

Article

Supplementary Information: TiN_xAg_yN_w Nanocomposites on Nanocellulose for Enhanced Flexible Electrodes based on wrinkled Titanium Nitride Nanocomposites deposited on TEMPO-Oxidized Nanocellulose

Loïk Gence*^{1,2} , Franck Quero⁴, Miguel Escalona², Robert Wheatley³, Birger Seifert³, Donovan Diaz-Droguett², Maria José Retamal², Sascha Wallentowitz², Ulrich Volkmann², and Heman Bhuyan²

¹ Functional Materials & Devices Lab, Pontificia Universidad Católica de Chile

² Instituto de Física, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile

³ Millennium Science Initiative Program - Millennium Institute for Research in Optics (MIRO), ANID, Chile

⁴ Laboratorio de Nanocelulosa y Biomateriales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago, Chile

* Correspondence: logence@uc.cl

Supplementary information

CNP Characterization

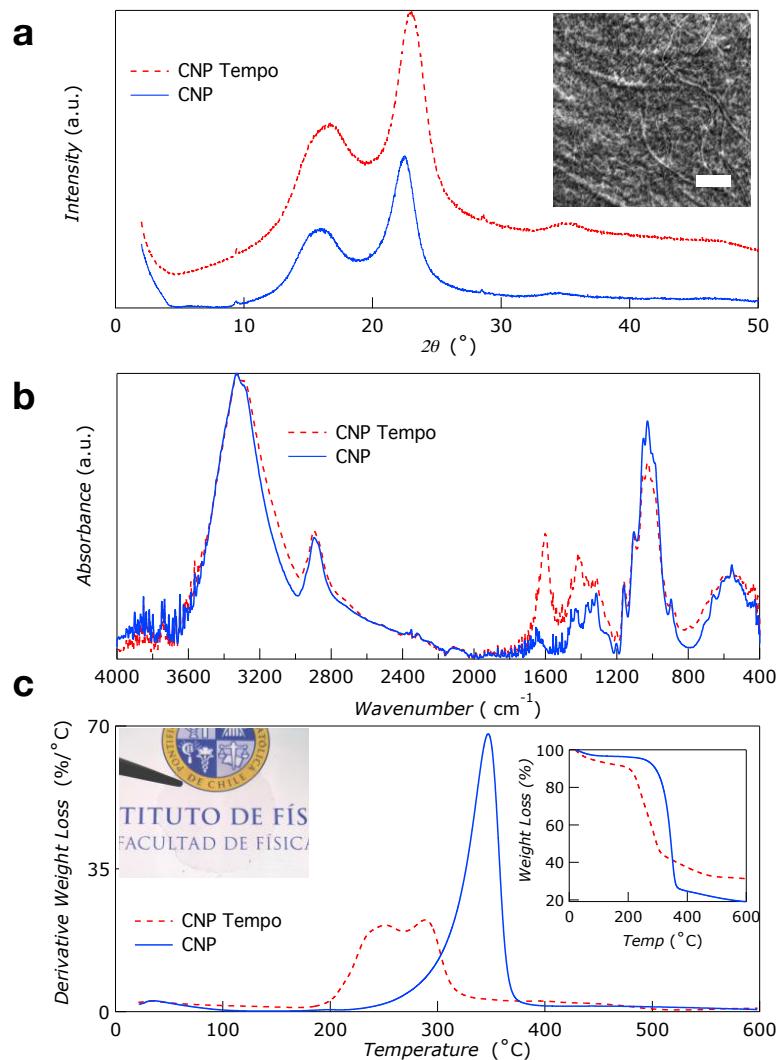
The characterization of the synthesized cellulose nanopaper (CNP) and TEMPO-oxidized CNP is presented in figure 2. Cellulose structure can vary greatly depending on the synthesis parameters that impact the proportion of amorphous domains and its chemical stability. The pulp had a solid content of 13.7 wt. % and an α -cellulose content of 90.2%. Its sugar composition was 74.2 % of glucans, 14.8 % of xylans and 0.8 % of arabinans among other constituents as quantified by high performance liquid chromatography. 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO) (98 %), NaClO (12 % solution), NaBr and NaOH (≥ 99 %) were purchased from Merck-Sigma Aldrich. All chemicals were used as received without further purification.

Powder XRD, Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetric, and derivative weight loss curves (DTG) data are given for CNP and Tempo treated CNP samples, in figure 2. The XRD data show a principal diffraction peak positioned at $2\theta = 22^\circ$, which correspond to the (200) diffraction plane. A single peaks is observed at $2\theta = 16^\circ$, which is surprising since some literature suggests that two peaks located at $2\theta = 14.9^\circ$ and $2\theta = 16.7^\circ$ are normally seen and corresponds to the (1-10) and (110) diffraction planes, respectively. It has been suggested that a single diffraction peak could be explained for crystallite with diamond-shaped cross section [1]. A small diffraction peak was recorded at $2\theta = 35^\circ$, and corresponds to the (004) diffraction plane. This suggests the cellulose is in its β crystalline form which is typical for plant cellulose [2].

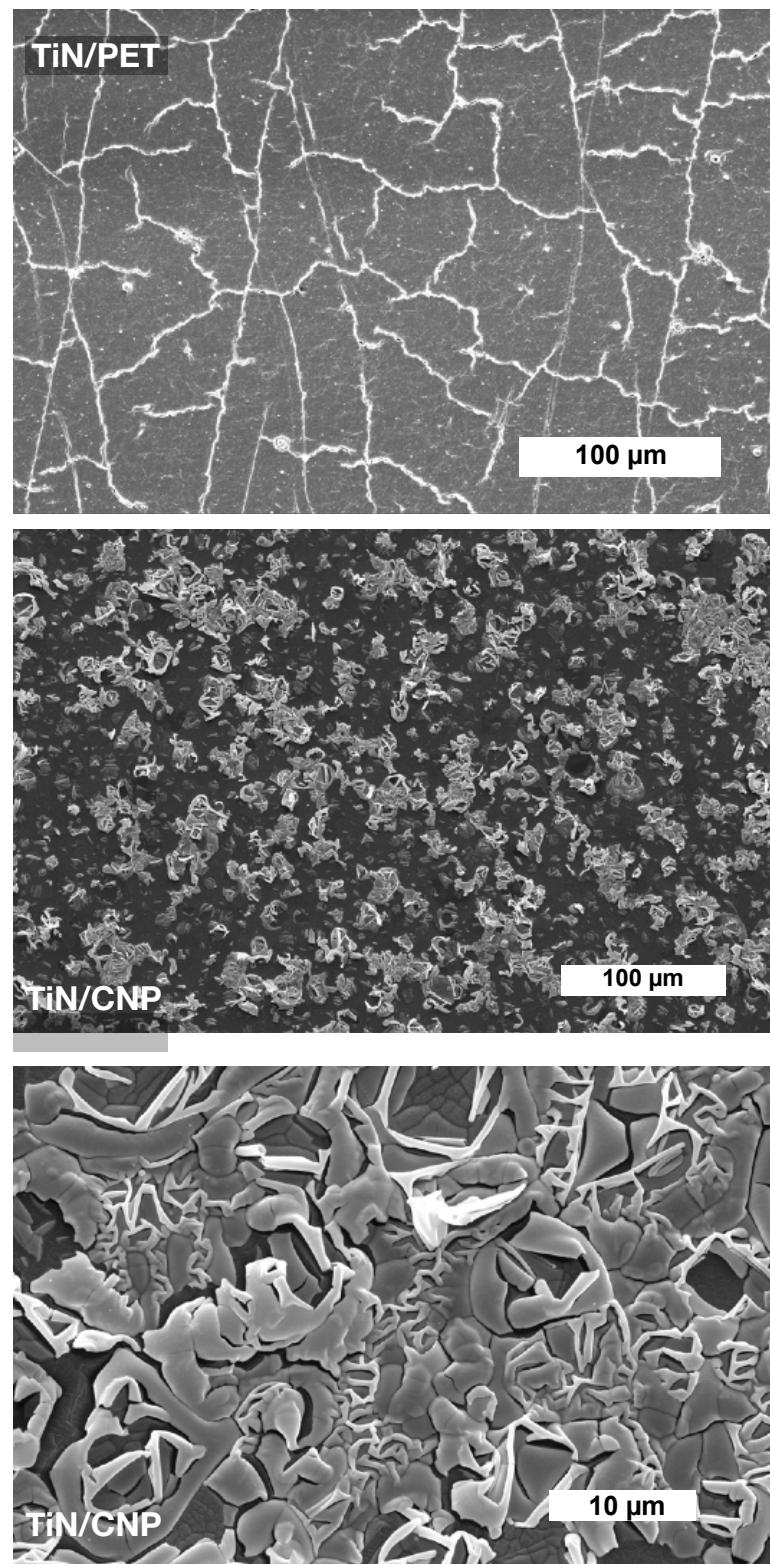
As expected, the FTIR data presented in figure 2 allowed identifying the presence of carboxylate moieties for CNP TEMPO when compared to CNP due to presence of an absorption peak located at a wavenumber position of 1610 cm^{-1} related to the vibrational motions of carbonyl moieties that belong to the molecular structure of carboxylate. This chemical modification is used to improve the production of individual and monodisperse nanofibers, and results in an increase in the optical transmittance of CNP substrate in the visible region [3].

With respect to TGA traces, one can observe a significant decrease in thermal stability for CNP Tempo compared to CNP. This suggests that CNP and CNP TEMPO substrates have to be exposed to adequate temperature conditions so as to avoid their thermal degradation upon applying further processing or fabrication steps.

Citation: Gence, L.; Quero, F.; Escalona, M.; Wheatley, R.; Seifert, B.; Diaz-Droguett, D.; Retamal, M.J.; Volkmann, U.; Bhuyan, H. Supplementary Information: TiN_xAg_yN_w Nanocomposites on Nanocellulose for Enhanced Flexible Electrodes based on wrinkled Titanium Nitride Nanocomposites deposited on TEMPO-Oxidized Nanocellulose. *Nanomaterials* **2024**, *1*, 0. <https://doi.org/>


Received:

Revised:


Accepted:

Published:

Copyright: © 2024 by the authors. Submitted to *Nanomaterials* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Figure 1. a) XRD data for CNP and Tempo Samples. The peak at $2\theta = 22^\circ$ indicates the presence of the crystalline region. The Inset shows a TiN-coated CNP substrate. b) FTIR Absorbance for CNP and Tempo treated CNP samples. c) Derivative Thermogravimetry (DTG) of CNP and CNP Tempo samples. The inset gives the corresponding TGA curves and a picture of a pristine CNP substrate.

Figure 2. SEM images of TiN coatings on CNP and PET substrate deposited at elevated temperature ($T > 200^\circ\text{C}$).

References

1. Duchemin, B. Size, shape, orientation and crystallinity of cellulose I by X-ray powder diffraction using a free spreadsheet program. *Cellulose* **2017**, *24*, 2727–2741. <https://doi.org/10.1007/s10570-017-1318-6>. 36
2. French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. *Cellulose* **2014**, *21*, 885–896. <https://doi.org/10.1007/s10570-013-0030-4>. 37
3. Lee, K.Y., Ed. *Nanocellulose and Sustainability: Production, Properties, Applications, and Case Studies*; CRC Press, 2018. 38

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 41

35
36
37
38
39
40
41
42
43