Preprint
Article

Noncommutative Donoho-Stark-Elad-Bruckstein-Ricaud-Torresani Uncertainty Principle

Altmetrics

Downloads

119

Views

127

Comments

0

This version is not peer-reviewed

Submitted:

01 June 2024

Posted:

05 June 2024

You are already at the latest version

Alerts
Abstract
Let $\{\tau_n\}_{n=1}^\infty$ and $\{\omega_m\}_{m=1}^\infty$ be two modular Parseval frames for a Hilbert C*-module $\mathcal{E}$. Then for every $x \in \mathcal{E}\setminus\{0\}$, we show that \begin{align}\label{UE} \|\theta_\tau x \|_0 \|\theta_\omega x \|_0 \geq \frac{1}{\sup_{n, m \in \mathbb{N}} \|\langle \tau_n, \omega_m\rangle \|^2}. \end{align} We call Inequality (\ref{UE}) as \textbf{Noncommutative Donoho-Stark-Elad-Bruckstein-Ricaud-Torr\'{e}sani Uncertainty Principle}. Inequality (\ref{UE}) is the noncommutative analogue of breakthrough Ricaud-Torr\'{e}sani uncertainty principle \textit{[IEEE Trans. Inform. Theory, 2013]}. In particular, Inequality (\ref{UE}) extends Elad-Bruckstein uncertainty principle \textit{[IEEE Trans. Inform. Theory, 2002]} and Donoho-Stark uncertainty principle \textit{[SIAM J. Appl. Math., 1989]}.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis

MSC:  42C15; 46L08

1. Introduction

In 1989, Donoho and Stark derived following uncertainty principle which is one of the greatest inequality of all time in both pure and applied Mathematics [1]. For h C d , let h 0 be the number of nonzero entries in h. Let   ^ : C d C d be the Fourier transform defined by
( a j ) j = 0 d 1 ^ 1 d j = 0 d 1 a j e 2 π i j k d k = 0 d 1 , ( a j ) j = 0 d 1 C d .
Theorem 1.
(Donoho-Stark Uncertainty Principle) [1,2] For every d N ,
h 0 + h ^ 0 2 2 h 0 h ^ 0 d , h C d { 0 } .
By noting that Fourier transform is unitary and unitary operators are in one to one correspondence with orthonormal bases, in 2002, Elad and Bruckstein generalized Inequality (1) to arbitrary orthonormal bases [3]. To state the result we need some notations. Given a collection { τ j } j = 1 n in a finite dimensional Hilbert space H over K ( R or C ), we define
θ τ : H h θ τ h : = ( h , τ j ) j = 1 n K n .
Theorem 2.
(Elad-Bruckstein Uncertainty Principle) [3,4] Let { τ j } j = 1 n , { ω j } j = 1 n be two orthonormal bases for a finite dimensional Hilbert space H . Then
θ τ h 0 + θ ω h 0 2 2 θ τ h 0 θ ω h 0 1 max 1 j , k n | τ j , ω k | 2 , h H { 0 } .
In 2013, Ricaud and Torrésani showed that orthonormal bases in Theorem 2 can be improved to Parseval frames [5]. Recall that a collection { τ j } j = 1 n in a finite dimensional Hilbert space H is said to be a Parseval frame for H [6] if
h 2 = j = 1 n | h , τ j | 2 , h H .
Theorem 3.
(Ricaud-Torrésani Uncertainty Principle) [5] Let { τ j } j = 1 n , { ω j } j = 1 n be two Parseval frames for a finite dimensional Hilbert space H . Then
θ τ h 0 + θ ω h 0 2 2 θ τ h 0 θ ω h 0 1 max 1 j , k n | τ j , ω k | 2 , h H { 0 } .
The main purpose of this paper is to generalize and derive a noncommutative version of Theorem 3. For this we want generalization of Hilbert spaces known as Hilbert C*-modules. Hilbert C*-modules are first introduced by Kaplansky [7] for modules over commutative C*-algebras and later developed for modules over arbitrary C*-algebras by Paschke [8] and Rieffel [9].
Definition 1.
[7,8,9] Let A be a unital C*-algebra. A left module E over A is said to be a (left) Hilbert C*-module if there exists a map · , · : E × E A such that the following hold.
(i) x , x 0 , x E . If x E satisfies x , x = 0 , then x = 0 .
(ii) x + y , z = x , z + y , z , x , y , z E .
(iii) a x , y = a x , y , x , y E . a A .
(iv) x , y = y , x * , x , y E .
(v) E is complete w.r.t. the norm x : = x , x , x E .
We are going to use the following inequality.
Lemma 1.
[8] (Noncommutative Cauchy-Schwarz inequality) If E is a Hilbert C*-module over A , then
x , y y , x y , y x , x , x , y E .
Given a unital C*-algebra A , define
2 ( N , A ) { a n } n = 1 : a n A , n N , n = 1 a n a n * converges in A .
Modular A -inner product on 2 ( N , A ) is defined as
{ a n } n = 1 , { b n } n = 1 : = n = 1 a n b n * , { a n } n = 1 , { b n } n = 1 2 ( N , A ) .
Hence the norm on 2 ( N , A ) becomes
{ a n } n = 1 : = n = 1 a n a n * 1 2 , { a n } n = 1 2 ( N , A ) .

2. Noncommutative Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle

We start by recalling the definition of Parseval frames for Hilbert C*-modules by Frank and Larson [10].
Definition 2.
[10] Let E be a Hilbert C*-module over a unital C*-algebra A . A collection { τ n } n = 1 in E is said to be a modular Parseval frame for E if
x , x = n = 1 x , τ n τ n , x , x E .
As shown in [10] a modular Parseval frame { τ n } n = 1 for E gives an adjointable isometry
θ τ : E x θ τ x : = { x , τ n } n = 1 2 ( N , A )
with adjoint
θ τ * : 2 ( N , A ) { a n } n = 1 θ τ * { a n } n = 1 : = n = 1 a n τ n E .
We this preliminaries we can derive noncommutative analogue of Theorem 3. In the following theorem, given a subset Λ N , we set the notation
o ( Λ ) : = Number of elements in Λ .
Theorem 4.
(Noncommutative Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle) For any two modular Parseval frames { τ n } n = 1 and { ω m } m = 1 for a Hilbert C*-module E , we have
θ τ x 0 + θ ω x 0 2 2 θ τ x 0 θ ω x 0 1 sup n , m N τ n , ω m 2 , x E , x 0 .
Proof. 
Let x E be nonzero. Using Lemma 1 and the well-known fact in C*-algebra that `norm respects ordering of positive elements’, we get
x 2 = x , x = n = 1 x , τ n τ n , x = n supp ( θ τ x ) x , τ n τ n , x = n supp ( θ τ x ) m = 1 x , ω m ω m , τ n τ n , k = 1 x , ω k ω k = n supp ( θ τ x ) m supp ( θ ω x ) x , ω m ω m , τ n τ n , k supp ( θ ω x ) x , ω k ω k = n supp ( θ τ x ) m supp ( θ ω x ) x , ω m τ n , ω m * k supp ( θ ω x ) x , ω k τ n , ω k * n supp ( θ τ x ) m supp ( θ ω x ) τ n , ω m τ n , ω m * k supp ( θ ω x ) x , ω k ω k , x n supp ( θ τ x ) m supp ( θ ω x ) τ n , ω m τ n , ω m * k supp ( θ ω x ) x , ω k ω k , x sup n , m N τ n , ω m 2 n supp ( θ τ x ) m supp ( θ ω x ) 1 · k supp ( θ ω x ) x , ω k ω k , x sup n , m N τ n , ω m 2 o ( supp ( θ τ x ) o ( supp ( θ ω x ) k supp ( θ ω x ) x , ω k ω k , x = sup n , m N τ n , ω m 2 θ τ x 0 θ ω x 0 k supp ( θ ω x ) x , ω k ω k , x = sup n , m N τ n , ω m 2 θ τ x 0 θ ω x 0 x , x = sup n , m N τ n , ω m 2 θ τ x 0 θ ω x 0 x 2 .
By canceling x we get the stated inequality. □
Using Chebotarev theorem, in 2005, Tao [11,12] improved Theorem 1 for prime dimensions d.
Theorem 5.
(Tao Uncertainty Principle ) [11] For every prime p,
h 0 + h ^ 0 p + 1 , h C p { 0 } .
In view of Theorem 5 we make the following conjecture.
Conjecture 6.
Let p be a prime and A be a unital C*-algebra with invariant basis number property. Let   ^ : A p A p be the noncommutative Fourier transform defined by
( a j ) j = 0 p 1 ^ 1 p j = 0 p 1 a j e 2 π i j k p k = 0 p 1 , ( a j ) j = 0 p 1 A p .
Then
x 0 + x ^ 0 p + 1 , x A p { 0 } .

References

  1. Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
  2. Terras, A. Fourier analysis on finite groups and applications; Vol. 43, London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1999; pp. x+442. [CrossRef]
  3. Elad, M.; Bruckstein, A.M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory 2002, 48, 2558–2567. [Google Scholar] [CrossRef]
  4. Elad, M. Sparse and redundant representations : From theory to applications in signal and image processing; Springer, New York, 2010; pp. xx+376. [CrossRef]
  5. Ricaud, B.; Torrésani, B. Refined support and entropic uncertainty inequalities. IEEE Trans. Inform. Theory 2013, 59, 4272–4279. [Google Scholar] [CrossRef]
  6. Benedetto, J.J.; Fickus, M. Finite normalized tight frames. Adv. Comput. Math. 2003, 18, 357–385. [Google Scholar] [CrossRef]
  7. Kaplansky, I. Modules over operator algebras. Amer. J. Math. 1953, 75, 839–858. [Google Scholar] [CrossRef]
  8. Paschke, W.L. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 1973, 182, 443–468. [Google Scholar] [CrossRef]
  9. Rieffel, M.A. Induced representations of C*-algebras. Advances in Math. 1974, 13, 176–257. [Google Scholar] [CrossRef]
  10. Frank, M.; Larson, D.R. Frames in Hilbert C*-modules and C*-algebras. J. Operator Theory 2002, 48, 273–314. [Google Scholar]
  11. Tao, T. An uncertainty principle for cyclic groups of prime order. Math. Res. Lett. 2005, 12, 121–127. [Google Scholar] [CrossRef]
  12. Ceccherini-Silberstein, T.; Scarabotti, F.; Tolli, F. Discrete harmonic analysis : Representations, number theory, expanders, and the Fourier transform; Vol. 172, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2018; pp. xiii+573. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated