
Article Not peer-reviewed version

How to Parallelize “Non-Parallelizable”

Minimization Functions

Dmitry Lukyanenko * , Sergei Torbin , Valentin Shinkarev

Posted Date: 24 June 2024

doi: 10.20944/preprints202406.0571.v2

Keywords: minimization; parallel algorithm; parallelization; MPI

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/769807
https://sciprofiles.com/profile/3590353
https://sciprofiles.com/profile/2385028

Article

How to Parallelize “Non-Parallelizable”
Minimization Functions

Dmitry Lukyanenko 1,* , Sergei Torbin 1 and Valentin Shinkarev 1

Department of Mathematics, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia;
torbin.ss18@physics.msu.ru (S.T.); shinkarev.vd17@physics.msu.ru (V.S.)

* Correspondence: lukyanenko@physics.msu.ru (D.L.)

Abstract: The paper proposes a universal algorithm for parallelizing calculations that arise when using highly-

optimized minimization functions available in many computing packages. The main idea of the proposed

algorithm is based on the fact that although the “inner workings” of the minimization function used may not

be known to the user, it inevitably uses in its work auxiliary functions that implement the calculation of the

minimized functional and its gradient, which are usually implemented by the user, which means that in most cases

they can be parallelized relatively easily. The paper discusses in detail both the parallelization algorithm and its

software implementation using MPI parallel programming technology. Examples of the software implementation

of the proposed algorithm are demonstrated using the Python programming language, but can be easily rewritten

using the C/C++/Fortran programming languages.

Keywords: minimization; parallel algorithm; parallelization; MPI

MSC: 65Y05, 68W10, 65-04

1. Introduction

When solving many applied problems, there is often a need to minimize certain functional. Re-
cently, a variety of minimization software packages have become available to scientists, providing
access to highly-optimized minimization functions. For example, in one of the most popular libraries
among the scientific community, SciPy [1] of the Python programming language, multiparameter
minimization functions are available, which can be divided into two classes: local minimization
functions and global minimization functions. Local minimization functions include those that im-
plement: the Nelder-Mead algorithm [2], the modified Powell algorithm [3], the conjugate gradient
algorithm [4], the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [5–8], the Newton conjugate
gradient algorithm [9], the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm
with box constraints [10], a truncated Newton (TNC) algorithm [11], the Constrained Optimization BY
Linear Approximation (COBYLA) algorithm [12], Sequential Least Squares Programming (SLSQP) [13],
a trust-region algorithm for constrained optimization [14,15], the dog-leg trust-region algorithm [16],
the Newton conjugate gradient trust-region algorithm [17], the Newton Generalized Lanczos Trust
Region (GLTR) algorithm [18,19], a nearly exact trust-region algorithm [20]. Global minimization func-
tions include those that implement: the Basin-hopping algorithm [21], the “brute force” method [22],
the differential evolution method [23], simplicial homology global optimization [24], dual annealing
optimization [25], the DIRECT (Dividing RECTangles) algorithm [26,27].

The availability of such minimization software packages has significantly increased the efficiency
of scientific work, since it has allowed scientific groups that do not specialize in numerical minimization
methods not to waste time on software implementation of the minimization algorithms necessary in
scientific work. However, it should be noted that the most popular minimization packages involve
sequential calculations. This leads to the following problem: the computational complexity of many
modern application problems requires such large amounts of calculations that these calculations cannot
be performed on personal computers in a reasonable time.

This problem could be solved as follows. With the development of computing capabilities, the
use of parallel computing and parallel programming technologies has become widespread, which

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-5140-3617
https://orcid.org/0009-0007-1947-9006
https://orcid.org/0000-0001-8365-7224
https://doi.org/10.20944/preprints202406.0571.v2
http://creativecommons.org/licenses/by/4.0/

2 of 17

make it possible to solve computationally complex problems in a reasonable time. The problem of long
calculation is solved by parallelizing calculations between different computing nodes of a computer
system. However, the fact that many popular minimization packages do not involve parallelization of
calculations leads scientists to the following dilemma: either agree to an extremely long calculation, or
try to implement minimization algorithms themselves and then parallelize them. In both cases, the
time required to solve the scientific problem being solved may increase significantly.

It should be noted that many minimization software packages have recently begun to add parallel
computing to their implementation on computer systems with shared memory. In practice, such
systems are usually a computer with a single multi-core processor. As a result, within one computing
node (for example, a personal computer), the running time of the algorithm can be reduced, but the
maximum possible acceleration of the program is still limited by the capabilities of this computing
node. Therefore, it is still relevant to develop software implementations that have the ability to use
computing systems with distributed memory.

In connection with the above, a question arose: is it possible to parallelize the calculations that
arise when using standard minimization functions, bypassing a detailed study of the computational
algorithms that are implemented inside these functions? That is, is it possible to use the available
minimization functions “as is”? Research has shown that this can be done. The structure of any
minimization function is such (see Fig. 1) that the main calculations involve calculating the functional
and, possibly, its gradient (in the case of using first-order minimization methods). And it is the
functions that implement functional/gradient calculations that scientists implement independently in
any case. As a consequence, only these calculations can be parallelized. This work is devoted to how
this can be done relatively simply.

Figure 1. Typical structure of minimization functions.

The structure of this work is as follows. Section 2 describes the structure of the proposed parallel
algorithm, formalizes the pseudo-code of this algorithm, and also describes the structure of the
corresponding Python code that implements this algorithm using the mpi4py package. The mpi4py
package for organizing the communication of various computing processes allows the use of MPI
message passing technology, which is currently the main programming tool in parallel computing
on systems with distributed memory. For convenience, the Python code is presented in the form of
pseudocode that does not contain operations and function arguments that are unimportant for the
perception of the algorithm. Section 3 describes the full version of the software implementation of the
parallel algorithm, which also uses the latest version of the MPI standard — MPI-4 [28,29]. Section 4
presents the results of test calculations demonstrating the strong scalability properties of the proposed
software implementation. Section 5 discusses possible ways to modify the proposed algorithm, taking
into account the most frequently encountered situations in practice.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

3 of 17

2. Parallel Algorithm

According to Fig. 1, any minimization function, when executed, repeatedly calls functions that
are specified by the user and implement the calculation of the functional and its gradient. Given that
the minimization function used is sequential, it will only be called by the master process. Therefore,
functions that are specified by the user and implement the calculation of the functional and its gradient
will be split into two pairs of functions: 1) functions that are called by the master process only within
the minimization function, and 2) auxiliary functions that are called by all processes.

Functions that are called only by the master process must first implement the distribution of a
“flag” to all other processes, based on which the remaining processes can conclude what needs to be
done next: 1) calculate their part of the functional, or 2) calculate their part of the gradient. The data
needed for calculations is then distributed across all processes. After this, the master process launches
an auxiliary function, through which part of the functional or part of its gradient is calculated, for
which the master process is responsible for calculating. Then, data from intermediate calculations
performed in parallel is collected from all processes, and the final result of calculating the functional
and its gradient is aggregated.

After the minimization function completes its work on the master process, the master process
sends a “flag” to all other processes, based on the value of which the other processes can conclude that
it is necessary to stop working.

The other processes run an endless “while” loop, inside which each process waits to receive a
“flag”, based on the value of which it concludes what needs to be done next: 1) calculate its part of
the functional, 2) calculate its part of the gradient, 3) finish the job. Further, in the case of the first
two options, data for calculations is expected and after receiving it, an auxiliary function is launched,
through which the calculation of its part of the functional or its gradient is implemented. Next, the
results obtained are sent to the master process.

This algorithm is illustrated in Fig. 2 and formalized in the form of the following pseudocode (see
algorithm 1), in which the master process has rank = 0.

Figure 2. Block diagram of a parallel algorithm.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

4 of 17

if rank=0 then
x ← xinit
some minimization function

while stopping criterion not met do
. . . some “inner workings” . . .
if functional_calculation started then

Bcast(f lag = 1) from rank=0 to all

Scatter(x → xpart) from rank=0 to all
funpart ← functional_part(xpart)

Reduce(funpart → fun) to rank=0 from all

end
. . . some “inner workings” . . .
if gradient_calculation started then

Bcast(f lag = 2) from rank=0 to all

Scatter(x → xpart) from rank=0 to all
gradpart ← gradient_part(xpart)

Gather(gradpart → grad) to rank=0 from all

end
. . . some “inner workings” . . .

end
end
Bcast(f lag = 0) from rank=0 to all // extremal x has been found

else
while True do

Bcast(f lag) from rank=0
if flag=1 then

Scatter(x → xpart) from rank=0
funpart ← functional_part(xpart)

Reduce(funpart → fun) to rank=0

if flag=2 then

Scatter(x → xpart) from rank=0
gradpart ← gradient_part(xpart)

Gather(gradpart → grad) to rank=0

if flag=0 then break
end

end
Algorithm 1: Pseudocode of a universal parallel algorithm. Frames highlight pairs of blocks
that are executed in parallel. Distribution of data from MPI master process with rank=0 to other
MPI processes is carried out using the MPI routine of collective communication of processes
Scatter(), but depending on the features of the minimized functional, the distributing data can be
implemented with using one of the MPI routines Bcast(), Scatterv(), Reduce_scatter(), etc.

The Python code that implements this algorithm will be quite compact. Its structure in the form
of Python pseudocode is presented below. At the same time, for clarity: 1) some of the arguments of
the functions used are omitted, 2) the syntax is simplified.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

5 of 17

if rank == 0 :
x_init = random ()
x = optimize.minimize(fun=functional_calculation ,

jac=gradient_calculation ,
x0=x_init).x

flag = 0
Bcast(flag , root =0)

else:
while True :

Bcast(flag , root =0)
if flag == 1 :

Scatterv(x, x_part , root =0)
fun_part = functional_part(x_part)
Reduce(fun_part , fun , op=MPI.SUM , root =0)

if flag == 2 :
Scatterv(x, x_part , root =0)
grad_part = gradient_part(x_part)
Gatherv(grad_part , grad , root =0)

if flag == 0 :
break

Here the functions functional_calculation() and gradient_calculation(), which are called
by the master process inside the minimization function optimize.minimize() from the SciPy package,
have the following structure (same as above, these functions do not contain operations and function
arguments that are unimportant for the perception of the algorithm):

def functional_calculation(x) :
flag = 1
Bcast(flag , root =0)
Scatterv(x, x_part , root =0)
fun_part = functional_part(x_part)
Reduce(fun_part , fun , op=MPI.SUM , root =0)
return fun

def gradient_calculation(x) :
flag = 2
Bcast(flag , root =0)
Scatterv(x, x_part , root =0)
grad_part = gradient_part(x_part)
Gatherv(grad_part , grad , root =0)
return grad

and the auxiliary functions functional_part() and gradient_part(), which are called by all pro-
cesses, have the following general form:

def functional_part(x_part):
fun_part = 0
for i in range(len(x_part)) :

fun_part += ...
return fun_part

def gradient_part(x_part):
grad_part = empty(len(x_part))

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

6 of 17

for i in range(len(x_part)) :
grad_part[i] = ...

return grad_part

Note. Here it is assumed that in order to calculate its part of the functional or its gradient, each
MPI process must know not all the components of the next approximation for the vector x, which is
contained in the array x, but only part of its components , which are contained in the array x_part.
Situations are quite common when each MPI process must know all the components of the next
approximation for the vector x. In this case, you may need to use the MPI routine Bcast() instead of
the MPI routine Scatter(v)().

3. Description of the Full Version of the Software Implementation of the Parallel Algorithm (Using
the MPI-4 Standard)

Next, we will describe the complete Python code that implements the algorithm 1. But first, the
following remark must be made. The software implementation structure proposed in the previous
section contains collective communications between processes with the same argument list which
are repeatedly executed within the inner loop of a parallel computation. In such a situation, it may
be possible to optimize the communications by binding the list of communication arguments to a
persistent communication request once and, then, repeatedly using the request to initiate and complete
messages. The peculiarity of the MPI-4 standard (2021) is that it introduced MPI routines that allow
this to be done for operations of collective communications of processes.

For example, the result of running the MPI routine Bcast() is equivalent to the sequence of
launching the MPI routines Bcast_init() “+” Start() “+” Wait(). Moreover, if the MPI rou-
tine Bcast_init() is launched multiple times with the same set of arguments, the result of calling
Bcast_init() will be the same. This makes it possible to move this action “out of brackets”, that is,
out of the loop through which it is called repeatedly.

That is, in order to use more advanced versions of the MPI routines for collective communication
of processes from the MPI-4 standard, it is necessary to perform the following sequence of changes.

1. Before the main loop while, it is necessary to generate persistent communication requests using
MPI routines of the form request[] = Bcast_init() for all routines of collective communica-
tions of processes Bcast(), Scatterv(), Reduce() and Gatherv(), which are called multiple
times with the same set of arguments.

2. Replace MPI routine calls with a sequence of function calls Start(request[]) “+” Wait(request[]).

So, taking into account the comments made, the parallel software implementation of the algo-
rithm 1 will take the following form (in this case, the program code will be commented block by block,
but all blocks with numbered lines will form a single program code).

1 from mpi4py import MPI
2 from scipy import optimize
3 from numpy import array , empty , zeros , arange , float64 , int32
4
5 comm = MPI.COMM_WORLD
6 numprocs = comm.Get_size ()
7 rank = comm.Get_rank ()

Lines 1–3 import the necessary functions. When importing MPI (line 1), the MPI part of the
program is initialized. Based on the results of lines 5-7, each MPI process, on which this program code
is executed, knows 1) the total number numprocs of processes participating in the calculations, and 2)
its identifier rank in the communicator comm, which contains all the processes on which the program
runs.

8 N = 1000

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

7 of 17

9
10 if rank == 0 :
11 ave , res = divmod(N, numprocs)
12 counts = array([ave + 1 if p < res else ave
13 for p in range(numprocs)], dtype=int32)
14 displs = array([counts [:i].sum()
15 for i in range(numprocs)], dtype=int32)
16 else:
17 counts , displs = None , None
18
19 N_part = array(0, dtype=int32)
20 comm.Scatter ([counts , 1, MPI.INT], [N_part , 1, MPI.INT], root =0)

In line 8, the number of components of the model vector x is determined, and then in lines 11–15,
on the master process with rank = 0, auxiliary arrays counts and displs, necessary for MPI routines
Scatterv() and Gatherv() (which will be used to distribute components of the vector x among
processes or to collect intermediate calculation data from all processes), are prepared. Thus, the array
counts contains information about the number of elements sending to each process (or received from
each process). Those, array element counts[k] contains the value Npart(k) — number of components
of part xpart of vector x, for which MPI process with rank = k is responsible for processing. The
algorithm for determining the elements of counts is such that the maximum difference between any
two elements of this array is 1, but the sum of all elements of this array is equal to N:

numprocs−1

∑
k=0

counts[k] ≡
numprocs−1

∑
k=0

Npart(k) = N.

It should be noted that the values of the array elements counts and displs will be needed further
only on the process with rank = 0 (master process). These values will not be used by other processes.
But taking into account the fact that the arrays counts and displs will be arguments to the functions
Scatterv() and Gatherv(), which are called on all processes, then the corresponding Python objects
formally must be initialized. This is done on line 17 for processes with rank >= 1.

Line 19 allocates memory space for the array N_part, which will contain only one value — the
number of elements of the vector part xpart, for which the MPI process, on which this program code
is running, is responsible. It is necessary to recall that formally this number must be a numpy-array,
since the MPI routines used only work with numpy-arrays. In line 20, using the MPI routine Scatter(),
this array is filled with the corresponding value from the array counts, contained only in the process
with rank = 0. Now the MPI process with ramk = k knows its value Npart(k), contained on this MPI
process in the array N_part.

Next, an array x_model is formed, which contains the values of the model vector xmodel , with
which the solution to the minimization problem will be compared.

21 if rank == 0 :
22 x_model = arange(N, dtype=float64)
23 else:
24 x_model = None
25
26 x_model_part = empty(N_part , dtype=float64)
27 comm.Scatterv ([x_model , counts , displs , MPI.DOUBLE],
28 [x_model_part , N_part , MPI.DOUBLE], root =0)

In lines 21–24 this array is formed only on the master process with rank = 0 (line 22), and then in
lines 27–28, using the MPI routine Scatterv(), it is distributed in parts from the process with rank =

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

8 of 17

0 across all processes where the corresponding parts are stored in the array x_model_part. To do this,
in line 26, memory space is preliminarily allocated for these arrays.

Now begins the consideration of the main part of the program, which directly implements the
algorithm considered in the work.

First, it is necessary to generate persistent communication requests for all MPI routines of collective
communications of processes that will be called repeatedly.

29 requests = [MPI.Request () for i in range (4)]
30
31 flag = empty(1, dtype=int32)
32 requests [0] = comm.Bcast_init ([flag , 1, MPI.INT], root =0)
33
34 if rank == 0 :
35 x_temp = empty(N, dtype=float64)
36 else :
37 x_temp = None
38 x_part = empty(N_part , dtype=float64)
39 requests [1] = comm.Scatterv_init(

[x_temp , counts , displs , MPI.DOUBLE],
40 [x_part , N_part , MPI.DOUBLE], root =0)
41
42 if rank == 0 :
43 fun = empty(1, dtype=float64)
44 else :
45 fun = None
46 fun_part = empty(1, dtype=float64)
47 requests [2] = comm.Reduce_init ([fun_part , 1, MPI.DOUBLE],
48 [fun , 1, MPI.DOUBLE], op=MPI.SUM , root =0)
49
50 if rank == 0 :
51 grad = empty(N, dtype=float64)
52 else :
53 grad = None
54 grad_part = empty(N_part , dtype=float64)
55 requests [3] = comm.Gatherv_init(

[grad_part , N_part , MPI.DOUBLE],
56 [grad , counts , displs , MPI.DOUBLE], root =0)

Line 29 creates the array requests, which will contain the values of the returned parameters,
which, in turn, will be used to identify specific persistent communication requests for collective
communications. Next, persistent communication requests are generated for the MPI routines Bcast()
(lines 31–32), Scatterv() (lines 34–40), Reduce() (lines 42 —48), Gatherv() (lines 50–56).

The generation of such persistent communication requests for collective communications is the
same, so it will be explained only using the example of the formation of a persistent communication
request for collective communication for the MPI routine Scatterv() (lines 34–40). Line 35 allocates
memory space for the array x_temp only on the process with rank = 0 (this array will contain the
values of the vector x, but the meaning of the postfix _temp will be explained later when filling this
array with specific values). Its contents will not be used by other processes. But taking into account the
fact that the array x_temp is an argument of the MPI routines Scatterv_init() (lines 39–40), which
are called on all processes, the corresponding Python object must formally be initialized. This is done
on line 37 for processes with rank >= 1. Line 38 allocates memory space for the array x_part.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

9 of 17

It is necessary to note the following important point in the formation of persistent communication
requests. The arguments of the corresponding functions are numpy-arrays (for example, in the case
considered, the arrays x_temp and x_part), namely fixed memory areas associated with these arrays.
When initializing generated communication requests using the MPI routine MPI.Prequest.Start(),
all data will be taken/written to these memory areas, which are fixed once when the corresponding
persistent communication request is generated. Therefore, it is necessary to first allocate space in
memory for all arrays that are arguments to these functions; and during subsequent calculations,
ensure that the corresponding calculation results are stored in the correct memory areas.

Next, the auxiliary functions functional_part() and gradient_part() are defined, which are
called by all processes.

57 def functional_part(x_part) :
58 fun_part [0] = 0
59 for i in range(N_part) :
60 for n in range(N) :
61 fun_part [0] += (x_part[i] - x_model_part[i]) ** 2
62 return fun_part [0]
63
64 def gradient_part(x_part) :
65 grad_part = zeros(N_part , dtype=float64)
66 for i in range(N_part) :
67 for n in range(N) :
68 grad_part[i] += 2*(x_part[i] - x_model_part[i])
69 return grad_part

These auxiliary functions contain calculations of the functional, which for simplicity is given as

f (x) =
N

∑
i=1

N

∑
n=1

(xi − i)2,
(

grad f (x)
)

i = 2
N

∑
n=1

(xi − i).

Next, the functions functional_calculation() and gradient_calculation() are defined, which
are called by the master process with rank = 0 inside the minimization function optimize.minimize()
from the SciPy package.

70 def functional_calculation(x) :
71 flag [0] = 1
72 MPI.Prequest.Start(requests [0])
73 MPI.Request.Wait(requests [0], status=None)
74 x_temp [:] = x
75 MPI.Prequest.Start(requests [1])
76 MPI.Request.Wait(requests [1], status=None)
77 fun_part [0] = functional_part(x_part)
78 MPI.Prequest.Start(requests [2])
79 MPI.Request.Wait(requests [2], status=None)
80 return fun[0]
81
82 def gradient_calculation(x) :
83 flag [0] = 2
84 MPI.Prequest.Start(requests [0])
85 MPI.Request.Wait(requests [0], status=None)
86 x_temp [:] = x
87 MPI.Prequest.Start(requests [1])
88 MPI.Request.Wait(requests [1], status=None)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

10 of 17

89 grad_part [:] = gradient_part(x_part)
90 MPI.Prequest.Start(requests [3])
91 MPI.Request.Wait(requests [3], status=None)
92 return grad

The structure of these functions fully corresponds to the structure proposed at the end of the
previous section (Section 2). Therefore, it is necessary to note only the features of their software
implementation. This will be done using the function functional_calculation() as an example.

In lines 72–73, the functionality of the MPI routine Bcast() is executed, the persistent communica-
tion request for which was generated in line 32. Since the corresponding MPI routine is non-blocking,
we must wait until the end of its execution (line 73).

In lines 75–76, the functionality of the MPI routine Scatterv() is executed, the persistent com-
munication request for which was generated in lines 39–40. Since the corresponding MPI routine is
non-blocking, we must wait for its execution to complete (line 76).

In this case, it is necessary to note the role of the array x_temp (line 74). This array will contain the
values of the vector x, which could not be redefined, but directly distributed between other processes.
But due to the fact that it is often unknown how the minimization function is structured internally,
which at each iteration redefines the vector x, it may turn out that a new place in memory is allocated
for the next approximation of this vector at this iteration. Therefore, for the purpose of insurance, the
values of this array are copied to a pre-allocated fixed location in memory (line 35) in order for the
function Scatterv(), generated by a persistent communication request, to work correctly.

In lines 78–79, the functionality of the MPI routine Reduce() is executed, the persistent com-
munication request for which was generated in lines 47–48. Since the corresponding MPI routine is
non-blocking, we must wait for its execution to complete (line 79).

The following is the Python code that implements the main part of the algorithm 1.

93 if rank == 0 :
94 x_init = random.uniform(low=0., high=N, size=N)
95 x = optimize.minimize(fun=functional_calculation ,
96 jac=gradient_calculation ,
97 x0=x_init , tol=1e-9,
98 method=’L-BFGS -B’).x
99 flag [0] = 0

100 MPI.Prequest.Start(requests [0])
101 MPI.Request.Wait(requests [0], status=None)
102 else:
103 while True :
104 MPI.Prequest.Start(requests [0])
105 MPI.Request.Wait(requests [0], status=None)
106 if flag == 1 :
107 MPI.Prequest.Start(requests [1])
108 MPI.Request.Wait(requests [1], status=None)
109 fun_part [0] = functional_part(x_part)
110 MPI.Prequest.Start(requests [2])
111 MPI.Request.Wait(requests [2], status=None)
112 if flag == 2 :
113 MPI.Prequest.Start(requests [1])
114 MPI.Request.Wait(requests [1], status=None)
115 grad_part [:] = gradient_part(x_part)
116 MPI.Prequest.Start(requests [3])
117 MPI.Request.Wait(requests [3], status=None)
118 if flag == 0 :

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

11 of 17

119 break

The structure of this code fully corresponds to the structure proposed at the end of the previous
section (Section 2). Therefore, it is necessary to note only the features of its software implementation.

In lines 100–101 and 104–105, the functionality of the MPI routine Bcast() is executed, the
persistent communication request for which was generated in line 32.

In lines 107–108 and 113–114, the functionality of the MPI routineScatterv() is executed, the
persistent communication request for which was generated in lines 39–40.

In lines 110–111, the functionality of the MPI routine Reduce() is executed, the persistent commu-
nication request for which was generated in lines 47–48.

In lines 116–117, the functionality of the MPI routine Gatherv() is executed, the persistent
communication request for which was generated in lines 55–56.

4. Efficiency and Scalability of Software Implementation of the Proposed Parallel Algorithm

To test the efficiency and scalability of the proposed software implementation of the parallel
algorithm, the computing section “test” of the supercomputer “Lomonosov-2” [30] of the Research
Computing Center of Lomonosow Moscow State University was used. Each computing node in the
“test” section contains a 14-core Intel Xeon E5-2697 v3 2.60GHz processor with 64 GB of RAM (4.5 GB
per core) and a Tesla K40s video card with 11.56 GB of video memory (not used in calculations).

Remark. The program described in Section 3 was tested. However, in addition to the file
“example_MPI-4.py”, which contains this program, the digital version of the article also contains
the file “example_MPI-3.py”, which contains a simplified version of the program that uses only MPI
routines from the MPI-3 standard.

The parallel version of the program was launched with each MPI process bound to exactly one
core. The software packages used were 1) mpi4py version 4.0.0.dev0, 2) numpy version 1.26.4, 2) scipy
version 1.12.0, 4) mpich version 4.1. 1.

The scheme of numerical experiments repeats the scheme described in the work [31]. The
program was launched on a number of processes n ≡ numprocs, for which the running time Tn of the
computational part of the program was recorded (see Fig. 3). Using the estimated running time T1 of

the sequential version of the algorithm, the speedup Sn was calculated using the formula Sn =
T1

Tn
(see

Fig. 3), and then efficiency En =
Sn

n
of software implementation (see Fig. 4).

The calculations were carried out for the parameter N = 8050 (number of components in the
model vector x), for which the running time of the computational part of the serial version of the
program was ∼ 752 seconds. The results shown in Fig. 3 and 4 correspond to the averaged values over
a series of runs (100 runs for each value n). At the same time, the graphs also show a corridor of errors
Sn ± ∆Sn and En ± ∆En.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

12 of 17

Figure 3. Graphs of the running time and acceleration of the parallel version of the program depending
on the number of cores used for calculations (14 cores on one computing node).

Figure 4. Graphs of parallelization efficiency depending on the number of cores used for calculations
(14 cores on one computing node).

Errors for the obtained average values of acceleration and efficiency were calculated using the
error formula for indirect measurements. In general, such a formula for the quantity N, depending on
direct measurements xj, j = 1, m, with known standard deviations σ(xj), has the form

∆N(x1, . . . , xm) =

√√√√ m

∑
j=1

(
∂N
∂xj

σ(xi)

)2

.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

13 of 17

Thus, for the acceleration calculated by the formula Sn = T1
Tn

the errors are calculated as

∆S1 = 0; ∆Sn =
1

Tn

√
σ2(T1) +

T2
1

T2
n

σ2(Tn), n geq2,

where σ(Tn) — estimate of the standard deviation for each measurement Tn.
For efficiency calculated using the formula En = Sn

n , the errors are calculated as

∆E1 = 0; ∆En =
∆S(n)

n
, n ≥ 2.

As can be seen from Fig. 4 the efficiency decreases in the interval from n = 1 to n = 28 and then
remains constant. Formally, one could say that from this figure it can be concluded that the parallel
software implementation of the algorithm, within certain limits, has good efficiency and good strong
scalability over most of the range of the number of cores used for calculations. However, the indicated
period of change in efficiency raises questions. Such a result would be easy to explain only in the case
of a sharp deterioration in efficiency, starting from n = 15. When n = 1, 14, only one node is used
for calculations, as a result of which there is practically no overhead for the interaction of computing
nodes (message transmission over the network is not used). Starting from n = 15, 2 nodes already take
part in the calculations, as a result of which the communication network is involved and significant
overhead may appear for receiving/transmitting messages between computing nodes. Moreover, with
an increase in the number of computing nodes used, the share of costs for receiving/transmitting
messages should only increase.

The study of this issue revealed the following feature of the computing equipment used for test
calculations. With the current settings of the installed packages and the “Lomonosov-2” supercomputer,
when running programs using the mpirun utility from the mpich package, about 0-4 cores appear on
each computing node, operating on average 2.28 times slower than the rest. The operating time of
the entire parallel program is determined by the operating time of the slowest process, and as the
number of computing processes n increases (each of which is executed on its own core of a multi-core
processor), the probability of using “slow” cores increases, which is why the efficiency decreases
relatively smoothly on the first two computing nodes, and then stops at the value ∼ 0.4 (i.e., starting
from three computing nodes, with a probability close to one, ”slow” cores begin to be used).

For values of the number of cores n = 2, 28, a graph was constructed showing the distribution
of efficiency values over a series of runs for each value of n (100 runs for each value). The resulting
distributions (see Fig. 5) are not normal, since they contain two pronounced peaks: in the presence
and absence of “slow” cores. Therefore, using the average of these values (see Fig. 4) to characterize
the properties of strong scalability of a software implementation of a parallel algorithm is not entirely
correct — it is better to use values corresponding to the maximums of the distribution (see Fig. 6).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

14 of 17

Figure 5. Graph of the efficiency distribution over a series of launches for each value of n. The red
curve displays average efficiency values (efficiency drops until there is “guaranteed” that there will be
at least one “slow” core among all cores). The green curve displays the dependence of efficiency when
taking into account only those values that correspond to the maxima of the distribution, corresponding
to “fast” cores.

Figure 6. Graph of parallelization efficiency, reflecting the real properties of the parallel algorithm.

5. Discussion

1. Some minimization functions use the BLAS [32], LAPACK [33], Intel MKL etc. libraries. In
this case, they can use all the cores of a multi-core processor. As a result, the efficiency of
parallelization within a single computing node can drop. When using “core”-parallelization
using MPI, it is recommended to disable parallelism within the libraries.

2. The operation of sending a “flag” can be combined with sending data for calculations. We did
not do this to avoid unnecessary complexity of the algorithm.

Author Contributions: Conceptualization, D.L. and S.T.; methodology, D.L. and S.T.; software, D.L. and S.T.;
validation, D.L., S.T. and V.S.; formal analysis, S.T. and V.S.; investigation, D.L., S.T. and V.T.; data curation,
S.T. and V.S.; writing—original draft preparation, D.L.; writing—review and editing, D.L.; visualization, D.L.;
supervision, D.L.; project administration, D.L.; funding acquisition, D.L. All authors have read and agreed to the
published version of the manuscript.

Funding:

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The research is carried out using the equipment of the shared research facilities of HPC
computing resources at Lomonosov Moscow State University [30].

Conflicts of Interest: The authors declare no conflict of interest.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.20944/preprints202406.0571.v2

15 of 17

References

1. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson,
P.; Weckesser, W.; Bright, J.; van der Walt, S.J.; Brett, M.; Wilson, J.; Millman, K.J.; Mayorov, N.; Nelson,
A.R.J.; Jones, E.; Kern, R.; Larson, E.; Carey, C.J.; Polat, İ.; Feng, Y.; Moore, E.W.; VanderPlas, J.; Laxalde,
D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E.A.; Harris, C.R.; Archibald, A.M.; Ribeiro, A.H.;
Pedregosa, F.; van Mulbregt, P.; SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods 2020, 17, 261–272. doi:10.1038/s41592-019-0686-2.

2. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. The Computer Journal 1965, 7, 308–313.
doi:10.1093/comjnl/7.4.308.

3. Powell, M.J.D. An efficient method for finding the minimum of a function of several variables without
calculating derivatives. The Computer Journal 1964, 7, 155–162. doi:10.1093/comjnl/7.2.155.

4. Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J Res NIST 1952,
49, 409–436. doi:10.6028/jres.049.044.

5. Broyden, C. A new double-rank minimisation algorithm. Preliminary report. American Mathematical
Society, Notices 1969, 16, 670.

6. Fletcher, R. A new approach to variable metric algorithms. The computer journal 1970, 13, 317–322.
7. Goldfarb, D. A family of variable-metric methods derived by variational means. Mathematics of Computation

1970, 24, 23–26. doi:10.1090/S0025-5718-1970-0258249-6.
8. Shanno, D.F. Conditioning of Quasi-Newton Methods for Function Minimization. j-MATH-COMPUT

1970, 24, 647–656. doi:10.2307/2004840.
9. Dembo, R.S.; Steihaug, T. Truncated-Newton algorithms for large-scale unconstrained optimization.

Mathematical Programming 1983, 26, 190–212. doi:10.1007/BF02592055.
10. Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A Limited Memory Algorithm for Bound Constrained Optimization.

SIAM Journal on Scientific Computing 1995, 16, 1190–1208. doi:10.1137/0916069.
11. Nash, S.G. Newton-Type Minimization via the Lanczos Method. SIAM Journal on Numerical Analysis 1984,

21, 770–788. doi:10.1137/0721052.
12. Powell, M.J.D., A Direct Search Optimization Method That Models the Objective and Constraint Functions

by Linear Interpolation. In Advances in Optimization and Numerical Analysis; Gomez, S.; Hennart, J.P., Eds.;
Springer Netherlands, 1994; pp. 51–67. doi:10.1007/978-94-015-8330-5_4.

13. Kraft, D. A Software Package for Sequential Quadratic Programming; Deutsche Forschungs- und Versuchsanstalt
für Luft- und Raumfahrt Köln: Forschungsbericht, Wiss. Berichtswesen d. DFVLR, 1988.

14. Byrd, R.H.; Hribar, M.E.; Nocedal, J. An Interior Point Algorithm for Large-Scale Nonlinear Programming.
SIAM Journal on Optimization 1999, 9, 877–900. doi:10.1137/S1052623497325107.

15. Lalee, M.; Nocedal, J.; Plantenga, T. On the Implementation of an Algorithm for Large-Scale Equality
Constrained Optimization. SIAM Journal on Optimization 1998, 8, 682–706. doi:10.1137/S1052623493262993.

16. A hybrid method for nonlinear equations. In Numerical methods for nonlinear algebraic equations; Gordon
and Breach, 1970; pp. 87–114.

17. Large-Scale Unconstrained Optimization. In Numerical Optimization; Springer New York: New York, NY,
2006; pp. 164–192. doi:10.1007/978-0-387-40065-5_7.

18. Lenders, F.; Kirches, C.; Potschka, A. trlib: a vector-free implementation of the GLTR method for
iterative solution of the trust region problem. Optimization Methods and Software 2018, 33, 420–449.
doi:10.1080/10556788.2018.1449842.

19. Gould, N.I.M.; Lucidi, S.; Roma, M.; Toint, P.L. Solving the Trust-Region Subproblem using the Lanczos
Method. SIAM Journal on Optimization 1999, 9, 504–525. doi:10.1137/S1052623497322735.

20. Conn, A.R.; Gould, N.I.M.; Toint, P.L., Trust Region Methods; Society for Industrial and Applied Mathe-
matics, 2000; pp. 169–200. doi:10.1137/1.9780898719857.

21. Wales, D.J.; Doye, J.P.K. Global Optimization by Basin-Hopping and the Lowest Energy Structures of
Lennard-Jones Clusters Containing up to 110 Atoms. The Journal of Physical Chemistry A 1997, 101, 5111–
5116. doi:10.1021/jp970984n.

22. Johansson, R., Optimization. In Numerical Python: A Practical Techniques Approach for Industry; Apress:
Berkeley, CA, 2015; pp. 147–168. doi:10.1007/978-1-4842-0553-2_6.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1090/S0025-5718-1970-0258249-6
https://doi.org/10.2307/2004840
https://doi.org/10.1007/BF02592055
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0721052
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1137/S1052623497325107
https://doi.org/10.1137/S1052623493262993
https://doi.org/10.1007/978-0-387-40065-5_7
https://doi.org/10.1080/10556788.2018.1449842
https://doi.org/10.1137/S1052623497322735
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1021/jp970984n
https://doi.org/10.1007/978-1-4842-0553-2_6
https://doi.org/10.20944/preprints202406.0571.v2

16 of 17

23. Storn, R.; Price, K. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over
Continuous Spaces. Journal of Global Optimization 1997, 11, 341–359. doi:10.1023/A:1008202821328.

24. Endres, S.; Sandrock, C.; Focke, W. A simplicial homology algorithm for Lipschitz optimisation. Journal of
Global Optimization 2018, 72, 181–217. doi:10.1007/s10898-018-0645-y.

25. Xiang, Y.; Gubian, S.; Suomela, B.; Hoeng, J. Generalized Simulated Annealing for Global Optimization:
The GenSA Package. The R Journal 2013, 5, 13–28. doi:10.32614/RJ-2013-002.

26. Jones, D.R.; Perttunen, C.D.; Stuckman, B.E. Lipschitzian optimization without the Lipschitz constant.
Journal of Optimization Theory and Applications 1993, 79, 157–181. doi:10.1007/BF00941892.

27. Gablonsky, J.M.; Kelley, C.T. A Locally-Biased form of the DIRECT Algorithm. Journal of Global Optimization
2001, 21, 27–37. doi:10.1023/A:1017930332101.

28. Dalcin, L.; Fang, Y.L.L. mpi4py: Status Update After 12 Years of Development. Computing in Science &
Engineering 2021, 23, 47–54. doi:10.1109/MCSE.2021.3083216.

29. Rogowski, M.; Aseeri, S.; Keyes, D.; Dalcin, L. mpi4py.futures: MPI-Based Asynchronous Task Execution for
Python. IEEE Transactions on Parallel and Distributed Systems 2023, 34, 611–622. doi:10.1109/TPDS.2022.3225481.

30. Voevodin, V.; Antonov, A.; Nikitenko, D.; Shvets, P.; Sobolev, S.; Sidorov, I.; Stefanov, K.; Voevodin, V.;
Zhumatiy, S. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User
Community. Supercomputing Frontiers and Innovations 2019, 6, 4–11. doi:10.14529/jsfi190201.

31. Lukyanenko, D. Parallel algorithm for solving overdetermined systems of linear equations, taking into
account round-off errors. Algorithms 2023, 16, 242. doi:10.3390/a16050242.

32. Blackford, L.S.; Petitet, A.; Pozo, R.; Remington, K.; Whaley, R.C.; Demmel, J.; Dongarra, J.; Duff, I.;
Hammarling, S.; Henry, G.; others. An updated set of basic linear algebra subprograms (BLAS). ACM
Transactions on Mathematical Software 2002, 28, 135–151.

33. Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.;
Hammarling, S.; McKenney, A.; Sorensen, D. LAPACK Users’ Guide, third ed.; Society for Industrial and
Applied Mathematics: Philadelphia, PA, 1999.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 June 2024 doi:10.20944/preprints202406.0571.v2

https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s10898-018-0645-y
https://doi.org/10.32614/RJ-2013-002
https://doi.org/10.1007/BF00941892
https://doi.org/10.1023/A:1017930332101
https://doi.org/10.1109/MCSE.2021.3083216
https://doi.org/10.1109/TPDS.2022.3225481
https://doi.org/10.14529/jsfi190201
https://doi.org/10.3390/a16050242
https://doi.org/10.20944/preprints202406.0571.v2

	Introduction
	Parallel Algorithm
	Description of the Full Version of the Software Implementation of the Parallel Algorithm (Using the MPI-4 Standard)
	Efficiency and Scalability of Software Implementation of the Proposed Parallel Algorithm
	Discussion
	References

