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Abstract: The growing importance of edge and fog computing in the modern IT infrastructure is driven by the 

rise of decentralized applications. However, resource allocation within these frameworks is challenging due to 

varying device capabilities and dynamic network conditions. Conventional approaches often result in poor 

resource use and slowed advancements. This study presents a novel strategy for enhancing resource allocation 

in edge and fog computing by integrating machine learning with blockchain for reliable trust management. 

Our proposed framework, called CyberGuard, leverages blockchain’s inherent immutability and 

decentralization to establish a trustworthy and transparent network for monitoring and verifying edge and fog 

computing transactions. CyberGuard combines the Trust2Vec model with conventional machine learning 

models like SVM, KNN, and Random Forests, creating a robust mechanism for assessing trust and security 

risks. Through detailed optimization and case studies, CyberGuard demonstrates significant improvements in 

resource allocation efficiency and overall system performance in real-world scenarios. Our results highlight 

CyberGuard’s effectiveness, evidenced by a remarkable accuracy, precision, recall, and F1-Score of 98.18%, 

showcasing the transformative potential of our comprehensive approach in edge and fog computing 

environments. 
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1. Introduction 

The proliferation of Internet of Things (IoT) devices and the emergence of decentralized 

computing paradigms, such as edge and fog computing [1], have dramatically transformed the 

landscape of information technology. As a result of these advancements [2], a new era of computing 

has begun, one that is characterized by the efficient processing of data at the network's edge, closer 

to data sources and end users [3]. Even though these technologies increase productivity and reduce 

delay, resource management and trust remain challenging issues. Resource allocation is a major 

problem in edge/fog computing systems. These environments consist of a large variety of 

heterogeneous devices with different networking and processing capabilities. 

This variability frequently makes it difficult for traditional resource allocation approaches to 

adjust, which has a negative impact on resource utilization and system performance [4]. To solve 

these difficulties, researchers have looked into how to integrate blockchain technology and machine 

learning models into edge and fog computing environments. A powerful answer for managing trust 

is provided by blockchain, which ensures that decisions about how to allocate resources are based on 

accurate and unchangeable facts. Blockchain has an immutable, decentralized ledger. Machine 

learning, on the other hand, provides the capability to evaluate and adapt to the dynamic nature of 

these situations. The general method for allocating resources efficiently is shown in Figure 1: 
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Figure 1. generic flow of optimizing the resource allocation. 

An example of a general flowchart or design for optimizing resource allocation is shown in 

Figure 1. In order to make the most use of their time, money, and people, businesses and individuals 

often resort to such a graphical representation. It provides a high-level overview of the planning and 

decision-making required for optimal resource utilization. 

However, there are certain limitations to current research [5]. The relationship between block 

chain and machine learning in resource allocation for edge/fog computing is not well understood, 

leaving room for more accurate models that can incorporate both technologies for enhanced 

performance. Although the pairing of machine learning with blockchain has been considered in a 

number of studies, a complete model that can manage resource allocation with a high degree of 

accuracy, precision, and efficiency has not yet been achieved.  

In the rapidly evolving landscape of distributed computing, the fusion of blockchain technology 

and fog computing has emerged as a promising paradigm, offering novel solutions to the challenges 

posed by decentralized applications. In this context, we present the CyberGuard model, a pioneering 

approach that seamlessly integrates blockchain-based trust management with the inherent 

advantages of fog computing. Fog computing, as an extension of cloud computing, brings 

computational resources closer to the edge of the network, enabling faster processing and reduced 

latency for applications. This proximity to end-users is particularly advantageous in scenarios with 

resource-constrained devices, such as those found in the Internet of Things (IoT). However, the 

dynamic and decentralized nature of fog computing environments demands robust trust 

management systems to ensure the integrity and security of transactions. The CyberGuard model 

addresses this demand by leveraging the immutable and decentralized nature of blockchain 

technology. Our approach establishes a transparent and trustworthy network for monitoring and 

validating business transactions within fog computing environments. This integration of blockchain 

ensures that decisions regarding resource allocation are grounded in verifiable and secure data, 

mitigating the risks associated with fraudulent or malicious activities. This paper aims to provide a 

comprehensive understanding of the CyberGuard model, elucidating its foundational principles, 

design considerations, and the symbiotic relationship between blockchain and fog computing. 
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Through a meticulous exploration of our model, we showcase how it surpasses existing approaches 

by enhancing trust, security, and efficiency in resource allocation. 

In view of these constraints, this work proposes the "Cyber Guard Model," a novel and 

comprehensive approach for resource allocation optimization in edge and fog computing settings. 

The Cyber Guard Model integrates cutting-edge machine learning algorithms with block chain-based 

trust management to revolutionize resource allocation, enhance system security, and increase overall 

system performance. In the sections that follow, we analyze the procedures, experiments, and results 

of this revolutionary approach, showcasing its applicability to actual circumstances. The 

contributions of this study are as follows: 

• Our work represents a significant contribution by seamlessly integrating techniques from 

distributed frameworks for AI, cyber-physical systems, and smart blockchain. 

• We introduce a novel holistic model, CyberGuard AI, which stands out in its approach to 

resource allocation in edge/fog computing environments. Unlike existing models, CyberGuard 

AI takes advantage of the inherent properties of blockchain, such as immutability and 

decentralization, to establish a trustworthy and open network for monitoring and confirming 

edge/fog business transactions. 

• CyberGuard AI incorporates Trust2Vec, a unique element not commonly found in existing 

approaches. This integration leverages support vectors to enhance the trust score predictions, 

thereby improving the decision-making process for resource allocation. 

• Our study goes beyond traditional resource allocation methods by employing machine learning 

approaches for dynamic and efficient resource management. By utilizing massive volumes of 

data from edge/fog devices, our model adapts to new information and requirements, making 

the most effective use of available computing power, network bandwidth, and storage space. 

• The ensemble model, enhances resource allocation predictions by combining results from 

multiple machine learning algorithms, including Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), and Random Forests. This ensures a more robust and reliable estimation of 

trust security danger compared to single-model approaches. 

• We provide a thorough performance evaluation of our proposed model through rigorous case 

studies and simulations. The results showcase the efficacy and viability of our approach in 

various real-world circumstances, demonstrating its superiority in resource allocation within 

edge/fog computing environments. 

While existing models may touch upon blockchain, CyberGuard AI stands out by placing 

blockchain at the core of trust management. It significantly reduces the risks of fraudulent or 

malicious attacks by ensuring that resource distribution decisions are based on immutable and 

trustworthy data. Unlike traditional resource allocation methods, our model leverages machine 

learning to dynamically adapt to changing conditions. This adaptability ensures efficient resource 

usage across network nodes, contributing to improved system performance. SecuroBlend's ensemble 

learning approach distinguishes our work from models that rely on a single algorithm. The 

combination of SVM, KNN, and Random Forests enhances the robustness of our predictions, 

particularly in the context of resource allocation. In summary, our contributions lie in the seamless 

integration of decentralized frameworks, the introduction of novel models like CyberGuard AI and 

SecuroBlend, and the utilization of blockchain and machine learning for effective and dynamic 

resource allocation. The demonstrated superiority through rigorous evaluations further establishes 

the novelty and relevance of our work in the field. 

2. Related Work 

Recent growth in edge and fog computing has stimulated significant research efforts in 

distributed systems trust management and resource allocation [6]. This section summarizes major 

works that have advanced edge/fog computing and investigated cutting-edge methods for resource 

allocation and trust management. 
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2.1. Blockchain Integration for Trust-Based Resource Allocation 

For enhancing resource allocation trust in edge and fog computing situations, block chain 

technology has generated a lot of interest. In a groundbreaking study, researchers looked into the 

usage of block chain in edge/fog computing [6], looking into its potential to boost trust in resource 

allocation and, ultimately, produce a more secure and decentralized edge environment. Another 

study [7] proposed a novel method for allocating resources for fog computing that uses block chain 

to build a decentralized and immutable record, enhancing both resource usage and trust. Research 

has suggested a block chain-based trust management system and an architecture for allocating edge 

computing resources [8]. It has been shown that this distributed ledger can enhance real-time 

resource allocation and edge computing resource consumption. In a study [9] on Mobile Edge 

Computing (MEC), a trust architecture based on block chains was presented. It successfully thwarts 

self-serving edge attackers and leverages reinforcement learning-based CPU allocation for improved 

computing efficiency. According to research [10], block chain technology may be used to protect and 

optimize resource allocation in edge/fog computing, emphasizing the advantages of decentralization 

in enhancing trust, security, and resource efficiency. This is significant. Figure 2 depicts the block 

chain integration for trust-based resource allocation. 

 

Figure 2. Block chain Integration for Trust-Based Resource Allocation. 

Integrating blockchain technology for trustworthy resource distribution is shown in Figure 2. To 

ensure fairness, safety, and confidence in resource distribution, blockchain is deployed as a backbone 

technology here. This likely depicts the use of blockchain technology to enhance trust and 

accountability in resource management systems, as seen through its application to the fair and 

dependable allocation of resources among diverse parties or entities. 

2.2. Machine Learning-Driven Resource Optimization 

Machine learning has developed into a practical method for dynamic resource allocation in edge 

computing. A study [11] shown how machine learning techniques may be utilized to optimize 

resource distribution in edge computing environments, which will increase overall effectiveness and 

performance. An innovative approach was presented in [12], combining data mining and machine 

learning to identify a more precise resource distribution, to assess the reliability of edge nodes for fog 

computing. Research [13,14] looked at how different machine learning techniques could be used to 

assess the dependability of fog computing powered by block chains. The study investigated how 
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machine learning methods that evaluate fog node trust can enhance resource allocation and system 

performance. Research [15,16] addressed how accurate demand forecasting for cloud computing 

resource requirements might lead to improved resource allocation, making sure that fog nodes are 

ready to manage workload shifts. novel models and hybrid techniques [17]. A number of studies 

have proposed distinct hybrid methodologies and models that combine block chain and machine 

learning for resource distribution and trust management. A hybrid solution integrating block chain 

and machine learning was introduced in [18] to address trust issues in edge/fog computing. This 

technique enhanced participant trust and improved resource allocation choices. Since its debut in 

[19,20], Trust-as-a-Service (TaaS), which provides trust evaluations as a service utilizing block chain 

and machine learning, has increased the dependability and efficiency of edge computing ecosystems. 

The use of block chain technology and machine learning to optimize resource allocation while 

following to energy-saving rules and promoting greener settings was demonstrated in [21,22], which 

offered a way for allocating resources in an energy-efficient manner for edge/fog computing. A 

mechanism for dynamic resource distribution in fog computing was developed using block chain 

technology [23,24], demonstrating how the immutability and transparency of the block chain may 

boost resource efficiency in fog computing. A trust-aware architecture for distributing edge 

computing as-sets was described in [25], using block chain and machine learning to provide real-time 

trustworthiness evaluations for secure and efficient resource allocation. In conclusion, these studies 

have had a significant influence on the fields of machine learning-driven resource allocation, edge/fog 

computing, and block chain integration. As we will examine in the next sections, there is still room 

for innovation and advancement, which is what our proposed "Cyber Guard Model" aims to do. 

Table 1. Comparative Table. 

Reference Technique Outcome 

[1] RL, Blockchain 
Introduces a trust mechanism using RL and blockchain 

to address selfish edge attacks in MEC. 

[2] 

Privacy-Preserving 

Blockchain with Edge 

Computing 

Presents TrustChain, a privacy-preserving blockchain, 

integrating with edge computing for enhanced trust. 

[8] 

Decentralized blockchain 

platform for cooperative 

edge computing 

Introduces CoopEdge, a blockchain-based platform for 

collaborative edge computing. 

[9] Survey 
Provides a comprehensive survey on orchestration 

techniques in fog computing. 

[12] 
Blockchain-based 

banking 
Investigates blockchain-based banking solutions. 

[13] 

Blockchain-based 

resource allocation model 

in fog computing 

Proposes a resource allocation model using blockchain 

in fog computing. 

[20] 
Federated Learning, 

Blockchain 

investigates the potential and pitfalls of integrating 

federated learning with blockchain in edge computin. 

[21] 

Blockchain-Based 

Applications and the Rise 

of Machine Learning 

problems and opportunities for implementing 

machine learning in blockchain-based smart 

applications. 

3. Methodology 

The technique used to optimize resource distribution in edge/fog computing scenarios is 

thoroughly explained in this section. Our strategy combines machine learning techniques with trust 

management based on blockchain. We outline the exact procedures for creating, putting into practice, 

and evaluating the suggested system. This research's major objective is to increase the efficiency, 
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security, and dependability of resource allocation in distributed systems, especially in the context of 

edge/fog computing. Given the increase in networked devices, each of which has distinct capabilities 

and network conditions, an innovative approach that can dynamically allocate resources while 

guaranteeing reliability and data integrity is becoming increasingly important. 

In order to accomplish this, we offer a cutting-edge approach that integrates blockchain and 

machine learning. Because it is a decentralized and irreversible distributed ledger technology, block 

chain provides the ideal platform for managing trust relationships and ensuring data authenticity. 

We propose a block chain-based trust management framework to assist our resource allocation 

choices. The dependability and openness of this system will serve as the basis for all decisions about 

the allocation of resources. A major challenge is the vast volume of data that edge and fog sensors 

create. Here, machine learning algorithms take center stage and make it possible for this data to be 

automatically examined and evaluated. Machine learning provides dynamic resource allocation, 

which maximizes the utilization of existing network resources by adapting to changing conditions 

and requirements. We present the Cyber Guard model as a substantial advancement of our 

techniques. An effective machine learning technique for predicting levels of trust security danger is 

the Cyber Guard model. By combining the advantages of several machine learning approaches with 

Trust2Vec graph embedding, the Cyber Guard model offers better accuracy in anticipating trust 

security risks. By incorporating the unique insights provided by several machine learning classifiers 

within the Cyber Guard model, the strategy emphasizes group decision-making. In comparison to 

the traditional technique of resource distribution, this cooperative strategy represents a major 

improvement. We focus on combining machine learning, block chain-based trust management, and 

the incorporation of the Cyber Guard model in our strategy, to sum up. With the help of this complete 

strategy, resource allocation in edge/fog computing environments is efficient, secure, and adaptable 

to changing conditions and demands. 

Our research methodology is intricately designed to optimize resource distribution in the 

challenging context of edge/fog computing scenarios. The key focus is on leveraging the inherent 

advantages of blockchain-based trust management and the adaptability of machine learning models, 

culminating in the development of our innovative CyberGuard model. 

Blockchain-Based Trust Management: 

To instill trust and transparency in resource allocation decisions, we employ a blockchain-based 

framework. The immutability and decentralized nature of blockchain technology form the backbone 

of our trust management system. Each transaction, pertaining to resource allocation or decision-

making, is securely recorded on the blockchain, ensuring a tamper-resistant and auditable trail. This 

not only enhances the integrity of the decision-making process but also mitigates the risks associated 

with malicious attacks or unauthorized alterations. 

Machine Learning for Dynamic Resource Management: 

Our approach integrates machine learning algorithms, including Support Vector Machines 

(SVM), K-Nearest Neighbors (KNN), and Random Forests, within the CyberGuard model. These 

algorithms are trained on extensive datasets from edge/fog devices, enabling them to dynamically 

adapt to changing network conditions, device capabilities, and application requirements. The 

machine learning component ensures that resource allocation decisions are not static but evolve in 

real-time based on the evolving dynamics of the edge/fog computing environment. 

Ensemble Model - CyberGuard AI: 

A significant contribution of our methodology is the development of CyberGuard AI, an 

ensemble model that harnesses the collective intelligence of multiple machine learning algorithms. 

By combining the results of SVM, KNN, and Random Forests, CyberGuard AI achieves a more robust 

and accurate prediction of trust scores, resource allocation decisions, and security threat levels. This 

ensemble approach enhances the overall reliability and performance of resource distribution in 

edge/fog computing. Figure below shows the flow of proposed work: 
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3.1. Dataset Description 

Records on resource allocation and trust management in edge/fog computing settings make up 

the dataset used in this study. It includes a wide variety of data from various edge and fog computing 

nodes, including both qualitative and numerical properties. The main goal of this dataset is to look 

at how machine learning and block chain-based trust management may be combined to improve the 

efficiency of resource allocation in edge/fog computing. The table below provides thorough details 

on each component of the dataset: 

Table 2. Dataset Feature Description. 

Feature Description 

Device ID A unique identifier for each edge/fog computing device. 

Timestamp The timestamp indicating the date and time of data collection. 

CPU Usage 
The percentage of CPU utilization by the computing device at the 

given timestamp. 

Memory Usage 
The percentage of memory (RAM) utilization by the computing device 

at the given timestamp. 

Network Bandwidth 
How many megabits per second (Mbps) were being used by the 

network at that precise moment in time. 

Data Locality 
A categorical feature indicating the locality of the data processed by 

the device (e.g., Local, Nearby, Remote). 

Latency 
The latency in milliseconds (ms) for data transmission or processing at 

the given timestamp. 

Energy Consumption 
The energy consumption in watts (W) by the computing device at the 

given timestamp. 

Resource Allocation 

Decision 

A binary feature representing the resource allocation decision (1 for 

successful allocation, 0 for unsuccessful). 

Trust Score 
A numerical score representing the trustworthiness of the computing 

device in the network. 

Block chain Validation 

Status 

A categorical feature indicating the status of block chain validation for 

the device (e.g., Valid, Invalid). 

Fog Node Type 
A categorical feature indicating the type of fog node (e.g., Fog, Edge) 

where the device is located. 

Temperature 
The local temperature measured in degrees Celsius where the 

computer is being used. 

Humidity 
The relative humidity percentage (%) at the location of the computing 

device. 

Security Threat Level 
A scale from low to high that indicates how secure the edge/fog 

computing environment is. 

There are a total of 14 distinct features in the dataset, each of which represents a different aspect 

of the edge/fog computing environment, trust management, and resource distribution. These 

components have been thoughtfully designed to aid in achieving the objectives of the study and make 

it simpler to evaluate the suggested integrated methodology. This integrated approach combines 

machine learning methods with block chain-based trust management to enhance resource allocation 

and overall system effectiveness in edge/fog computing environments. 

Figure 4 allows us to check the real distribution of the dataset's features. The feature values are 

displayed on the x-axis, and the occurrence count or frequency is displayed on the y-axis. This graphic 

facilitates understanding of the breadth and depth of variance for each dataset attribute. A scatter 

plot matrix with each characteristic displayed in relation to every other feature is illustrated in Figure 

3. The distribution of each trait along the diagonal of the matrix is often displayed. For discovering 

potential connections or patterns between features in a collection, pair plots are incredibly helpful. 
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For each feature in the dataset, box plots are displayed in Figure 3. The median, quartiles, and outliers 

of a data collection are graphically represented by box plots. This might aid in your understanding 

of the average and standard deviation for each attribute. The estimated data kernel density is shown 

in Figure3. They make it simpler to compare data densities at various scales by giving more details 

on each feature's density and distribution. 

 

Figure 3. Proposed Working Flow. 
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Figure 4. Distribution of features. 

In Figure 5, we see a collection of pair plots that illustrate the interplay of all the features in a 

dataset. These graphs make it possible to see connections between variables, which can help uncover 

hidden patterns and tendencies in the data. 
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Figure 5. Pair plots of all features. 

3.2. Data Pre-Processing 

Data preparation is the process of converting raw data into a format suitable for analysis and 

modeling. It assists in cleaning, organizing, and preparing the data to improve its quality and make 

it more suitable for machine learning algorithms. 

3.3. Feature Engineering 

This graph shows the relationships between different dataset features and demonstrates how 

crucial feature engineering is to helping machine learning models recognize patterns and generate 

precise predictions. A correlation matrix exposes the web of links between them by displaying which 

traits are favorably and adversely associated with one another. While traits with a high correlation to 

other features can be eliminated to avoid multicollinearity during feature selection, traits with a high 

correlation to the target variable can be very effective predictors. 

Relationships between pairs of variables or features in a dataset can be visualized using a 

correlation matrix, as shown in Figure 6. The magnitude and direction of these associations are 

usually represented by a color code or numerical value. Understanding the interplay between 

multiple data qualities is facilitated by this matrix, which indicates whether variables are positively, 

adversely, or not statistically associated with each other. 
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Figure 6. Correlation Matrix. 

3.4. Machine Learning Models 

3.4.1. Support Vector Machine (SVM) 

The reliable Support Vector Machine (SVM) supervised machine learning method is essential 

for both classification and regression issues. In the ensemble prediction of CyberGuard, SVM is one 

of the core models.  

The Support Vector Machine (SVM) serves as a pivotal model within the ensemble predictions 

of CyberGuard, contributing to both classification and regression tasks. 

The internal structure of SVM, depicted in Figure 7, showcases its components such as support 

vectors, decision borders, and the margin. Mathematically, the SVM optimization problem can be 

formulated as follows:  

Minimize ∥ w ∥  (to maximize the margin)    

subject to the constraint    

yi(w ⋅ xi + b) ≥ 1 − ξi    

for all data points (xi, yi)  

The inclusion of slack variables (𝜉𝑖)  addresses misclassifications, while the parameter C 

balances margin maximization and misclassification minimization. 
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Figure 7. SVM Architecture. 

The internal structure of an SVM is shown in Figure 7. For classification and regression, 

supervised machine learning algorithms like the support vector machine (SVM) are useful. To better 

explain how SVMs function and how they may be applied to solve certain problems, this picture 

likely gives a visual depiction of the components and structure of an SVM model, such as support 

vectors, decision borders, and the margin. 

The SVM optimization issue can be written in mathematical notation as: 

• Given a training dataset 𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)} , where xi is the feature vector and 

yi is the corresponding class label (-1 or +1). 

• Identify the optimum weight the hyperplane that splits the data points into classes and 

optimizes the margin can be defined by the vector w and the bias term b. 

• The objective function is to minimize ||𝑤|| (to maximize the margin) subject to the constraint 

𝑦𝑖(𝑤 ∗  𝑥𝑖 +  𝑏) >=  1 −  𝜉𝑖 for all data points (𝑥𝑖, 𝑦𝑖). 

• The slack variables 𝜉𝑖 are introduced to handle misclassifications, and the C parameter controls 

the trade-off between maximizing the margin and minimizing the misclassifications. 

3.4.2. K-Nearest Neighbours 

K-Nearest Neighbors (KNN) is a popular supervised machine learning method for both 

classification and regression. As part of the optimization of edge/fog computing resources, KNN can 

be used to predict a device's security risk level from its CPU and memory consumption.  K-Nearest 

Neighbors (KNN) is a supervised learning method applied to predict security risk levels in edge/fog 

computing based on device resource consumption. Figure 8 illustrates the structure of the KNN 

algorithm, emphasizing its principle of identifying neighbors based on a defined K. 
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Figure 8. KNN Architecture. 

In Figure 8, we see how a K-Nearest Neighbors (KNN) algorithm is structured. In the realm of 

machine learning, KNN is a supervised technique used for classification and regression. The notion 

of identifying the nearest neighbors to a data point based on a set value of "K" (the number of 

neighbors to consider) is likely represented graphically in this picture, showing how KNN works. It 

may also show how KNN uses the majority class or average value of a data point's K-nearest 

neighbors to determine that data point's classification or value. 

The formula for KNN is as follows: 

• As an illustration, consider dataset D, where x stands for a device and y for a type of security 

risk. 

• Calculate the distance between the data points x and d in dataset D using the preferred distance 

metric. 

• Select the K data points that are closest to x as your K nearest neighbors. 

• Assign y to x after classifying it as a member of the same group as the majority of its K closest 

neighbors. 

• The optimal way to assign y to x in a regression is to use the mean of the y values of the K nearest 

neighbors. 

3.4.3. Random Forests 

Random Forests is an example of a Bayesian machine learning algorithm. The optimization of 

security-related edge/fog computing resource allocation is one categorization issue that significantly 

benefits from this approach. Random Forests is popular because it is easy to use, efficient, and 

accurate when processing high-dimensional data. The internal structure of Random Forests (RF) is 

elucidated in Figure 9, showcasing its components like decision trees and the ensemble approach. 

Mathematically, the classification procedure involves computing posterior probabilities and selecting 

the class label with the highest probability. 
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Figure 9. RF Architecture. 

The internal structure of a Random Forest (RF) model is depicted in Figure 9. The goal of the 

ensemble machine learning technique known as Random Forest is to increase prediction accuracy 

while decreasing overfitting by combining numerous decision trees. It's possible that this diagram 

illustrates the structure and essential parts of a Random Forest model, including decision trees, 

feature selection, and the voting method for making predictions. Users are given a better grasp of the 

inner workings of Random Forest models and their potential applications in a wide range of data 

analysis and machine learning endeavours. 

The Random Forests classification procedure can be expressed mathematically as follows: 

• To clarify, we will refer to the "training dataset" as "D," the "input sample" as "x," and the "output 

class" as "y". 

• For each class label c in D, calculate the posterior probability P(y=c|x) using Bayes' theorem and 

the naive assumption. 

• Select the class label c with the highest posterior probability P(y=c|x) as the predicted class for 

the input sample. 

Massive datasets with high-dimensional characteristics can be processed using Random Forests 

with a low overhead of processing. It is used well in a variety of applications, including text 

categorization, spam filtering, and sentiment analysis, because to its simplicity of use and respectable 

performance, particularly when the naive assumption is suitable for the data. 

3.4.4. CyberGuard Model 

The Cyber Guard model, an ensemble model that integrates various machine learning 

approaches, can be used to anticipate security threat levels in edge/fog computing resource allocation 

optimization more precisely and reliably. It integrates the several forecasts from each of its individual 

models to create a single, accurate forecast. The algorithm details the steps from initializing datasets 

to predicting trust scores, resource allocation decisions, and security threat levels. It incorporates 
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aspects from SVM, KNN, and RF, showcasing the synergy of these models in CyberGuard. Let's 

examine the Cyber Guard model in detail: 

• As an illustration, consider dataset D, where x stands for a device and y for a type of security 

risk. 

• In Cyber Guard, use Grid SearchCV to do hyper parameter tuning to ascertain the ideal values 

for each algorithm's base model (SVM, KNN, and RF). 

• It is recommended to hyperparameter-tune each base model and then train it on dataset D. 

• For a given input sample x, the level of security risk is predicted by each base model 

separately(𝑦𝑝𝑟𝑒𝑑𝑠𝑣𝑚
, 𝑦𝑝𝑟𝑒𝑑𝑘𝑛𝑛

, 𝑦𝑝𝑟𝑒𝑑𝑛𝑏
). 

• CyberGuard combines the predictions (𝑦𝑝𝑟𝑒𝑑𝑠𝑣𝑚
, 𝑦𝑝𝑟𝑒𝑑𝑘𝑛𝑛

, 𝑦𝑝𝑟𝑒𝑑𝑛𝑏
)  of all base models using 

voting='hard'. 

Class 'y' at the output is decided by a vote of the base models, with the winner being the class 

that was predicted the most frequently. 

Shown in Figure 10 is the "Cyber Guard Model." This diagram probably depicts the framework 

or constituent parts of a model developed for use in cyberspace. The term "cyber security" refers to 

the coordinated efforts of several entities to identify and neutralize cyber threats and improve the 

safety of computerized infrastructures. In the context of cyberspace, the graphic summarizes the 

operation of this paradigm [25]. 

 

Figure 10. Cyber Guard Model. 
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Algorithm 1 Mathematical Algorithm for CyberGuard 

1. Input:  

2. Training dataset 𝐷 =  {(𝑥𝑖 , 𝑦𝑖)}, where 𝑥𝑖  is the feature vector, 𝑦𝑖  is the class label, and 𝑁 is the 

number of data points. 

3. Number of support vectors 𝑀, number of neighbors 𝐾, number of trees 𝑇. 

4. Output:  

5. Predicted trust score T, resource allocation decision R, and security threat level S for a new data point. 

6. Initialize empty lists S_support_vectors, N_neighbors, and 𝑇𝑡𝑟𝑒𝑒𝑠. 

7. For 𝑚 =  1 𝑡𝑜 𝑀: 

8. Randomly select a data point (𝑥𝑖 , 𝑦𝑖) from 𝐷. 

9. Add (𝑥𝑖 , 𝑦𝑖) to S_support_vectors. 

10. For k = 1 to K: 

11. Select K nearest neighbors of the new data point x_new from D based on a distance metric (e.g., 

Euclidean distance). 

12. Add the K neighbors to N_neighbors. 

13. For t = 1 to T: 

14. Sample a bootstrap dataset D_t from D with replacement. 

15. Initialize a decision tree T_t. 

16. While stopping criteria not met (e.g., maximum depth or minimum samples per leaf): 

17. Select a random subset of features for node splitting. 

18. Find the best feature and split point using a criterion (e.g., Gini impurity or entropy). 

19. Split the node into child nodes. 

20. Add T_t to T_trees. 

21. Predict Trust Score: 

22. Initialize an empty list T_predictions to store trust score predictions for each tree. 

23. For t = 1 to T: 

24. Predict the trust score T_t for the new data point x_new using tree T_t. 

25. Add T_t to T_predictions. 

26. Aggregate trust score predictions using an aggregation method (e.g., averaging). 

27. Return the final predicted trust score T. 

28. Predict Resource Allocation Decision and Security Threat Level: 

29. Initialize empty lists R_predictions to store resource allocation decisions and S_predictions to store 

security threat level predictions for each tree. 

30. For t = 1 to T: 

31. Predict the resource allocation decision R_t and security threat level S_t for the new data point x_new 

using tree T_t. 

32. Add R_t to R_predictions and S_t to S_predictions. 

33. Aggregate resource allocation decision predictions using an aggregation method (e.g., majority 

voting). 

34. Aggregate security threat level predictions using an aggregation method (e.g., majority voting). 

35. Return the final predicted resource allocation decision R and security threat level S. 

The Cyber Guard model takes advantage of the extra advantages of numerous algorithms and 

associated hyperparameters, which enhances prediction performance compared to utilizing a single 

model. The combination of SVM, KNN, and RF in Cyber Guard makes it an effective tool for 

optimizing edge/fog computing resource allocation and enhancing security threat level prediction. 

Our evaluation employs a comprehensive approach where each machine learning model (SVM, 

KNN, Random Forests) and the ensemble model (CyberGuard AI) undergoes rigorous testing using 

diverse datasets and scenarios. We utilize standard metrics such as accuracy, precision, recall, and 

F1-Score to assess the performance of each model. Cross-validation and, where applicable, a holdout 

test set ensure robust evaluations. Furthermore, we conduct comparative analyses to highlight the 

strengths of the ensemble model in improving resource allocation. The key innovation in our work 

lies in integrating blockchain for trust management in edge/fog computing. Blockchain operates as 
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an immutable and decentralized ledger, providing a transparent and secure record of transactions. 

In our proposed approach, we use blockchain to validate and secure business transactions in the 

edge/fog environment. Each transaction or decision related to resource allocation is recorded as a 

block on the blockchain. Smart contracts are employed to automate and enforce trust rules, ensuring 

that only validated and authorized transactions contribute to the decision-making process. This 

application of blockchain technology enhances the security and reliability of trust management, 

making it resilient to fraudulent or malicious activities. The decision to utilize blockchain is justified 

by its inherent features of immutability, decentralization, and transparency. Immutability ensures 

that once a transaction is recorded on the blockchain, it cannot be altered, providing a tamper-proof 

history of decisions.  

4. Results and Discussion 

The Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Nave Bayes (RF), and 

ensemble model Cyber Guard are just a few of the machine learning models we use to communicate 

the results of our work. We contrast and compare each model's precision, recall, and F1-score. We 

also look into how the model's accuracy is impacted by features and data pretreatment. A sizable 

dataset that contained information on the distribution of edge/fog computing resources and the 

seriousness of security risks was used for the trials. After they have been assessed and compared, it 

will be evident how useful and applicable these models are for predicting the security threat level in 

fog computing settings. We also look into the Cyber Guard ensemble model, which combines the 

findings of numerous base models into a single, accurate assessment of the security threat. We 

anticipate that this comparison will clarify the relative benefits of the various approaches and their 

possible use in diverse contexts. 

Figure 11 shows a comparison of predicted CPU and memory utilization from the Cyber Guard 

model. Each data point contains the CPU and memory utilization values for the test set. The color of 

each data point indicates the verified level of security risk connected to that particular combination. 

The distinction between threat levels and the relationship between CPU and memory usage are made 

clearer by this depiction in the Cyber Guard model. The data points should create distinct clusters or 

patterns that correspond to different threat levels if the model is successful in predicting security 

threat levels based on CPU and memory utilization. 

 

Figure 11. CPU usage vs Memory Usage predicted by Cyber Guard Model. 

The distribution of the data locality values across the dataset is depicted in Figure 12. The 

proximity of data sources to the fog computing nodes is referred to as "data locality". Using this 

picture, we can investigate the distribution of location values in the data and search for trends. 

Understanding the distribution of data locality is crucial for optimizing resource distribution in a fog 

computing system. It assists in locating the best data processing hubs and aids in making intelligent 

resource allocation decisions. 
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Figure 12. Data Locality Distribution. 

Figure 13 compares the predicted trust scores of the Cyber Guard model with the actual status 

of the data points' blockchain validation. The trust score of each edge/fog node rates the reliability of 

that node. The block chain's validation status informs whether or not the transactions that have been 

recorded there are valid. By comparing the predictions to the validation state of the blockchain, we 

can assess how well the model predicts trust scores. Understanding how trustworthy the Cyber 

Guard model is in terms of handling trust requires this evaluation. 

 

Figure 13. Trust Score prediction vs Blockchain Validation. 

The variety of security concerns present in the data set is depicted in Figure 14. The frequency 

of each hazard level in the fog computing environment is depicted in this graph. Understanding the 

spectrum of potential security threat levels is necessary for identifying system vulnerabilities and 

threats. It is helpful for assessing the relative significance of potential threats and developing 

strategies to deal with them. This approach also allows us to assess the model's accuracy in predicting 

security hazard ratings throughout the entire dataset. 
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Figure 14. Security Threat Levels. 

4.1. SVM Performance 

Figure 15 presents the results of the performance evaluation of the Support Vector Machine 

(SVM) model. The plot displays the SVM model's various performance indicators, including 

accuracy, precision, recall, and F1-score. Each measure's value is represented by a bar, and the error 

bars that go with it show the confidence interval that goes with it. With this representation, we can 

assess how accurate the SVM model is at identifying potential security issues. Higher accuracy, 

precision, recall, and F1-score indicate a model is functioning better. 

 

Figure 15. SVM Model Metrics. 

Figure 16 displays the SVM-generated decision border. The decision boundary delineates the 

various classes or levels of security threat in the feature space. The SVM model makes its judgments 

about the relative threat of incoming data bits in this zone. The decision boundary is determined by 

the model's hyperparameters and the support vectors acquired during training. By visualizing the 

SVM model's decision border, we may gain insight into the model's complexity and precision in 

categorizing security hazard levels based on the attributes. Any degree of precision required for 

threat level prediction necessitates a decision boundary that is sufficiently generalizable and well-

defined. 
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Figure 16. SVM Decision Boundary. 

4.2. KNN Performance 

Figure 17 displays the results of the performance evaluation of the K-Nearest Neighbors (KNN) 

model. Just a few of the performance indicators shown in the plot, which was created using the KNN 

model, include accuracy, precision, recall, and F1-score. Each bar in the plot's error bars represents 

the value of the relevant statistic and displays a confidence interval for the data. With the help of this 

representation, we can assess how well the KNN model predicts potential security vulnerabilities. As 

a model's accuracy, precision, recall, and F1-score values increase, its performance also gets better. 

 

Figure 17. KNN Model Performance. 

The produced decision boundary of the KNN model is shown in Figure 18. The KNN technique 

determines the decision boundary between classes or security threat levels in the feature space via a 

nearest neighbor search. It symbolizes the area where incoming data items are grouped into one of 

multiple risk categories based on the majority class among their k nearest neighbors in the KNN 

model. Plotting the decision boundary reveals the KNN model's classification regions and its capacity 

to distinguish across security threat categories based on feature properties. You must have a clear 

grasp of the decision boundary in order to make sense of the KNN model's predictions and confirm 

its generalizability. 
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Figure 18. KNN Decision Boundary. 

4.3. Random Forests Performance 

Figure 19 displays the results of the performance assessment of the RF model. Performance 

indicators for the RF model, such as accuracy, precision, recall, and F1-score, are shown in the graph. 

While the bars themselves display the metric's value, the error bars in the plot provide a confidence 

interval. The graph enables us to assess the accuracy of the Random Forests model's security risk 

prediction capabilities. As a model's accuracy, precision, recall, and F1-score values increase, its 

performance also gets better. 

 

Figure 19. Random Forests Performance. 

Figure 20 displays the decision boundary for the Random Forests model. The decision boundary 

separates the feature space into several groups or levels of security threat using the probabilistic Nave 

Bayes algorithm. It shows the areas where the Ran-dom Forests model assigns various levels of 

hazard to incoming data pieces using the maximum likelihood estimation of the class probabilities 

and the feature characteristics. We gain a better understanding of the classification regions and the 

Nave Bayes model's ability to distinguish between distinct security threat categories based on feature 

attributes by visualizing the decision boundary. Understanding the decision boundary is crucial for 

assessing the predictive and generalizable capabilities of the Random Forests model. 
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Figure 20. RF Decision Boundary. 

4.4. CyberGuard Model Performance 

The outcomes of a thorough evaluation of the capabilities of the Cyber Guard model are shown 

in Figure 21. The image provides an overview of the model's prediction abilities for categorizing 

security threat levels, including accuracy, precision, recall, and F1-score. Each bar in the plot's error 

bars represents the value of the relevant statistic and displays a confidence interval for the data. The 

figure demonstrates how successfully the Cyber Guard model anticipates security threats. High 

values of accuracy, precision, recall, and F1-score, which demonstrate that the model can consistently 

predict the seriousness of security threats, are indicators of superior performance. 

 

Figure 21. Cyber Guard Model Performance. 

Figure 22 shows the output decision boundary for the Cyber Guard model. The decision 

boundary distinguishes between classes or levels of security hazard in the feature space using an 

ensemble of Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Nave Bayes (RF) 

models. The decision boundary displays the parameters within which the Cyber Guard model 

assigns varied degrees of threat to incoming data sets based on the combined forecasts of its 

component models. This blending method enables the Cyber Guard model to utilize the variety of 

predictions from several models, leading to a more accurate and trustworthy categorization. One 
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may understand the Cyber Guard model's decision-making process and the regions where it 

produces accurate forecasts for each security hazard category by visualizing the decision boundary. 

 

Figure 22. CyberGuard Model Decision Boundary. 

Overall, the performance evaluation and decision boundary analysis in this section demonstrate 

the effectiveness and dependability of the CyberGuard model as a comprehensive and precise 

approach to security threat level prediction. The ensemble methodology of the CyberGuard model, 

which combines the best features of many algorithms, makes it perform better than standalone 

models. This increases the security infrastructure's ability to recognize and stop assaults, making it 

an essential tool for maintaining the system's security. 

4.5. Comparative Performance 

Figure 23 compares and contrasts the key performance metrics for a number of models, 

including SVM, KNN, Random Forests, and the Cyber Guard model. The graphic displays the 

metrics of accuracy, precision, recall, and F1-score for direct comparison of the models. Each model's 

performance is represented by a colored bar, and the error bars display the model's confidence 

interval. With the use of this representation, we can assess how well different models forecast 

potential security threats. 

 

Figure 23. Comparative Metrics of Model. 
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Model performance after tweaking hyperparameters is compared in Table 3. Accuracy, 

precision, recall, and F1-Score are just few of the metrics included for each of the several machine 

learning models (SVM, KNN, Random Forests, and CyberGuard) in the table. Classification accuracy, 

precision, recall, and the F1-Score, which measures the balance between these two variables, provide 

insights into how well each model performs. Using this table, we compare how well different models 

perform when applied to the problem at hand. ‘ 

Table 3. Comparative Results of Model Performance after Hypertuning. 

Model Accuracy Precision Recall F1-Score 

SVM 0.8200 0.9182 0.9091 0.8963 

KNN 0.9455 0.9483 0.9455 0.9464 

Random Forests 0.5636 0.7300 0.5636 0.6325 

CyberGuard 0.9818 0.9822 0.9818 0.9814 

In our exploration of enhancing edge device capabilities through resource management, two 

crucial aspects deserve attention: the computation capabilities of edge devices and the methodology 

employed for task computation. The computational prowess of edge devices constitutes a pivotal 

element in their enhanced resource utilization. While our focus has been on managing resources 

effectively, we acknowledge the necessity of explicitly detailing the computational capacities of these 

edge devices. In future revisions, we will provide a dedicated section elucidating the specifications 

and computational abilities of the edge devices involved in our study. This addition aims to offer 

readers a comprehensive understanding of the hardware capabilities supporting our resource 

management strategies. The intricacies of how edge devices compute tasks are indeed paramount to 

our study. In our subsequent revisions, we commit to incorporating a dedicated section to elucidate 

the methodologies employed by edge devices in the computation of tasks. This will encompass a 

detailed discussion on the algorithms, frameworks, or models utilized by edge devices to process 

tasks efficiently. By doing so, we aim to provide a holistic view of the task computation processes, 

ensuring transparency in our approach and enabling readers to grasp the technical intricacies of our 

proposed resource management paradigm. 

Support Vector Machine (SVM): The SVM model's accuracy rate of 90.91% demonstrates that, 

in the vast majority of instances, its forecasts are consistent with the actual levels of security concerns. 

The model has a precision score of 91.82%, which shows a low false-positive rate, and is accurate in 

identifying true security issues. The algorithm can accurately identify 90.91% of true positive events 

with a recall of 90.91%, which lowers the likelihood of missing harmful circumstances. The model's 

overall F1-score of 89.63% demonstrates its effectiveness as it successfully balances precision and 

recall. 

K-Nearest Neighbors (KNN): The KNN model achieves a high level of prediction accuracy 

(94.55%). The model's precision score of 94.83% demonstrates its capacity to decrease false positives. 

The model is able to correctly identify the vast majority of test positives, according to a recall score of 

94.55%. The model's F1-score of 94.64% demonstrates its strong overall performance. 

Random Forests: The accuracy of the Random Forests model is just 56.36 percent, suggesting 

that it needs to be improved. The model may be able to suppress false positives to some extent, as 

evidenced by the 73.00% precision. Nevertheless, the model's limited recall score of 56.36 percent 

reduces its usefulness. The F1-score of 63.25 for this model demonstrates the trade-off between recall 

and accuracy. 

CyberGuard Model: The Cyber Guard model outperforms the competition with a remarkable 

predicted accuracy of 98.18 percent. With a 98.22% precision score, you may be confident that it 

correctly categorizes threats. Given that it can accurately identify almost all real positive events, as 

evidenced by its recall score of 98.18%, the model is extremely sensitive to potential dangers. The 

model's impressive overall performance is attested to by its high F1-score (98.14%). 

The comparison analysis's findings demonstrate that, when it comes to predicting the 

seriousness of security threats, the Cyber Guard model outperforms the three other models (SVM, 
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KNN, and Random Forests). Because the Cyber Guard model employs an ensemble method that 

capitalizes on the variations among the different models, it is more accurate and trustworthy. This 

shows that the Cyber Guard model is an effective tool for predicting security threat levels and can 

increase the effectiveness of the security architecture in guarding the system from potential attackers. 

As shown in Figure 24, four distinct machine learning models (a) SVM (Support Vector 

Machine), (b) KNN (K-Nearest Neighbors), (c) RF (Random Forest), and (d) the Cyber Guard Model 

all produce their own unique confusion matrices. In classification tasks, the performance of a model 

can be evaluated with the help of a confusion matrix, a tabular representation that shows the numbers 

of correct, incorrect, and partially correct predictions, respectively. These matrices are useful for 

comparing the performance of different models to classify data or make predictions. 

  

  

Figure 24. Confusion matrix (a) SVM (b) KNN (c) RF (d) Cyber Guard Model. 

5. Conclusions 

We present a novel ensemble model we call Cyber Guard that may be used to determine the 

degree of security risk in a system. This model combines the predictions from various models to 

create a single, more accurate forecast. By utilizing an ensemble technique that incorporates the 

benefits of different machine learning algorithms, such as Support Vector Machine (SVM), K-Nearest 

Neighbors (KNN), and Random Forests (RF), our Cyber Guard model outperforms existing models 

in the literature. This ensemble approach takes advantage of differences between different models to 

generate more reliable forecasts. In addition, unlike many other models, ours analyzes a wide variety 

of parameters, including as CPU and memory utilization, data locality, trust scores, and blockchain 

validation, to present a more complete picture of the fog computing security landscape. We also place 
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a premium on feature engineering and data pretreatment that allow our model to function at its peak. 

The investigation shows that compared to other models, ours has superior accuracy, precision, recall, 

and F1-score, making it a potent instrument for forecasting and addressing security concerns in fog 

computing settings. A few examples of these models that are combined are Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN), and Random Forests. The goal of the study was to increase the 

accuracy with which security risks might be predicted and to develop a model that accounts for all 

significant system features. By completing extensive trials and hyper parameter adjusting, we 

demonstrated that the Cyber Guard model is superior to the individual models. The program's 

incredibly high accuracy of 98.18 percent in predicting security hazard levels is remarkable. Fewer 

false positives were generated with a precision score of 98.22%, and nearly all positive cases were 

correctly detected with a recall rate of 98.18%. The F1-score of 98.14 percent, which measures the 

model's overall performance, shows its dependability in spotting potential security concerns. The 

feature engineering approach and data preparation, which ensured the inclusion of valuable 

information for prediction, significantly enhanced the model's performance. Thanks to the 

information provided by the correlation analysis, the redundancy between features was also 

discovered, and the model's interpretability was improved. Because of its adaptability and accuracy 

in estimating the level of threat at any given time, the Cyber Guard model is a useful addition to the 

security architecture. Through the integration of different projections from several models, the 

ensemble technique overcomes the limitations of individual models to produce more reliable 

forecasts. Therefore, the proposed Cyber Guard technique represents a significant advancement in 

determining the gravity of security threats. Its increased performance when compared to individual 

models emphasizes its capacity to strengthen system security and protect against future threats. The 

model is effective in a variety of security-critical applications due to its accuracy in classifying 

security hazard levels. In a time when cybersecurity is of utmost significance, the Cyber Guard 

paradigm offers fresh options for research and implementation in the field of system security. In 

order to increase security, the paradigm can also be used in future versions of virtualization 

infrastructure like Network Function Virtualization (NFV), Software Defined Networking (SDN), 

and Fifth-Generation (5G) technologies. 

Author Contributions: Conceptualization, A.K.A. and A.M.A.; methodology, A.K.A. and A.M.A.; validation, 

A.M.A.; formal analysis, A.K.A. and A.M.A.; investigation, A.K.A. and A.M.A.; resources, A.M.A.; data curation, 

A.M.A.; writing—original draft preparation, A.K.A.; writing—review and editing, A.K.A. and A.M.A.; 

visualization, A.K.A.; supervision, A.K.A.; project administration, A.K.A.; funding acquisition, A.K.A. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies 

and Scientific Research, King Faisal University, Saudi Arabia (Project No. XXXX). 

Data Availability Statement: Not applicable. This study does not report any data. 

Acknowledgments: This study could not have been started or completed without the encouragement and 

continued support of King Faisal University. 

Conflicts of Interest: The authors declare no conflict of interests. 

References 

1. L. Xiao et al., “A Reinforcement Learning and Blockchain-Based Trust Mechanism for Edge Networks,” 

IEEE Trans. Commun., vol. 68, no. 9, pp. 5460–5470, 2020, doi: 10.1109/TCOMM.2020.2995371. 

2. U. Jayasinghe, G. M. Lee, Á. MacDermott, W. S. Rhee, and K. Elgazzar, “TrustChain: A Privacy Preserving 

Blockchain with Edge Computing,” Wirel. Commun. Mob. Comput., vol. 2019, 2019, doi: 

10.1155/2019/2014697. 

3. Z. Wang and Q. Hu, “Blockchain-based Federated Learning: A Comprehensive Survey,” pp. 1–18, 2021, 

[Online]. Available: http://arxiv.org/abs/2110.02182. 

4. E. Moore, A. Imteaj, S. Rezapour, and M. H. Amini, “A Survey on Secure and Private Federated Learning 

Using Blockchain: Theory and Application in Resource-constrained Computing,” pp. 1–12, 2023, [Online]. 

Available: http://arxiv.org/abs/2303.13727. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2024                   doi:10.20944/preprints202406.0210.v1

https://doi.org/10.20944/preprints202406.0210.v1


 27 

 

5. J. Galvão, J. Sousa, J. Machado, J. Mendonça, T. Machado, and P. V. Silva, “Mechanical design in industry 

4.0: Development of a handling system using a modular approach,” Lect. Notes Electr. Eng., vol. 505, no. 3, 

pp. 508–514, 2019, doi: 10.1007/978-3-319-91334-6_69. 

6. Z. Rejiba, X. Masip-Bruin, and E. Marín-Tordera, “A survey on mobility-induced service migration in the 

fog, edge, and related computing paradigms,” ACM Comput. Surv., vol. 52, no. 5, 2019, doi: 10.1145/3326540. 

7. B. Qian et al., “Orchestrating the Development Lifecycle of Machine Learning-based IoT Applications: A 

Taxonomy and Survey,” ACM Comput. Surv., vol. 53, no. 4, 2020, doi: 10.1145/3398020. 

8. L. Yuan et al., “CoopEdge: A decentralized blockchain-based platform for cooperative edge computing,” 

Web Conf. 2021 - Proc. World Wide Web Conf. WWW 2021, pp. 2245–2257, 2021, doi: 10.1145/3442381.3449994. 

9. B. Costa, J. Bachiega, L. R. De Carvalho, and A. P. F. Araujo, “Orchestration in Fog Computing: A 

Comprehensive Survey,” ACM Comput. Surv., vol. 55, no. 2, 2023, doi: 10.1145/3486221. 

10. L. Fotia, F. Delicato, and G. Fortino, “Trust in Edge-based Internet of Things Architectures: State of the Art 

and Research Challenges,” ACM Comput. Surv., vol. 55, no. 9, 2023, doi: 10.1145/3558779. 

11. U. Ahmed, J. C.-W. Lin, and G. Srivastava, “Exploring the Potential of Cyber Manufacturing Systems in 

the Digital Age,” ACM Trans. Internet Technol., 2023, doi: 10.1145/3596602. 

12. D. Jayasuriya Daluwathumullagamage and A. Sims, “Fantastic Beasts: Blockchain Based Banking,” J. Risk 

Financ. Manag., vol. 14, no. 4, p. 170, 2021, doi: 10.3390/jrfm14040170. 

13. H. Wang, L. Wang, Z. Zhou, X. Tao, G. Pau, and F. Arena, “Blockchain-based resource allocation model in 

fog computing,” Appl. Sci., vol. 9, no. 24, 2019, doi: 10.3390/app9245538. 

14. Y. Li, Y. Bao, and W. Chen, “Domain Adaptation Transduction: An Algorithm for Autonomous Training 

with Applications to Activity Recognition Using Wearable Devices,” Proc. - IEEE 2018 Int. Congr. 

Cybermatics 2018 IEEE Conf. Internet Things, Green Comput. Commun. Cyber, Phys. Soc. Comput. Smart Data, 

Blockchain, Comput. Inf. Technol. iThings/Gree, pp. 1821–1828, 2018, doi: 

10.1109/Cybermatics_2018.2018.00303. 

15. W. Li, J. Wu, J. Cao, N. Chen, Q. Zhang, and R. Buyya, Blockchain-based trust management in cloud computing 

systems: a taxonomy, review and future directions, vol. 10, no. 1. Journal of Cloud Computing, 2021. 

16. Y. Wang, H. Zen, M. F. M. Sabri, X. Wang, and L. C. Kho, “Towards Strengthening the Resilience of IoV 

Networks—A Trust Management Perspective,” Futur. Internet, vol. 14, no. 7, pp. 1–21, 2022, doi: 

10.3390/fi14070202. 

17. P. Kochovski, S. Gec, V. Stankovski, M. Bajec, and P. D. Drobintsev, “Trust management in a blockchain 

based fog computing platform with trustless smart oracles,” Futur. Gener. Comput. Syst., vol. 101, pp. 747–

759, 2019, doi: 10.1016/j.future.2019.07.030. 

18. W. Zhang, Z. Wu, G. Han, Y. Feng, and L. Shu, “LDC: A lightweight dada consensus algorithm based on 

the blockchain for the industrial Internet of Things for smart city applications,” Futur. Gener. Comput. Syst., 

vol. 108, pp. 574–582, 2020, doi: 10.1016/j.future.2020.03.009. 

19. M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and H. Janicke, “Blockchain technologies 

for the internet of things: Research issues and challenges,” IEEE Internet Things J., vol. 6, no. 2, pp. 2188–

2204, 2019, doi: 10.1109/JIOT.2018.2882794. 

20. D. C. Nguyen et al., “Federated Learning Meets Blockchain in Edge Computing: Opportunities and 

Challenges,” IEEE Internet Things J., vol. 8, no. 16, pp. 12806–12825, 2021, doi: 10.1109/JIOT.2021.3072611. 

21. S. Tanwar, Q. Bhatia, P. Patel, A. Kumari, P. K. Singh, and W. C. Hong, “Machine Learning Adoption in 

Blockchain-Based Smart Applications: The Challenges, and a Way Forward,” IEEE Access, vol. 8, no. April, 

pp. 474–448, 2020, doi: 10.1109/ACCESS.2019.2961372. 

22. A. Yahyaoui, T. Abdellatif, S. Yangui, and R. Attia, “READ-IoT: Reliable Event and Anomaly Detection 

Framework for the Internet of Things,” IEEE Access, vol. 9, pp. 24168–24186, 2021, doi: 

10.1109/ACCESS.2021.3056149. 

23. M. I. Khaleel and M. M. Zhu, Adaptive virtual machine migration based on performance-to-power ratio in fog-

enabled cloud data centers, vol. 77, no. 10. Springer US, 2021. 

24. Y. Zhu, W. Zhang, Y. Chen, and H. Gao, “A novel approach to workload prediction using attention-based 

LSTM encoder-decoder network in cloud environment,” Eurasip J. Wirel. Commun. Netw., vol. 18, no. 1, 

2019, doi: 10.1186/s13638-019-1605-z. 

25. S. Velu, O. Mohan, M. Kumar, “Energy-Efficient Task Scheduling and Resource Allocation for Improving 

the Performance of a Cloud–Fog Environment,” Symmetry, vol. 14, no. 11, 2022, doi: 

https://doi.org/10.3390/sym14112340 

 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 June 2024                   doi:10.20944/preprints202406.0210.v1

https://doi.org/10.20944/preprints202406.0210.v1

