkhami, A. Simultaneous determination of Pb2+ and Hg2+ at food specimens by a Melamine-based covalent organic framework modified glassy carbon electrode. Food Chem. 2023, 402, 134246. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, J.; Sivalingam, S.; Narayanan, S.S. Synthesis and characterization of Schiff base ligand-mutliwalled carbon nanotubes as mercury-free electrochemical sensor for detecting toxic metals in aquatic treatment. Diam. Relat. Mater. 2023, 136, 109984. [Google Scholar] [CrossRef]
- Nodehi, M.; Baghayeri, M.; Kaffash, A. Application of BiNPs/MWCNTs-PDA/GC sensor to measurement of Tl (1) and Pb (II) using stripping voltammetry. Chemosphere 2022, 301, 134701. [Google Scholar] [CrossRef]
- Laghlimi, C.; Ziat, Y.; Moutcine, A.; Hammi, M.; Zarhri, Z.; Ifguis, O.; Chtaini, A. A new sensor based on graphite carbon paste modified by an organic molecule for efficient determination of heavy metals in drinking water. Chem. Data Collect. 2021, 31, 100595. [Google Scholar] [CrossRef]
- Castro, S.V.F.; Lima, A.P.; Rocha, R.G.; Cardoso, R.M.; Montes, R.H.O.; Santana, M.H.P.; Richter, E.M.; Munoz, R.A.A. Simultaneous determination of lead and antimony in gunshot residue using a 3D-printed platform working as sampler and sensor. Anal. Chim. Acta 2020, 1130, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Biasi, A.D.L.M.; Takara, E.A.; Scala-Benuzzi, M.L.; Valverde, A.M.; Gómez, N.N.; Messina, G.A. Modification of electrodes with polymer nanocomposites: Application to the simultaneous determination of Zn(II), Cd(II), and Cu(II) in water samples. Anal. Chim. Acta 2023, 1273, 341499. [Google Scholar] [CrossRef] [PubMed]
- Maciel, C.C.; de Barros, A.; Mazali, I.O.; Ferreira, M. Flexible biodegradable electrochemical sensor of PBAT and CNDs composite for the detection of emerging pollutants. J. Electroanal. Chem. 2023, 940, 117491. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Zhai, W.-Y.; Liu, Y.-Q. Study on Cd2+ Determination Using Bud-like Poly-L-Tyrosine/Bi Composite Film Modified Glassy Carbon Electrode Combined with Eliminating of Cu2+ Interference by Electrodeposition. Electroanalysis, 2021, 33, 744–754. [Google Scholar] [CrossRef]
- Feng, J.; Qi, J. Facile synthesis of graphene oxide coated 3D bimetallic oxide MnO2/Bi2O3 microspheres for voltammetric detection of cadmium ion in water. J. Solid State Chem. 2023, 322, 124007. [Google Scholar] [CrossRef]
- Garg, N.; Deep, A.; Sharma, A.L. Sensitive Detection of Cadmium Using Amine-Functionalized Fe-MOF by Anodic Stripping Voltammetry. Ind. Eng. Chem. Res. 2023, 62, 9735–9746. [Google Scholar] [CrossRef]
- Levanen, G.; Dali, A.; Leroux, Y.; Lupoi, T.; Betelu, S.; Michel, K.; Ababou-Girard, S.; Hapiot, P.; Dahech, I.; Cristea, C.; Feier, B.; Razan, F.; Geneste, F. Specific electrochemical sensor for cadmium detection: Comparison between monolayer and multilayer functionalization. Electrochim. Acta 2023, 464, 142962. [Google Scholar] [CrossRef]
- Gao, J.; Qiu, C.; Qu, W.; Zhuang, Y.; Wang, P.; Yan, Y.; Wu, Y.; Zeng, Z.; Huang, G.; Deng, R.; Yan, G.; Yan, J.; Zhang, R.; Cd, D.O. Detection of Cd2+ based on Nano-Fe3O4/MoS2/Nafion/GCE sensor. Anal. Sci. 2023, 39, 1445–1454. [Google Scholar] [CrossRef]
- Lu, H.; Ke, Z.; Feng, L.; Liu, B. Voltammetric sensing of Cd(II) at ZIF-8/GO modified electrode: Optimization and field measurements. Chemosphere 2023, 329, 138710. [Google Scholar] [CrossRef]
- Maity, S.; Deshmukh, S.; Roy, S.S.; Dhar, B.B. Selenium-doped Graphite for Electrochemical Sensing and Adsorption of Hg(II) and Cd(II) Ions. Chem. Electro. Chem. 2023, 10, 202201044. [Google Scholar] [CrossRef]
- Park, S.; Maier, C.S.; Koley, D. Anodic stripping voltammetry on a carbon-based ion-selective electrode. Electrochim. Acta 2021, 390, 138855. [Google Scholar] [CrossRef]
- Zhu, G.; Su, J.; Zhang, B.; Liu, J. Electrospun amino-containing organosilica gel nanofibers for the ultrasensitive determination of Cu(II). J. Electroanal. Chem. 2021, 882, 114976. [Google Scholar] [CrossRef]
- Alasağ, Ö.; Alpat, Ş.; Alpat, S.K. Voltammetric Determination of Copper by Biosorption-based Mesorhizobium Opportonistum Modified Microbial Biosensor. Electroanalysis, 2022, 34, 1701–1710. [Google Scholar] [CrossRef]
- Li, G.; Feng, S.; Yan, L.; Yang, L.; Huo, B.; Wang, L.; Luo, S.; Yang, D. Direct electrochemical detection of Cu(Ⅱ) ions in juice and tea beverage samples using MWCNTs-BMIMPF6-Nafion modified GCE electrodes. Food Chem. 2023, 404, 134609. [Google Scholar] [CrossRef] [PubMed]
- Challier, L.; Forget, A.; Bazin, C.; Tanniou, S.; Doare, J.L.; Davy, R.; Bernard, H.; Tripier, R.; Laes-Huon, A.; Poul, N.L. An ultrasensitive and highly selective nanomolar electrochemical sensor based on an electrocatalytic peak shift analysis approach for copper trace detection in water. Electrochim. Acta 2022, 434, 141298. [Google Scholar] [CrossRef]
- Fayazi, M.; Ghanei-Motlagh, M.; Karami, C. Application of magnetic nanoparticles modified with L-cysteine for pre-concentration and voltammetric detection of copper(II). Microchem. J. 2022, 181, 107652. [Google Scholar] [CrossRef]
- Sullivan, C.; Lu, D.; Brack, E.; Drew, C.; Kurup, P. Voltammetric codetection of arsenic(III) and copper(II) in alkaline buffering system with gold nanostar modified electrodes. Anal. Chim. Acta 2020, 1107, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Nodehi, M.; Baghayeri, M.; Veisi, H. Preparation of GO/Fe3O4@PMDA/AuNPs nanocomposite for simultaneous determination of As3+ and Cu2+ by stripping voltammetry. Talanta 2021, 230, 122288. [Google Scholar] [CrossRef]
- Ribeiro, M.M.A.C.; Rocha, R.G.; Munoz, R.A.A.; Richter, E.M. A Batch Injection Analysis System with Square-wave Voltammetric Detection for Fast and Simultaneous Determination of Zinc and Ascorbic Acid. Electroanalysis, 2021, 33, 90–96. [Google Scholar] [CrossRef]
| Metal | Technique | Electrode | Supporting Electrolyte | Type of sample | Limit of Detection (LOD) | Ref. |
|---|---|---|---|---|---|---|
| Pb2+ | ASV | Carbon e.Cu-shaped (Cu-CE) | 0.01 M HCl + 1 M KCl | Drinking water, sewage | 1 μM | [10] |
| ASV | Glassy carbon e. formatted with eDAQ | 1 M KNO3 | Tap water | [11] | ||
| SWV | Carbon paste e. formed with geopolymer cement (CPE/GP- Dib2) | 0.2 M NaNO3 | Tap water, well and theral water | 2.3 × 10-9 M | [12] | |
| SWASV | E. printed with ink injection printer and formatted with multiwall carbon nanotubes (IJP-MW-CNT electrode) | 0.1 M acetate buffer | Drinking water | 1.0 μg/L | [13] | |
| SWASV | Lithographically printed e. Bi formatted and hierarchically tubular and porous biochar (Bi/PTBC800/SPE) (Bi/PTBC800/SPE) | acetate buffer (0.1 M, pH 4.5) + 500 μg/L Bi3+ | Water | 0.02 μg/L | [14] | |
| SWASV | Lithographically printed e. carbon molded with dopamine polymer and polypyrolle hydrogel (PDA-PPy/SPCE) (PDA-PPy/SPCE) | HAc-NaAc ΡΔ (pH 4.5) | River water |
0.15 μg/L | [15] | |
| SWASV | Glassy carbon e. formulated with Fe3O4 in a Schiff base network (Fe3O4@SNW1 /GCE) | 1.0 × 10-1 mol/L ΚΝO3 | Food | 0.95 nM | [16] | |
| SWASV | E. graphene oxide formulated with Bi and N | 0.1 M, pH 4.5 acetate buffer | Tap water | 10.9 pM | [17] | |
| SWASV | Glassy carbon e. formulated with Bi and Bi2O3 (Bi/Bi2O3@C/GCE) | 0.1 M acetate buffer | Tap water, canal water, soil near a factory | 6.3 nM | [18] | |
| SWASV | Glassy carbon e. molded with two-dimensional MXene with blue color (CoPB-MXene/GCE) | 0.01 Μ, pH 6.5 phosphate buffer | Bottled water, tap water, lake water | 0.97 nM | [19] | |
| LSASV | Coal paste e. molded with clay | 0.1 M KCl | Water, biological water | [20] | ||
| DPSV | Graphite-cork e. | 0.5 M H2SO4, 0.1 M, pH 4.5 acetate buffer | Hair dye | 1.06 μΜ (0.5M H2SO4), 1.26 μΜ (0.1 M acetate buffer, pH 4.5) |
[21] | |
| DPASV | Glassy carbon e. molded with polypyrol, Bi film and metal organic frame (BF-PPy/UIO-66-NH2/GCE) | 0.5 mmol/L K3[Fe(CN)6] + 1 mol/L KCl | Tap water, groundwater sample | 0.05 μg/L | [22] | |
| DPASV | Glassy carbon e. molded with bismuth film, Nafion and a worm-like carbon structure with nitrogen admixture (Nafion-WNCF/ BFGCE) | 0.1 M pH 4.5 acetate buffer + 1.4 mg/mLBi3+ | Lake water, tap water | 0.2 μg/L | [23] | |
|
Pb2+, Cd2+ |
ASV | Hg film e. (MFE) | Coastal and transitional waters | 4.0 ng/L , 0.50 ng/L | [24] | |
| ASV | Hanging Hg drop e. (HMDE) | 9.00 mL model brine | Brine | [25] | ||
| ASV | Cu film e. (CuFE) |
0.1 M HCl + 0.4 M NaCl | Tap water | 0.6 μg/L, 1.8 μg/L | [26] | |
| SWV | Carbon paste e. formatted with Bi film (BiFE-CPE) | 0.01 Μ, pH 4.6 acetate buffer | Water | 0.3 μg/L , 0.5 μg/L | [27] | |
| SWASV | Lithographically printed e. based on graphite and covered with Nafion | acetate buffer 50 mM + NaCl 50 mM pH 4.6 | Spring water, sea water | [28] | ||
| SWASV | Carbon paste e. molded from multiwall carbon nanotubes and antimony trioxide (Sb2O3/CNTCPE) |
0.01 M HCl | Tap water | 1.2 μg/L, 1.7 μg/L | [29] | |
| SWASV | Lithographically printed black carbon e. with poly(propyleneimine) (SPE-CB-PPI) | acetate buffer 0.1 M, pH 4.6 | Tap water | 3.6 μg/L, 15.3 μg/L | [30] | |
| SWASV | Glassy carbon e. formulated with a reduced graphene oxide nanocomposite decorated with [(BiO)2CO3 and Nafion [(BiO)2CO3-rGO-Nafion/GCE] | 3 M KCl | Water | 0.24 µg/L, 0.16 µg/L | [31] | |
| SWASV | Polythionine- molded glassy carbon e. (in the presence of Bi) and multi-wall carbon nanotubes (Bi-PTH/MWCNTs/ GCE) | 0.1 M, pH 3.5 acetate buffer | Water | 0.4 nM, 0.6 nM | [32] | |
| SWASV | Glassy carbon e. formulated with carbon combined with N, and Ti3C2-ΜΧene (Ti3C2@N-C/GCE) | 5 mM [Fe(CN)6]3-/4- solution + 0.10 M KCl | Sea water, tap water | 1.10 nM , 2.55 nM | [33] | |
| SWASV | Carbon e. molded with Hg | 0.1 mol/LHCl | Vegetable oil | 0.01 µg/kg, 0.06 µg/kg | [34] | |
| SWASV | Glassy carbon e. formulated with nanoporous Bi, superficially decorated with Bi2O3 (Bi2O3@NPBi/GCE) |
0.1 M, pH 3.0–5.5,acetate buffer | Tap water | 0.02 µg/L , 0.03 µg/L | [35] | |
| SWASV | E. formulated with salicylidene-2-amino benzyl alcohol and multiwall carbon nanotubes (SABA/MWCNTs electrode) | 0.1 M acetate buffer | Rice water, tobacco extract, raw milk | 0.012 ng/L, 0.02 ng/L | [36] | |
| SWASV | Lithographically printed e. formatted with Nafion | 0.1 M ΡΔ NaAc-HAc | Sewage | 8.4 μg/L, 0.032 mg/L | [37] | |
| DPASV | Lithographically printed e. bismuthene- molded two-dimensional carbon (2D Biexf–SPCE) | 0.1 mol/L acetate buffer (pH 4.5) | Certified estuarine water samples | 0.06 μg/L, 0.07 μg/L | [38] | |
| DPASV | Glassy carbon e. molded with silane bentonite decorated with Ag nanoparticles (AgNP@Bt/ TC/GCE) | 5.0 mg/L σε 0.1 mol/L acetate buffer (pH 4.0) | River water | 0.88 µg/L, 0.79 µg/L | [39] | |
| DPASV | Glassy carbon e. molded with polyrutin and Ag nanoparticles (polyrutin/AgNPs/GC) |
0.1 M, pH 5 acetate buffer | Tap water, soil sample, hair | 3 nM, 10 nM | [40] | |
| DPASV | Polypyrol- molded pencil graphite e., and CO2 (PPy-CO2@PGE) |
0.1 M acetate buffer | Natural water | 0.018 nM, 0.023 nM | [41] | |
| DPASV | Glassy carbon e. formulated with Sb and Bi (Sb/Bi-GCE) |
0.1 M, pH 4.5 acetate buffer | CRM soil sample, tap water | 0.01 μg/L , 0.5 μg/L | [42] | |
| DPASV | Glassy carbon e. formulated with Nafion and Bi nanoplates (Nafion/BiNP/GCE) | 0.1 M, pH 4.5 acetate buffer | Tap water, sewage | 0.178 nM, 0.376 nM | [43] | |
| DPASV | Lithographically printed e. two-dimensional microfiber molded with Sb (2D Sbexf-SPCNFE) | 0.01 mol/L, pH 2 HCl | Certified estuarine water | 0.1 µg/L, 0.9 μg/L | [44] | |
| DPSV | Glassy carbon e. rotating disc molded with Sb (Sb-GC-RDE) | 0.01 M HCl | Soil water, soil | 1.1 μg/L, 1.4 μg/L | [45] | |
| DPASV | Glassy carbon e. molded with carbon black and polyriboflavin in the presence of Bi (Bi-PRF/CB/GCE) |
0.1 M, pH 4.5 acetate buffer | Rice, honey, vegetables | 0.13 nM, 0.16 nM | [46] | |
| DPAdSV | Carbon paste e. molded with charcoal (BC-CPE) |
0.1 mol/L, pH 4.8 acetate buffer | Samples of biochar (charcoal) from coffee tree husks | 0.2 µg/L, 1.7 µg/L | [47 | |
| SWASV | Glassy carbon e.molded with Bi (Bi/GCE) | 0.2 M, pH 5.0 acetate buffer | Soil | [48] | ||
| SWASV | Glassy carbon electrode (GCE) coated with poly(amidoamine) dendrimer functionalized magnetic graphene oxide (GO-Fe3O4-PAMAM) | 0.1 M acetate buffer | Water | 130 ng/L, 70 ng/L |
[49] | |
|
Pb2+, Cd2+, Hg2+ |
ASV | 3D printed e. graphene/polylactic acid | 1 mM διάλυμα από FcMeOH + 0.5 M KCl ως φέρων ηλεκτρολύτης | Tap water | Hg: 6,1 nM | [50] |
| DPSV | Nanoel. Molded with Au | Liquid foods (cow's milk, orange juice, apple juice) | 1.0 μg/L, 1.1 μg/L, 1.2 μg/L | [51] | ||
| DPASV | Carbon paste e. formulated with Na2CO3 and active Hordeum vulgare L powder (HVW-Na2CO3/CPE) |
Όξινα διαλύματα (0.1 M HCl) | River water, tap water | 0.0691 nM, 1.82 nM, 0.237 nM | [52] | |
|
Pb2+, Cu2+ |
ASV | Glassy carbon e. formulated with Nafion, and MnCo2O4 (Nafion/MnCo2O4/GCE) | HCl/KCl (0.1 mol/dm3 ) | Wine | 1.67 μg/dm3, 7.14 μg/dm3 | [53] |
| ASV | High-Content Hydroxyapatite Carbon (Hap/CΕ) |
0.1 M KNO3 | Water | [54] | ||
| SWSV | Glassy carbon e. molded with multiwall carbon nanotubes, Nafion and ZIF-67 (ZIF-67/MWCNT/Nafion-GCE) |
0.1 M pH 2.0 HAc-NaAc | Water from Changchun's Sanjia and Yan lakes | 1.38 nM, 1.26 nM | [55] | |
| SWASV | Graphite e. formulated with caffeic acid [GE/poly(CA)] |
1.0 M HNO3 | Samples of artisanal sugar cane spirit | 3.01 μg/L, 4.50 μg/L | [56] | |
|
Pb2+, Cd2+, Cu2+ |
SWV | Carbon paste e. molded with Bigarreau Burlat shell core (BBKS-CPE) |
acetate buffer (0.2 M) | Tap water, sea water, industrial wastewater | 8.48 μg/L, 9.56 μg/L, 9.77 μg/L | [57] |
| SWSV | Microgel. molded with high-density carbon nanotube fiber rods (HD-CNTf) | Tap water | -0.45 nM (92 ng/L) , 0.26 nM (55 ng/L) in simulated drinking water -0.24 nM (27 ng/L) in tap water, 0.25 nM (28 ng/L) in simulated drinking water -6.0 nM, (376 ng/L) in tap water, 0.32 nM (20 ng/L) in simulated drinking water |
[58] | ||
| SWASV | Antifouling microelectrode arrays integrated in gel (GIME) | 1 ng/L, 0.7 ng/L, 6.6 ng/L | [59] | |||
| SWASV | Glassy carbon e. molded with Fe3O4 and D-valine (Fe3O4-D-Val/GCE) | 0.1 M acetate buffer | Water | 18.89 nM, 18.38 nM , 7.481 nM | [60] | |
| SWASV | Glassy carbon e. molded with nanostructure ZnO and Nafion (ZnO-NP-Nafion/GCE) | 0.1 M KCl + 5 mM [Ru(NH3)6]3 | Water | 11.88 nM, 16.21 nM, 47.33 nM | [61] | |
| DPASV | Hanging Drop Hg e. (HDME) | KCl 0.5 M, pH 6.0 | Water | [62] | ||
| DPASV | Biochar e. in a metal form molded with B (B-bioC/MEDs) | 0.1 M acetate buffer | Rural irrigation water | 4 nM, 54 nM, 24 nM | [63] | |
|
Pb2+, Cd2+, Cu2+, Hg2+ |
DPASV | Lithographically printed e. carbon formulated with nanoparticles Ag (AgNS/SPCE) | 1 M, pH 4.4 acetate buffer | Tap water, rainwater, lake water | 2.5 μg/L, 0.4 μg/L, 0.73 μg/L, 0.7 μg/L | [64] |
| DPSV | Magnetic glassy carbon e. molded with Fe3O4 and silica (Fe3O4@SiO2/MGCE) |
1 M, pH 5 acetate buffer | Milk | 16.5 nM, 56.1 nM, 79.4 nM, 56.7 nM | [65] | |
|
Pb2+, Cd2+, Zn2+ |
ASV | Polymeric e. loaded with carbon fiber embedded in plastic fluid base | 0.10 mol/L acetate buffer | Fish feed | [66] | |
| SWASV | Pencil graphite e. molded with multiwall carbon nanotubes and Bi (MWCNT/Bi/PGE) | pH 4.5 acetate buffer | Water | 0.27 μg/L, 0.43 μg/L, 1.63 μg/L | [67] | |
| SWASV | Lithographically printed carbon e. formulated with poly(3,4-ethylenedioxythiophene) fibers with polyvinyl alcohol aqueous solution and nanoparticles Ag (PEDOT/PVA/AgNPs fibers-modified SPCE) | 0.1 M, pH 4.6 acetate buffer | Drinking water | 8 μg/L, 3 μg/L, 6 μg/L | [68] | |
| SWASV | Carbon paste e. molded with CuO and TbFeO3 (TbFeO3/CuO/CPE) | acetate buffer pH 4.8 | Pasteurized milk, apple juice, drinking water | 0.12 mg/L, 0.29 mg/L, 0.48 mg/L | [69] | |
| SWASV | Carbon paste e. molded with Bi and Sb (Bi–Sb/CPE) | acetate buffer pH 5.6 | Water | 0.29 mg/L, 0.27 mg/L, 1.46 mg/L | [70] | |
|
Pb2+, Cu2+, Zn2+ |
SWASV | Multiwall Composite Carbon Nanotubes from Gold Nanoparticles with Polyaniline (AuNPs/PANI-MWCNTs) | 0.1 M, pH 5.0 acetate buffer | Water | 0.037 μg/L, 0.017 μg/L, 0.039 μg/L | [71] |
|
Pb2+, Cd2+, Cu2+, Zn2+ |
SWASV | Lithographically printed e. carbon molded Bi and Hg (Bi/Hg–SPCE) |
1.0 M, pH 4.5 acetate buffer | Surface water | 0.082 μg/L, 0.16 μg/L, 0.64 μg/L, 0.97 μg/L |
[72] |
| SWASV | Pencil graphite e. molded with multiwall carbon nanotubes, Na-montmorilonite and Bi nanoparticles (BiNP/MWCNT-NNaM/PGE) | 0.1 M, pH 4.5 acetate buffer | Tap water | 0.008 μΜ, 0.097 μΜ, 0.157 μΜ, 0.707 µM | [73] | |
|
Pb2+ and other metals |
SWV | Glassy carbon e. molded with Schiff base network (SNW1/ GCE) |
0.1 M KNO3 + 0.01 M HCl | Edible samples | 0.00072 μΜ | [74] |
| SWASV | E. molded with multiwall carbon nanotubes and N,N′-di(salicylaldehyde)-1,2-diaminobenzene (BSD) (BSD/MWCNTs) | 0.1 M NaNO3 | Lake water, soil sample | 0.3 nM | [75] | |
| SWASV | Glassy carbon e. molded with Bi nanoparticles and dopamine polymer in multiwall carbon nanotubes (BiNPs/MWCNTs-PDA/GCE) | 0.1 M, pH 5 acetate buffer | Tap water, mineral water, sewage | 0.07 μg/L, Tl+: 0.04 μg/L |
[76] | |
| SWV | Carbon paste e. molded with EDTA (EDTA/CPE) | 0.1 mol/L NaCl | Drinking water | 2.33 nmol/L | [77] | |
| SWASV | 3D printed e. using polylactic acid with graphene admixture |
0.01 mol/L HCl | Gunshot samples (GSR) | 0.5 μg/L | [78] | |
|
Cd2+, Cu2+, Zn2+ |
SWASV | Lithographically printed e. carbon molded with polyethyleneimide, graphene oxide and graphite (PEI/GO/GRA/SPCE) | 0.25 M, pH 4.5 acetate buffer | Water | 0.53 μg/L, 1.52 μg/L, 0.23 μg/L | [79] |
|
Cd2+, Cu2+ |
SWV | E. formulated with poly(butylene-terephthalate adipate) copolymer and carbon nitrite dots (PBAT/CNDs) | 0.1 M, pH 3.0 phosphate buffer | Tap water | 2,7 μM (Cd), 7.09 μΜ (Cu) | [80] |
|
Cd2+ |
SWASV | Glassy carbon e. molded with poly-L-tyrosine and bismuth reminiscent of buds (p-Tyr/Bi/GC) | 5.0 mmol/L KCl + 3.0 μmol/L Bi3+ | Rice | 0.11 nΜ | [81] |
| SWASV | Glassy carbon e. molded with MnO2, Bi2O3 and graphene oxide (MnO2/Bi2O3/GO/GCE) |
0.1 M acetate buffer | Water | 0.22 μg/L | [82] | |
| SWASV | Glassy carbon e. formed with metal organic frame iron with amine (NH2-MIL-53(Fe)/GCE) | acetate buffer | Water | 0.03 μΜ | [83] | |
| LSSV | Glassy carbon e. formulated with 1,2-di-[o-aminothiophenyl (APTE-Mono@GCE) |
0.1 mol/L LiClO4 | Real samples | 1.7 μg/L | [84] | |
| DPV | Glassy carbon e. molded with nano-Fe3O2, MoS2 and Nafion (Nano-Fe3O2/MoS2/Nafion/GCE) | 0.1 mol/L, pH 4.2 acetate buffer | Sea water | 0.053 μg/L | [85] | |
| DPASV | Graphite rod e. molded with organic metal frame and graphene oxide (GRE-ZIF-8/GO) | phosphate buffer pH 5.0 | River water, dam water, sewage | 0.03 μg/L | [86] | |
| SWASV | Glassy carbon e. molded with graphite containing Se (Se-DG/GCE) |
1 M phosphate buffer | Drinking water | 1.9 μg/L, Hg: 4.3 μg/L |
[87] | |
|
Cu2+ |
SWASV | Selective Ca2+ ion (Ca2+-μISE) |
0.1 M acetate buffer | Drinking water | 1 μΜ | [88] |
| SWSV | Gold e. with (3-mercaptopropyl)-trimethoxysilane formulated with microfibers organosilicate gel containing amino acid (APTES-PVP/MPTS/Au) | 0.1 mol/L KCl solution + 2 mmol /L [Fe(CN)6]3-/4- + 5 mmol/L [Ru(NH3)6]3+ | Tap water, lake water | 2.6 pM | [89] | |
| DPCSV | Carbon paste e. molded with biosensor Mesorhizobium opportonistum. [(MOMB) / UCPE] |
0.01M HClO4 | Drinking water | 2.0×10-8 M | [90] | |
| DPASV | Glassy carbon e. molded with Nafion solution, multiwall carbon nanotubes and 1-butyl-3-methylimidazole hexafluorophosphate (MWCNTs-BMIMPF6-Naf-GCE) | 0.1 mol/L ΡΔ HAc-NaAc + 0.1 mol/L KCl | Juice and tea drinks | 16 μg/L | [91] | |
| AdASV | Pencil graphite e. formatted with Cu2+ and cyclam (Cu(II)-cyclam-modified PGE) |
1x10-3 mol/L CuSO4 / 1 mol/L H2SO4 | Sea water | 16 nM | [92] | |
| DPV | Magnetic carbon paste electrode (MCPE), L-cysteine functionalized core–shell Fe3O4@Au nanoparticles (Fe3O4@Au@L-cysteine) | Phosphate buffer, pH 5.0 | Water | 0.4 nM | [93] | |
|
Cu2+,As3+ |
SWASV | Nanostar gold e. (AuNS-CSPE) | Britton-Robinson ΡΔ | River water, tap water | 42.5 μg/L, 2.9 μg/L | [94] |
| SWASV | Glassy carbon e. with a new polymethyldopa-based nanocomposite material together with gold nanoparticles immobilized on the surface of magnetic graphene oxide (GCE/GO/Fe3O4@PMDA/AuNPs) | 0.1 M acetate buffer (pH 6.0) + 0.1 M KCl | Drinking water, pool water | 0.11 μg/L, 0.15 μg/L | [95] | |
|
Zn2+ |
Batch Injection Analysis (BIA)-SWASV | Diamond e. with boron admixture (BDD) | Britton-Robinson (BR) ΡΔ 0.04 mol/L | Pharmaceutical samples | 0.2 μΜ | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
