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Abstract: The growing importance of edge and fog computing in the modern IT infrastructure is driven by the
rise of decentralized applications. However, resource allocation within these frameworks is challenging due to
varying device capabilities and dynamic network conditions. Conventional approaches often result in poor
resource use and slowed advancements. This study presents a novel strategy for enhancing resource allocation
in edge and fog computing by integrating machine learning with blockchain for reliable trust management.
Our proposed framework, called CyberGuard, leverages blockchain’s inherent immutability and
decentralization to establish a trustworthy and transparent network for monitoring and verifying edge and fog
computing transactions. CyberGuard combines the Trust2Vec model with conventional machine learning
models like SVM, KNN, and Random Forests, creating a robust mechanism for assessing trust and security
risks. Through detailed optimization and case studies, CyberGuard demonstrates significant improvements in
resource allocation efficiency and overall system performance in real-world scenarios. Our results highlight
CyberGuard'’s effectiveness, evidenced by a remarkable accuracy, precision, recall, and F1-Score of 98.18%,
showcasing the transformative potential of our comprehensive approach in edge and fog computing
environments.

Keywords: cloud computing; edge computing; fog computing; blockchain; trust management

1. Introduction

The proliferation of Internet of Things (IoT) devices and the emergence of decentralized
computing paradigms, such as edge and fog computing [1], have dramatically transformed the
landscape of information technology. As a result of these advancements [2], a new era of computing
has begun, one that is characterized by the efficient processing of data at the network's edge, closer
to data sources and end users [3]. Even though these technologies increase productivity and reduce
delay, resource management and trust remain challenging issues. Resource allocation is a major
problem in edge/fog computing systems. These environments consist of a large variety of
heterogeneous devices with different networking and processing capabilities.

This variability frequently makes it difficult for traditional resource allocation approaches to
adjust, which has a negative impact on resource utilization and system performance [4]. To solve
these difficulties, researchers have looked into how to integrate blockchain technology and machine
learning models into edge and fog computing environments. A powerful answer for managing trust
is provided by blockchain, which ensures that decisions about how to allocate resources are based on
accurate and unchangeable facts. Blockchain has an immutable, decentralized ledger. Machine
learning, on the other hand, provides the capability to evaluate and adapt to the dynamic nature of
these situations. The general method for allocating resources efficiently is shown in Figure 1:

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. generic flow of optimizing the resource allocation.

An example of a general flowchart or design for optimizing resource allocation is shown in
Figure 1. In order to make the most use of their time, money, and people, businesses and individuals
often resort to such a graphical representation. It provides a high-level overview of the planning and
decision-making required for optimal resource utilization.

However, there are certain limitations to current research [5]. The relationship between block
chain and machine learning in resource allocation for edge/fog computing is not well understood,
leaving room for more accurate models that can incorporate both technologies for enhanced
performance. Although the pairing of machine learning with blockchain has been considered in a
number of studies, a complete model that can manage resource allocation with a high degree of
accuracy, precision, and efficiency has not yet been achieved.

In the rapidly evolving landscape of distributed computing, the fusion of blockchain technology
and fog computing has emerged as a promising paradigm, offering novel solutions to the challenges
posed by decentralized applications. In this context, we present the CyberGuard model, a pioneering
approach that seamlessly integrates blockchain-based trust management with the inherent
advantages of fog computing. Fog computing, as an extension of cloud computing, brings
computational resources closer to the edge of the network, enabling faster processing and reduced
latency for applications. This proximity to end-users is particularly advantageous in scenarios with
resource-constrained devices, such as those found in the Internet of Things (IoT). However, the
dynamic and decentralized nature of fog computing environments demands robust trust
management systems to ensure the integrity and security of transactions. The CyberGuard model
addresses this demand by leveraging the immutable and decentralized nature of blockchain
technology. Our approach establishes a transparent and trustworthy network for monitoring and
validating business transactions within fog computing environments. This integration of blockchain
ensures that decisions regarding resource allocation are grounded in verifiable and secure data,
mitigating the risks associated with fraudulent or malicious activities. This paper aims to provide a
comprehensive understanding of the CyberGuard model, elucidating its foundational principles,
design considerations, and the symbiotic relationship between blockchain and fog computing.
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Through a meticulous exploration of our model, we showcase how it surpasses existing approaches

by enhancing trust, security, and efficiency in resource allocation.

In view of these constraints, this work proposes the "Cyber Guard Model," a novel and
comprehensive approach for resource allocation optimization in edge and fog computing settings.
The Cyber Guard Model integrates cutting-edge machine learning algorithms with block chain-based
trust management to revolutionize resource allocation, enhance system security, and increase overall
system performance. In the sections that follow, we analyze the procedures, experiments, and results
of this revolutionary approach, showcasing its applicability to actual circumstances. The
contributions of this study are as follows:

e  Our work represents a significant contribution by seamlessly integrating techniques from
distributed frameworks for Al, cyber-physical systems, and smart blockchain.

e  We introduce a novel holistic model, CyberGuard Al, which stands out in its approach to
resource allocation in edge/fog computing environments. Unlike existing models, CyberGuard
Al takes advantage of the inherent properties of blockchain, such as immutability and
decentralization, to establish a trustworthy and open network for monitoring and confirming
edge/fog business transactions.

e  CyberGuard Al incorporates Trust2Vec, a unique element not commonly found in existing
approaches. This integration leverages support vectors to enhance the trust score predictions,
thereby improving the decision-making process for resource allocation.

e Our study goes beyond traditional resource allocation methods by employing machine learning
approaches for dynamic and efficient resource management. By utilizing massive volumes of
data from edge/fog devices, our model adapts to new information and requirements, making
the most effective use of available computing power, network bandwidth, and storage space.

e The ensemble model, enhances resource allocation predictions by combining results from
multiple machine learning algorithms, including Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), and Random Forests. This ensures a more robust and reliable estimation of
trust security danger compared to single-model approaches.

e  We provide a thorough performance evaluation of our proposed model through rigorous case
studies and simulations. The results showcase the efficacy and viability of our approach in
various real-world circumstances, demonstrating its superiority in resource allocation within
edge/fog computing environments.

While existing models may touch upon blockchain, CyberGuard Al stands out by placing
blockchain at the core of trust management. It significantly reduces the risks of fraudulent or
malicious attacks by ensuring that resource distribution decisions are based on immutable and
trustworthy data. Unlike traditional resource allocation methods, our model leverages machine
learning to dynamically adapt to changing conditions. This adaptability ensures efficient resource
usage across network nodes, contributing to improved system performance. SecuroBlend's ensemble
learning approach distinguishes our work from models that rely on a single algorithm. The
combination of SVM, KNN, and Random Forests enhances the robustness of our predictions,
particularly in the context of resource allocation. In summary, our contributions lie in the seamless
integration of decentralized frameworks, the introduction of novel models like CyberGuard Al and
SecuroBlend, and the utilization of blockchain and machine learning for effective and dynamic
resource allocation. The demonstrated superiority through rigorous evaluations further establishes
the novelty and relevance of our work in the field.

2. Related Work

Recent growth in edge and fog computing has stimulated significant research efforts in
distributed systems trust management and resource allocation [6]. This section summarizes major
works that have advanced edge/fog computing and investigated cutting-edge methods for resource
allocation and trust management.
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2.1. Blockchain Integration for Trust-Based Resource Allocation

For enhancing resource allocation trust in edge and fog computing situations, block chain
technology has generated a lot of interest. In a groundbreaking study, researchers looked into the
usage of block chain in edge/fog computing [6], looking into its potential to boost trust in resource
allocation and, ultimately, produce a more secure and decentralized edge environment. Another
study [7] proposed a novel method for allocating resources for fog computing that uses block chain
to build a decentralized and immutable record, enhancing both resource usage and trust. Research
has suggested a block chain-based trust management system and an architecture for allocating edge
computing resources [8]. It has been shown that this distributed ledger can enhance real-time
resource allocation and edge computing resource consumption. In a study [9] on Mobile Edge
Computing (MEC), a trust architecture based on block chains was presented. It successfully thwarts
self-serving edge attackers and leverages reinforcement learning-based CPU allocation for improved
computing efficiency. According to research [10], block chain technology may be used to protect and
optimize resource allocation in edge/fog computing, emphasizing the advantages of decentralization
in enhancing trust, security, and resource efficiency. This is significant. Figure 2 depicts the block
chain integration for trust-based resource allocation.
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Figure 2. Block chain Integration for Trust-Based Resource Allocation.

Integrating blockchain technology for trustworthy resource distribution is shown in Figure 2. To
ensure fairness, safety, and confidence in resource distribution, blockchain is deployed as a backbone
technology here. This likely depicts the use of blockchain technology to enhance trust and
accountability in resource management systems, as seen through its application to the fair and
dependable allocation of resources among diverse parties or entities.

2.2. Machine Learning-Driven Resource Optimization

Machine learning has developed into a practical method for dynamic resource allocation in edge
computing. A study [11] shown how machine learning techniques may be utilized to optimize
resource distribution in edge computing environments, which will increase overall effectiveness and
performance. An innovative approach was presented in [12], combining data mining and machine
learning to identify a more precise resource distribution, to assess the reliability of edge nodes for fog
computing. Research [13,14] looked at how different machine learning techniques could be used to
assess the dependability of fog computing powered by block chains. The study investigated how
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machine learning methods that evaluate fog node trust can enhance resource allocation and system
performance. Research [15,16] addressed how accurate demand forecasting for cloud computing
resource requirements might lead to improved resource allocation, making sure that fog nodes are
ready to manage workload shifts. novel models and hybrid techniques [17]. A number of studies
have proposed distinct hybrid methodologies and models that combine block chain and machine
learning for resource distribution and trust management. A hybrid solution integrating block chain
and machine learning was introduced in [18] to address trust issues in edge/fog computing. This
technique enhanced participant trust and improved resource allocation choices. Since its debut in
[19,20], Trust-as-a-Service (TaaS), which provides trust evaluations as a service utilizing block chain
and machine learning, has increased the dependability and efficiency of edge computing ecosystems.
The use of block chain technology and machine learning to optimize resource allocation while
following to energy-saving rules and promoting greener settings was demonstrated in [21,22], which
offered a way for allocating resources in an energy-efficient manner for edge/fog computing. A
mechanism for dynamic resource distribution in fog computing was developed using block chain
technology [23,24], demonstrating how the immutability and transparency of the block chain may
boost resource efficiency in fog computing. A trust-aware architecture for distributing edge
computing as-sets was described in [25], using block chain and machine learning to provide real-time
trustworthiness evaluations for secure and efficient resource allocation. In conclusion, these studies
have had a significant influence on the fields of machine learning-driven resource allocation, edge/fog
computing, and block chain integration. As we will examine in the next sections, there is still room
for innovation and advancement, which is what our proposed "Cyber Guard Model" aims to do.

Table 1. Comparative Table.

Reference Technique Outcome
. Introduces a trust mechanism using RL and blockchain
B RL, Blockchain to address selfish edge attacks in MEC.
Pri -P i
2] chl)‘(lziiﬁai;esef/\‘/]il’cr}ig Edge Presents TrustChain, a privacy-preserving blockchain,

int ti ith ed ting for enh d trust.
Computing integrating with edge computing for enhanced trus

Decentralized blockchain

[8] platform for cooperative
edge computing

Introduces CoopEdge, a blockchain-based platform for
collaborative edge computing.

Provides a comprehensive survey on orchestration

] Survey techniques in fog computing.
Blockchain-

[12] ba(r)lckki;gam based Investigates blockchain-based banking solutions.

[13] E;ggﬁ:?:gﬁg:z;in model Proposes a resource allocation model using blockchain
in fog computing in fog computing.

[20] Federated Learning, investigates the potential and pitfalls of integrating
Blockchain federated learning with blockchain in edge computin.
Blockchain-Based problems and opportunities for implementing

[21] Applications and the Rise machine learning in blockchain-based smart
of Machine Learning applications.

3. Methodology

The technique used to optimize resource distribution in edge/fog computing scenarios is
thoroughly explained in this section. Our strategy combines machine learning techniques with trust
management based on blockchain. We outline the exact procedures for creating, putting into practice,
and evaluating the suggested system. This research's major objective is to increase the efficiency,
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security, and dependability of resource allocation in distributed systems, especially in the context of
edge/fog computing. Given the increase in networked devices, each of which has distinct capabilities
and network conditions, an innovative approach that can dynamically allocate resources while
guaranteeing reliability and data integrity is becoming increasingly important.

In order to accomplish this, we offer a cutting-edge approach that integrates blockchain and
machine learning. Because it is a decentralized and irreversible distributed ledger technology, block
chain provides the ideal platform for managing trust relationships and ensuring data authenticity.
We propose a block chain-based trust management framework to assist our resource allocation
choices. The dependability and openness of this system will serve as the basis for all decisions about
the allocation of resources. A major challenge is the vast volume of data that edge and fog sensors
create. Here, machine learning algorithms take center stage and make it possible for this data to be
automatically examined and evaluated. Machine learning provides dynamic resource allocation,
which maximizes the utilization of existing network resources by adapting to changing conditions
and requirements. We present the Cyber Guard model as a substantial advancement of our
techniques. An effective machine learning technique for predicting levels of trust security danger is
the Cyber Guard model. By combining the advantages of several machine learning approaches with
Trust2Vec graph embedding, the Cyber Guard model offers better accuracy in anticipating trust
security risks. By incorporating the unique insights provided by several machine learning classifiers
within the Cyber Guard model, the strategy emphasizes group decision-making. In comparison to
the traditional technique of resource distribution, this cooperative strategy represents a major
improvement. We focus on combining machine learning, block chain-based trust management, and
the incorporation of the Cyber Guard model in our strategy, to sum up. With the help of this complete
strategy, resource allocation in edge/fog computing environments is efficient, secure, and adaptable
to changing conditions and demands.

Our research methodology is intricately designed to optimize resource distribution in the
challenging context of edge/fog computing scenarios. The key focus is on leveraging the inherent
advantages of blockchain-based trust management and the adaptability of machine learning models,
culminating in the development of our innovative CyberGuard model.

Blockchain-Based Trust Management:

To instill trust and transparency in resource allocation decisions, we employ a blockchain-based
framework. The immutability and decentralized nature of blockchain technology form the backbone
of our trust management system. Each transaction, pertaining to resource allocation or decision-
making, is securely recorded on the blockchain, ensuring a tamper-resistant and auditable trail. This
not only enhances the integrity of the decision-making process but also mitigates the risks associated
with malicious attacks or unauthorized alterations.

Machine Learning for Dynamic Resource Management:

Our approach integrates machine learning algorithms, including Support Vector Machines
(SVM), K-Nearest Neighbors (KNN), and Random Forests, within the CyberGuard model. These
algorithms are trained on extensive datasets from edge/fog devices, enabling them to dynamically
adapt to changing network conditions, device capabilities, and application requirements. The
machine learning component ensures that resource allocation decisions are not static but evolve in
real-time based on the evolving dynamics of the edge/fog computing environment.

Ensemble Model - CyberGuard Al

A significant contribution of our methodology is the development of CyberGuard Al, an
ensemble model that harnesses the collective intelligence of multiple machine learning algorithms.
By combining the results of SVM, KNN, and Random Forests, CyberGuard Al achieves a more robust
and accurate prediction of trust scores, resource allocation decisions, and security threat levels. This
ensemble approach enhances the overall reliability and performance of resource distribution in
edge/fog computing. Figure below shows the flow of proposed work:
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3.1. Dataset Description

Records on resource allocation and trust management in edge/fog computing settings make up
the dataset used in this study. It includes a wide variety of data from various edge and fog computing
nodes, including both qualitative and numerical properties. The main goal of this dataset is to look
at how machine learning and block chain-based trust management may be combined to improve the
efficiency of resource allocation in edge/fog computing. The table below provides thorough details
on each component of the dataset:

Table 2. Dataset Feature Description.

Feature Description
Device ID A unique identifier for each edge/fog computing device.
Timestamp The timestamp indicating the date and time of data collection.
CPU Usage The percentage of CPU ut.ilizati.on by the computing device at the
given timestamp.
Memory Usage The percentage of memory (RAM) ut.ilization by the computing device
at the given timestamp.
Network Bandwidth How many megabits per second‘(Mbps) were b?mg used by the
network at that precise moment in time.
A ical f indicating the locality of th
Data Locality categorical feature ¥nd1cat1ng the locality of the data processed by
the device (e.g., Local, Nearby, Remote).
Latency The latency in milliseconds (ms) for data transmission or processing at

the given timestamp.
. The energy consumption in watts (W) by the computing device at the
Energy Consumption 8y P . . (W) by pHing
given timestamp.
Resource Allocation

Decision

A binary feature representing the resource allocation decision (1 for
successful allocation, 0 for unsuccessful).
A numerical score representing the trustworthiness of the computing

Trust Score ..
device in the network.

Block chain Validation A categorical feature indicating the status of block chain validation for
Status the device (e.g., Valid, Invalid).
A categorical feature indicating the type of fog node (e.g., Fog, Edge)
Fog Node Type where the device is located.
The local temperature measured in degrees Celsius where the
Temperature .
computer is being used.

Humidity The relative humidity percentage (@) at the location of the computing

device.
Security Threat Level A scale from low to high that indicates how secure the edge/fog

computing environment is.

There are a total of 14 distinct features in the dataset, each of which represents a different aspect
of the edge/fog computing environment, trust management, and resource distribution. These
components have been thoughtfully designed to aid in achieving the objectives of the study and make
it simpler to evaluate the suggested integrated methodology. This integrated approach combines
machine learning methods with block chain-based trust management to enhance resource allocation
and overall system effectiveness in edge/fog computing environments.

Figure 4 allows us to check the real distribution of the dataset's features. The feature values are
displayed on the x-axis, and the occurrence count or frequency is displayed on the y-axis. This graphic
facilitates understanding of the breadth and depth of variance for each dataset attribute. A scatter
plot matrix with each characteristic displayed in relation to every other feature is illustrated in Figure
3. The distribution of each trait along the diagonal of the matrix is often displayed. For discovering
potential connections or patterns between features in a collection, pair plots are incredibly helpful.
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For each feature in the dataset, box plots are displayed in Figure 3. The median, quartiles, and outliers
of a data collection are graphically represented by box plots. This might aid in your understanding
of the average and standard deviation for each attribute. The estimated data kernel density is shown
in Figure3. They make it simpler to compare data densities at various scales by giving more details

on each feature's density and distribution.

Collect Data

Data Processing
IoT-Edg¢ Dataset

Preprocess Data

Blockehain

Trust Management

Trust Management,

Machine Learning Model

Model Evaluation
CyberGuard AT

Evaluate Model

End

Figure 3. Proposed Working Flow.
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Figure 4. Distribution of features.

In Figure 5, we see a collection of pair plots that illustrate the interplay of all the features in a
dataset. These graphs make it possible to see connections between variables, which can help uncover
hidden patterns and tendencies in the data.
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Figure 5. Pair plots of all features.

3.2. Data Pre-Processing

Data preparation is the process of converting raw data into a format suitable for analysis and
modeling. It assists in cleaning, organizing, and preparing the data to improve its quality and make
it more suitable for machine learning algorithms.

3.3. Feature Engineering

This graph shows the relationships between different dataset features and demonstrates how
crucial feature engineering is to helping machine learning models recognize patterns and generate
precise predictions. A correlation matrix exposes the web of links between them by displaying which
traits are favorably and adversely associated with one another. While traits with a high correlation to
other features can be eliminated to avoid multicollinearity during feature selection, traits with a high
correlation to the target variable can be very effective predictors.

Relationships between pairs of variables or features in a dataset can be visualized using a
correlation matrix, as shown in Figure 6. The magnitude and direction of these associations are
usually represented by a color code or numerical value. Understanding the interplay between
multiple data qualities is facilitated by this matrix, which indicates whether variables are positively,
adversely, or not statistically associated with each other.
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Figure 6. Correlation Matrix.

3.4. Machine Learning Models
3.4.1. Support Vector Machine (SVM)

The reliable Support Vector Machine (SVM) supervised machine learning method is essential
for both classification and regression issues. In the ensemble prediction of CyberGuard, SVM is one
of the core models.

The Support Vector Machine (SVM) serves as a pivotal model within the ensemble predictions
of CyberGuard, contributing to both classification and regression tasks.

The internal structure of SVM, depicted in Figure 7, showcases its components such as support
vectors, decision borders, and the margin. Mathematically, the SVM optimization problem can be
formulated as follows:

Minimize || w |l (to maximize the margin)
subject to the constraint
yiw-x;+b) 21§

for all data points (x;,y;)

The inclusion of slack variables (§i) addresses misclassifications, while the parameter C
balances margin maximization and misclassification minimization.
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Figure 7. SVM Architecture.

The internal structure of an SVM is shown in Figure 7. For classification and regression,
supervised machine learning algorithms like the support vector machine (SVM) are useful. To better
explain how SVMs function and how they may be applied to solve certain problems, this picture
likely gives a visual depiction of the components and structure of an SVM model, such as support
vectors, decision borders, and the margin.

The SVM optimization issue can be written in mathematical notation as:

e Given a training dataset D = {(x1,y1), (x2,y2),...,(xn,yn)}, where xi is the feature vector and
yi is the corresponding class label (-1 or +1).
e Identify the optimum weight the hyperplane that splits the data points into classes and

optimizes the margin can be defined by the vector w and the bias term b.

e  The objective function is to minimize ||w]|| (to maximize the margin) subject to the constraint
yilw * xi + b) >= 1 — ¢i for all data points (xi, yi).

e  Theslack variables &i are introduced to handle misclassifications, and the C parameter controls
the trade-off between maximizing the margin and minimizing the misclassifications.

3.4.2. K-Nearest Neighbours

K-Nearest Neighbors (KNN) is a popular supervised machine learning method for both
classification and regression. As part of the optimization of edge/fog computing resources, KNN can
be used to predict a device's security risk level from its CPU and memory consumption. K-Nearest
Neighbors (KNN) is a supervised learning method applied to predict security risk levels in edge/fog
computing based on device resource consumption. Figure 8 illustrates the structure of the KNN
algorithm, emphasizing its principle of identifying neighbors based on a defined K.
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Figure 8. KNN Architecture.

In Figure 8, we see how a K-Nearest Neighbors (KNN) algorithm is structured. In the realm of
machine learning, KNN is a supervised technique used for classification and regression. The notion
of identifying the nearest neighbors to a data point based on a set value of "K" (the number of
neighbors to consider) is likely represented graphically in this picture, showing how KNN works. It
may also show how KNN uses the majority class or average value of a data point's K-nearest
neighbors to determine that data point's classification or value.

The formula for KNN is as follows:

e  As an illustration, consider dataset D, where x stands for a device and y for a type of security
risk.

e  Calculate the distance between the data points x and d in dataset D using the preferred distance
metric.

e  Select the K data points that are closest to x as your K nearest neighbors.

e  Assign y to x after classifying it as a member of the same group as the majority of its K closest
neighbors.

e  The optimal way to assign y to x in a regression is to use the mean of the y values of the K nearest
neighbors.

3.4.3. Random Forests

Random Forests is an example of a Bayesian machine learning algorithm. The optimization of
security-related edge/fog computing resource allocation is one categorization issue that significantly
benefits from this approach. Random Forests is popular because it is easy to use, efficient, and
accurate when processing high-dimensional data. The internal structure of Random Forests (RF) is
elucidated in Figure 9, showcasing its components like decision trees and the ensemble approach.
Mathematically, the classification procedure involves computing posterior probabilities and selecting
the class label with the highest probability.
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Figure 9. RF Architecture.

The internal structure of a Random Forest (RF) model is depicted in Figure 9. The goal of the
ensemble machine learning technique known as Random Forest is to increase prediction accuracy
while decreasing overfitting by combining numerous decision trees. It's possible that this diagram
illustrates the structure and essential parts of a Random Forest model, including decision trees,
feature selection, and the voting method for making predictions. Users are given a better grasp of the
inner workings of Random Forest models and their potential applications in a wide range of data
analysis and machine learning endeavours.

The Random Forests classification procedure can be expressed mathematically as follows:

e  To clarify, we will refer to the "training dataset” as "D," the "input sample" as "x," and the "output

class"as "y".

e  For each class label ¢ in D, calculate the posterior probability P(y=c|x) using Bayes' theorem and
the naive assumption.

e  Select the class label c with the highest posterior probability P(y=c|x) as the predicted class for
the input sample.

Massive datasets with high-dimensional characteristics can be processed using Random Forests
with a low overhead of processing. It is used well in a variety of applications, including text
categorization, spam filtering, and sentiment analysis, because to its simplicity of use and respectable
performance, particularly when the naive assumption is suitable for the data.

3.4.4. CyberGuard Model

The Cyber Guard model, an ensemble model that integrates various machine learning
approaches, can be used to anticipate security threat levels in edge/fog computing resource allocation
optimization more precisely and reliably. It integrates the several forecasts from each of its individual
models to create a single, accurate forecast. The algorithm details the steps from initializing datasets
to predicting trust scores, resource allocation decisions, and security threat levels. It incorporates
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aspects from SVM, KNN, and RF, showcasing the synergy of these models in CyberGuard. Let's

examine the Cyber Guard model in detail:

e  As an illustration, consider dataset D, where x stands for a device and y for a type of security
risk.

e In Cyber Guard, use Grid SearchCV to do hyper parameter tuning to ascertain the ideal values
for each algorithm's base model (SVM, KNN, and RF).

e Itis recommended to hyperparameter-tune each base model and then train it on dataset D.

e For a given input sample x, the level of security risk is predicted by each base model

SeparateIY(ypredsvm' ypredknn' yprednb)-

e  CyberGuard combines the predictions (ypredwm, Vpredimm’ yprednb) of all base models using
voting="hard".

Class 'y' at the output is decided by a vote of the base models, with the winner being the class
that was predicted the most frequently.

Shown in Figure 10 is the "Cyber Guard Model." This diagram probably depicts the framework
or constituent parts of a model developed for use in cyberspace. The term "cyber security" refers to
the coordinated efforts of several entities to identify and neutralize cyber threats and improve the
safety of computerized infrastructures. In the context of cyberspace, the graphic summarizes the

operation of this paradigm [25].
/ Input Data /

|

Preprocessing

l

RF for Resource Allocation SVM for Trust Score K-NN for Threat Level

l
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Al Model

l

Merge Results

Evaluate Model

/ Qutput Results /

Figure 10. Cyber Guard Model.
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Algorithm 1 Mathematical Algorithm for CyberGuard

=

Input:

Training dataset D = {(x;,y;)}, where x; is the feature vector, y; is the class label, and N is the
number of data points.

3. Number of support vectors M, number of neighbors K, number of trees T.

4. Output:

5. Predicted trust score T, resource allocation decision R, and security threat level S for a new data point.
6. Initialize empty lists S_support_vectors, N_neighbors, and T;;es.
7

8

9

N

For m = 1to M:
Randomly select a data point (x;,y;) from D.
. Add (x;,y;) toS_support_vectors.

10. Fork=1toK:

11. Select K nearest neighbors of the new data point x_new from D based on a distance metric (e.g.,
Euclidean distance).

12. Add the K neighbors to N_neighbors.

13. Fort=1toT:

14. Sample a bootstrap dataset D_t from D with replacement.

15. Initialize a decision tree T_t.

16. While stopping criteria not met (e.g., maximum depth or minimum samples per leaf):

17. Select a random subset of features for node splitting.

18. Find the best feature and split point using a criterion (e.g., Gini impurity or entropy).

19. Split the node into child nodes.

20. Add T tto T_trees.

21. Predict Trust Score:

22. Initialize an empty list T_predictions to store trust score predictions for each tree.

23. Fort=1toT:

24. Predict the trust score T_t for the new data point x_new using tree T_t.

25. Add T_t to T_predictions.

26. Aggregate trust score predictions using an aggregation method (e.g., averaging).

27. Return the final predicted trust score T.

28. Predict Resource Allocation Decision and Security Threat Level:

29. Initialize empty lists R_predictions to store resource allocation decisions and S_predictions to store
security threat level predictions for each tree.

30. Fort=1toT:

31. Predict the resource allocation decision R_t and security threat level S_t for the new data point x_new
using tree T_t.

32. Add R_t to R_predictions and S_t to S_predictions.

33. Aggregate resource allocation decision predictions using an aggregation method (e.g., majority
voting).

34. Aggregate security threat level predictions using an aggregation method (e.g., majority voting).

35. Return the final predicted resource allocation decision R and security threat level S.

The Cyber Guard model takes advantage of the extra advantages of numerous algorithms and
associated hyperparameters, which enhances prediction performance compared to utilizing a single
model. The combination of SVM, KNN, and RF in Cyber Guard makes it an effective tool for
optimizing edge/fog computing resource allocation and enhancing security threat level prediction.

Our evaluation employs a comprehensive approach where each machine learning model (SVM,
KNN, Random Forests) and the ensemble model (CyberGuard Al) undergoes rigorous testing using
diverse datasets and scenarios. We utilize standard metrics such as accuracy, precision, recall, and
F1-Score to assess the performance of each model. Cross-validation and, where applicable, a holdout
test set ensure robust evaluations. Furthermore, we conduct comparative analyses to highlight the
strengths of the ensemble model in improving resource allocation. The key innovation in our work
lies in integrating blockchain for trust management in edge/fog computing. Blockchain operates as
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an immutable and decentralized ledger, providing a transparent and secure record of transactions.
In our proposed approach, we use blockchain to validate and secure business transactions in the
edge/fog environment. Each transaction or decision related to resource allocation is recorded as a
block on the blockchain. Smart contracts are employed to automate and enforce trust rules, ensuring
that only validated and authorized transactions contribute to the decision-making process. This
application of blockchain technology enhances the security and reliability of trust management,
making it resilient to fraudulent or malicious activities. The decision to utilize blockchain is justified
by its inherent features of immutability, decentralization, and transparency. Immutability ensures
that once a transaction is recorded on the blockchain, it cannot be altered, providing a tamper-proof
history of decisions.

4. Results and Discussion

The Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Nave Bayes (RF), and
ensemble model Cyber Guard are just a few of the machine learning models we use to communicate
the results of our work. We contrast and compare each model's precision, recall, and F1-score. We
also look into how the model's accuracy is impacted by features and data pretreatment. A sizable
dataset that contained information on the distribution of edge/fog computing resources and the
seriousness of security risks was used for the trials. After they have been assessed and compared, it
will be evident how useful and applicable these models are for predicting the security threat level in
fog computing settings. We also look into the Cyber Guard ensemble model, which combines the
findings of numerous base models into a single, accurate assessment of the security threat. We
anticipate that this comparison will clarify the relative benefits of the various approaches and their
possible use in diverse contexts.

Figure 11 shows a comparison of predicted CPU and memory utilization from the Cyber Guard
model. Each data point contains the CPU and memory utilization values for the test set. The color of
each data point indicates the verified level of security risk connected to that particular combination.
The distinction between threat levels and the relationship between CPU and memory usage are made
clearer by this depiction in the Cyber Guard model. The data points should create distinct clusters or
patterns that correspond to different threat levels if the model is successful in predicting security
threat levels based on CPU and memory utilization.

CPU Usage vs Memory Usage (Color: Network Bandwidth, Size: Energy Consumption)
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Figure 11. CPU usage vs Memory Usage predicted by Cyber Guard Model.

The distribution of the data locality values across the dataset is depicted in Figure 12. The
proximity of data sources to the fog computing nodes is referred to as "data locality". Using this
picture, we can investigate the distribution of location values in the data and search for trends.
Understanding the distribution of data locality is crucial for optimizing resource distribution in a fog
computing system. It assists in locating the best data processing hubs and aids in making intelligent
resource allocation decisions.
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Figure 12. Data Locality Distribution.

Figure 13 compares the predicted trust scores of the Cyber Guard model with the actual status
of the data points' blockchain validation. The trust score of each edge/fog node rates the reliability of
that node. The block chain's validation status informs whether or not the transactions that have been
recorded there are valid. By comparing the predictions to the validation state of the blockchain, we
can assess how well the model predicts trust scores. Understanding how trustworthy the Cyber
Guard model is in terms of handling trust requires this evaluation.

Trust Score vs Blockchain Validation Status

Valid

Invalid LI

Blockchain Validation Status

04 05 06 07 08 09 10
Trust Score

Figure 13. Trust Score prediction vs Blockchain Validation.

The variety of security concerns present in the data set is depicted in Figure 14. The frequency
of each hazard level in the fog computing environment is depicted in this graph. Understanding the
spectrum of potential security threat levels is necessary for identifying system vulnerabilities and
threats. It is helpful for assessing the relative significance of potential threats and developing
strategies to deal with them. This approach also allows us to assess the model's accuracy in predicting
security hazard ratings throughout the entire dataset.
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Security Threat Level by Fog Node Type
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Figure 14. Security Threat Levels.

4.1. SVM Performance

Figure 15 presents the results of the performance evaluation of the Support Vector Machine
(SVM) model. The plot displays the SVM model's various performance indicators, including
accuracy, precision, recall, and F1-score. Each measure's value is represented by a bar, and the error
bars that go with it show the confidence interval that goes with it. With this representation, we can
assess how accurate the SVM model is at identifying potential security issues. Higher accuracy,
precision, recall, and F1-score indicate a model is functioning better.

SVM Model Metrics
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Figure 15. SVM Model Metrics.

Figure 16 displays the SVM-generated decision border. The decision boundary delineates the
various classes or levels of security threat in the feature space. The SVM model makes its judgments
about the relative threat of incoming data bits in this zone. The decision boundary is determined by
the model's hyperparameters and the support vectors acquired during training. By visualizing the
SVM model's decision border, we may gain insight into the model's complexity and precision in
categorizing security hazard levels based on the attributes. Any degree of precision required for
threat level prediction necessitates a decision boundary that is sufficiently generalizable and well-
defined.
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SVM Decision Boundary (Accuracy: 0.80)
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Figure 16. SVM Decision Boundary.

4.2. KNN Performance

Figure 17 displays the results of the performance evaluation of the K-Nearest Neighbors (KNN)
model. Just a few of the performance indicators shown in the plot, which was created using the KNN
model, include accuracy, precision, recall, and F1-score. Each bar in the plot's error bars represents
the value of the relevant statistic and displays a confidence interval for the data. With the help of this
representation, we can assess how well the KNN model predicts potential security vulnerabilities. As
a model's accuracy, precision, recall, and F1-score values increase, its performance also gets better.

10 KNN Model Metrics
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Figure 17. KNN Model Performance.

The produced decision boundary of the KNN model is shown in Figure 18. The KNN technique
determines the decision boundary between classes or security threat levels in the feature space via a
nearest neighbor search. It symbolizes the area where incoming data items are grouped into one of
multiple risk categories based on the majority class among their k nearest neighbors in the KNN
model. Plotting the decision boundary reveals the KNN model's classification regions and its capacity
to distinguish across security threat categories based on feature properties. You must have a clear
grasp of the decision boundary in order to make sense of the KNN model's predictions and confirm
its generalizability.
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KNN Decision Boundary (Accuracy: 0.94)
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Figure 18. KNN Decision Boundary.

4.3. Random Forests Performance

Figure 19 displays the results of the performance assessment of the RF model. Performance
indicators for the RF model, such as accuracy, precision, recall, and F1-score, are shown in the graph.
While the bars themselves display the metric's value, the error bars in the plot provide a confidence
interval. The graph enables us to assess the accuracy of the Random Forests model's security risk
prediction capabilities. As a model's accuracy, precision, recall, and F1l-score values increase, its
performance also gets better.

RF Model Metrics
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Figure 19. Random Forests Performance.

Figure 20 displays the decision boundary for the Random Forests model. The decision boundary
separates the feature space into several groups or levels of security threat using the probabilistic Nave
Bayes algorithm. It shows the areas where the Ran-dom Forests model assigns various levels of
hazard to incoming data pieces using the maximum likelihood estimation of the class probabilities
and the feature characteristics. We gain a better understanding of the classification regions and the
Nave Bayes model's ability to distinguish between distinct security threat categories based on feature
attributes by visualizing the decision boundary. Understanding the decision boundary is crucial for
assessing the predictive and generalizable capabilities of the Random Forests model.
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RF Decision Boundary (Accuracy: 0.65)
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Figure 20. RF Decision Boundary.

4.4. CyberGuard Model Performance

The outcomes of a thorough evaluation of the capabilities of the Cyber Guard model are shown
in Figure 21. The image provides an overview of the model's prediction abilities for categorizing
security threat levels, including accuracy, precision, recall, and F1-score. Each bar in the plot's error
bars represents the value of the relevant statistic and displays a confidence interval for the data. The
figure demonstrates how successfully the Cyber Guard model anticipates security threats. High
values of accuracy, precision, recall, and F1-score, which demonstrate that the model can consistently
predict the seriousness of security threats, are indicators of superior performance.

Metrics for CyberGaurd Al Model
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Figure 21. Cyber Guard Model Performance.

Figure 22 shows the output decision boundary for the Cyber Guard model. The decision
boundary distinguishes between classes or levels of security hazard in the feature space using an
ensemble of Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Nave Bayes (RF)
models. The decision boundary displays the parameters within which the Cyber Guard model
assigns varied degrees of threat to incoming data sets based on the combined forecasts of its
component models. This blending method enables the Cyber Guard model to utilize the variety of
predictions from several models, leading to a more accurate and trustworthy categorization. One
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may understand the Cyber Guard model's decision-making process and the regions where it
produces accurate forecasts for each security hazard category by visualizing the decision boundary.

CyberGaurd Al Model Decision Boundary (Accuracy: 0.98)
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Figure 22. CyberGuard Model Decision Boundary.

Overall, the performance evaluation and decision boundary analysis in this section demonstrate
the effectiveness and dependability of the CyberGuard model as a comprehensive and precise
approach to security threat level prediction. The ensemble methodology of the CyberGuard model,
which combines the best features of many algorithms, makes it perform better than standalone
models. This increases the security infrastructure's ability to recognize and stop assaults, making it
an essential tool for maintaining the system's security.

4.5. Comparative Performance

Figure 23 compares and contrasts the key performance metrics for a number of models,
including SVM, KNN, Random Forests, and the Cyber Guard model. The graphic displays the
metrics of accuracy, precision, recall, and F1-score for direct comparison of the models. Each model's
performance is represented by a colored bar, and the error bars display the model's confidence
interval. With the use of this representation, we can assess how well different models forecast
potential security threats.
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Figure 23. Comparative Metrics of Model.
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Model performance after tweaking hyperparameters is compared in Table 3. Accuracy,
precision, recall, and F1-Score are just few of the metrics included for each of the several machine
learning models (SVM, KNN, Random Forests, and CyberGuard) in the table. Classification accuracy,
precision, recall, and the F1-Score, which measures the balance between these two variables, provide
insights into how well each model performs. Using this table, we compare how well different models
perform when applied to the problem at hand.

Table 3. Comparative Results of Model Performance after Hypertuning.

Model Accuracy Precision Recall F1-Score
SVM 0.8200 0.9182 0.9091 0.8963
KNN 0.9455 0.9483 0.9455 0.9464
Random Forests  0.5636 0.7300 0.5636 0.6325
CyberGuard 0.9818 0.9822 0.9818 0.9814

In our exploration of enhancing edge device capabilities through resource management, two
crucial aspects deserve attention: the computation capabilities of edge devices and the methodology
employed for task computation. The computational prowess of edge devices constitutes a pivotal
element in their enhanced resource utilization. While our focus has been on managing resources
effectively, we acknowledge the necessity of explicitly detailing the computational capacities of these
edge devices. In future revisions, we will provide a dedicated section elucidating the specifications
and computational abilities of the edge devices involved in our study. This addition aims to offer
readers a comprehensive understanding of the hardware capabilities supporting our resource
management strategies. The intricacies of how edge devices compute tasks are indeed paramount to
our study. In our subsequent revisions, we commit to incorporating a dedicated section to elucidate
the methodologies employed by edge devices in the computation of tasks. This will encompass a
detailed discussion on the algorithms, frameworks, or models utilized by edge devices to process
tasks efficiently. By doing so, we aim to provide a holistic view of the task computation processes,
ensuring transparency in our approach and enabling readers to grasp the technical intricacies of our
proposed resource management paradigm.

Support Vector Machine (SVM): The SVM model's accuracy rate of 90.91% demonstrates that,
in the vast majority of instances, its forecasts are consistent with the actual levels of security concerns.
The model has a precision score of 91.82%, which shows a low false-positive rate, and is accurate in
identifying true security issues. The algorithm can accurately identify 90.91% of true positive events
with a recall of 90.91%, which lowers the likelihood of missing harmful circumstances. The model's
overall Fl-score of 89.63% demonstrates its effectiveness as it successfully balances precision and
recall.

K-Nearest Neighbors (KNN): The KNN model achieves a high level of prediction accuracy
(94.55%). The model's precision score of 94.83% demonstrates its capacity to decrease false positives.
The model is able to correctly identify the vast majority of test positives, according to a recall score of
94.55%. The model's F1-score of 94.64% demonstrates its strong overall performance.

Random Forests: The accuracy of the Random Forests model is just 56.36 percent, suggesting
that it needs to be improved. The model may be able to suppress false positives to some extent, as
evidenced by the 73.00% precision. Nevertheless, the model's limited recall score of 56.36 percent
reduces its usefulness. The F1-score of 63.25 for this model demonstrates the trade-off between recall
and accuracy.

CyberGuard Model: The Cyber Guard model outperforms the competition with a remarkable
predicted accuracy of 98.18 percent. With a 98.22% precision score, you may be confident that it
correctly categorizes threats. Given that it can accurately identify almost all real positive events, as
evidenced by its recall score of 98.18%, the model is extremely sensitive to potential dangers. The
model's impressive overall performance is attested to by its high F1-score (98.14%).

The comparison analysis's findings demonstrate that, when it comes to predicting the
seriousness of security threats, the Cyber Guard model outperforms the three other models (SVM,
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KNN, and Random Forests). Because the Cyber Guard model employs an ensemble method that
capitalizes on the variations among the different models, it is more accurate and trustworthy. This
shows that the Cyber Guard model is an effective tool for predicting security threat levels and can
increase the effectiveness of the security architecture in guarding the system from potential attackers.

As shown in Figure 24, four distinct machine learning models (a) SVM (Support Vector
Machine), (b) KNN (K-Nearest Neighbors), (c) RF (Random Forest), and (d) the Cyber Guard Model
all produce their own unique confusion matrices. In classification tasks, the performance of a model
can be evaluated with the help of a confusion matrix, a tabular representation that shows the numbers
of correct, incorrect, and partially correct predictions, respectively. These matrices are useful for
comparing the performance of different models to classify data or make predictions.
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Figure 24. Confusion matrix (a) SVM (b) KNN (c) RF (d) Cyber Guard Model.
5. Conclusions

We present a novel ensemble model we call Cyber Guard that may be used to determine the
degree of security risk in a system. This model combines the predictions from various models to
create a single, more accurate forecast. By utilizing an ensemble technique that incorporates the
benefits of different machine learning algorithms, such as Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), and Random Forests (RF), our Cyber Guard model outperforms existing models
in the literature. This ensemble approach takes advantage of differences between different models to
generate more reliable forecasts. In addition, unlike many other models, ours analyzes a wide variety
of parameters, including as CPU and memory utilization, data locality, trust scores, and blockchain
validation, to present a more complete picture of the fog computing security landscape. We also place
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a premium on feature engineering and data pretreatment that allow our model to function at its peak.
The investigation shows that compared to other models, ours has superior accuracy, precision, recall,
and Fl-score, making it a potent instrument for forecasting and addressing security concerns in fog
computing settings. A few examples of these models that are combined are Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Random Forests. The goal of the study was to increase the
accuracy with which security risks might be predicted and to develop a model that accounts for all
significant system features. By completing extensive trials and hyper parameter adjusting, we
demonstrated that the Cyber Guard model is superior to the individual models. The program's
incredibly high accuracy of 98.18 percent in predicting security hazard levels is remarkable. Fewer
false positives were generated with a precision score of 98.22%, and nearly all positive cases were
correctly detected with a recall rate of 98.18%. The Fl-score of 98.14 percent, which measures the
model's overall performance, shows its dependability in spotting potential security concerns. The
feature engineering approach and data preparation, which ensured the inclusion of valuable
information for prediction, significantly enhanced the model's performance. Thanks to the
information provided by the correlation analysis, the redundancy between features was also
discovered, and the model's interpretability was improved. Because of its adaptability and accuracy
in estimating the level of threat at any given time, the Cyber Guard model is a useful addition to the
security architecture. Through the integration of different projections from several models, the
ensemble technique overcomes the limitations of individual models to produce more reliable
forecasts. Therefore, the proposed Cyber Guard technique represents a significant advancement in
determining the gravity of security threats. Its increased performance when compared to individual
models emphasizes its capacity to strengthen system security and protect against future threats. The
model is effective in a variety of security-critical applications due to its accuracy in classifying
security hazard levels. In a time when cybersecurity is of utmost significance, the Cyber Guard
paradigm offers fresh options for research and implementation in the field of system security. In
order to increase security, the paradigm can also be used in future versions of virtualization
infrastructure like Network Function Virtualization (NFV), Software Defined Networking (SDN),
and Fifth-Generation (5G) technologies.
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