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Abstract: The inverse system identification toolbox named INVSID 1.0 for MATLAB, which is used to identify the
inversion of single-input single-output systems, is developed. The complete process from theoretical derivation to
toolbox creation of developing the toolbox is demonstrated. Afterwards, numerical examples are illustrated to
describe how the toolbox can be used to solve inverse identification problems. Simulation results demonstrate the

effectiveness of the toolbox.
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1. Introduction

Nowadays, in many motion control systems, the requirements of high performance such as short
motion times and small settling times. To fulfill these demands, combing feedback with feedforward
control is normally implemented [1]. Figure 1 displays how a feedforward controller can be involved
in feedback control systems, totally there are two kinds of modes. The feedback controller guarantees
stability and improves disturbance rejection, while the feedforward controller enhances tracking
performance such that the feedforward controller should be designed as F = G' (in the first mode)
and F = G/ (in the second mode), where the symbol “ *  denotes the Moore-Penrose pseudo inverse
[2]. So system inversion is the key to the problem of feedforward control. Actually, in addition to
applications in control systems, system inversion is frequently used in the areas of sensor calibration,
loudspeaker linearization, digital predistortion for radio frequency communications, and so on [3]. So
system inversion plays an important role in various research areas.
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Figure 1. Inverse model-based feedforward-feedback control (r: reference signal; F: feedforward con-

troller; C: feedback controller; G: plant model; G.: closed-loop system model; e: error; f: feedforward
controller output; y: control system output).

System inversion can be conducted by direct inversion and indirect inversion [4]. There exists
several kinds of intrinsic limitations of direct inversion approaches, here an example is used to illustrate
this, denote the transfer function of a finite-dimensional, discrete-time, single-input single-output,
linear, constant dynamical system as

, 1)
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where A € R"™" B € R", C € R*" D € R, I, denotes an n-dimensional identity matrix,
and (A, B,C,D) is a state-space realization of G(z). Based on (1), the inversion of G(z) can be
represented as [5]
A-BD'Cc | —-BD'
G'(z) = - ‘ T
ptfc | D

)

There are at least two challenges in the direct inversion (2): (i) when D does not exist, the direct
inversion cannot be conducted; (ii) when there exist nonminimum-phase zeros' in G(z), the inversion
G*(z) will be unstable.

Due to the limitations of direct inversion approaches, various indirect inversion approaches have
thus been proposed. A possible classification of existing indirect system inversion approaches consists
in distinguishing between preview-based and non-preview-based approaches [4,6]:

(a) Preview-based inversion approaches can be further categorized into infinite preview-based
approaches and finite preview-based approaches. Infinite preview-based approaches admit an
exact stable inversion solution, however, such a solution may require an infinite pre-actuation
[7-10]. Because the length of the pre-actuation is proportional to the length of the desired
output preview, infinite preview-based approaches is not applicable from a practical point
of view. To handel the problem of applicability, finite preview-based approaches have been
proposed [11-18].

(b) Non-preview-based inversion approaches are preferred in practice. A family of approaches
called pseudo-inversion, which can be conducted without preview, has been proposed [19,20].
However, such approaches will encounter other problems such as the difficulty of choosing a
suitable basis function; Direct system identification-based inversion approaches the input-output
data from the system to be inverted to identify the inverse system directly, however, the system
identification cannot be conducted when the system to be inverted not stable [3]; For signal
modeling-based inversion approaches, the input signal, which is to be reconstructed, must be a
periodic signal under stationary operating conditions [21,22].

It should be noted that guaranteeing the stability of obtained solutions is a priority of both direct
and indirect inversion approaches. So for some indirect inversion approaches, stability is ensured,
but infinite or finite pre-actuation is needed.

In this paper, an entirely different system inversion approach by combing time-domain observer
design and frequency-domain subspace identification is proposed. The presented approach can
guarantee the stability of obtained system inversion, and simultaneously the proposed approach does
not need any pre-actuation; Furthermore, the approach can be applied to stable or unstable, proper or
improper systems” to be inverted, and there is also no requirement for the type of input and output
signals. Furthermore, it does not suffer non-convex or input noise problems.

To facilitate the use of the proposed system inversion approach by third parties, a MATLAB
toolbox implementing the approach is created in this paper after theoretical derivation of the approach.
The full name of the MATLAB toolbox is INVerse System IDentification with the first version which is
abbreviated as INVSID 1.0.

The remainder of the paper is organized as follows. In Section 2, the inversion approach is
proposed, and corresponding MATLAB codes are generated, based on which the toolbox NIVSID
1.0 is created, followed by Section 3, in which the usage of the toolbox NIVSID 1.0 is validated by a
numerical example. Finally conclusions and future perspectives are given in Section 4.

1
2

For discrete-time systems, nonminimum-phase zeros are zeros that lie outside the unit disk.
The system is proper when the degree of the numerator does not exceed the degree of the denominator of its transfer
function, otherwise the system is improper.
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2. Creation of INVSID 1.0

This section is illustrated by using three subsections with a progressive relationship: the proposed
inverse identification approach is first presented, on the basis of which the corresponding MATLAB
codes and the toolbox INVSID 1.0 are finally created. It should be noted that the toolbox INVSID 1.0 is
only used for the inverse identification of single-input single-out systems.

2.1. Inverse Identification Approach

Given a finite-dimensional, discrete-time, single-input single-output, linear, constant dynamical
system G4 which is minimal-realized® and proper, the given system G4 can be either stable or unstable,
and the sampling period of system G4 is Ts in seconds.

Figure 2 is used to demonstrate the basic idea behind the proposed inverse system identification
approach, based on which the inverse model of the nominal model G4 can be derived. As can be seen
in Figure 2, the proposed approach mainly consists of five steps:

(a) Obtain a state-space representation of the nominal system Gq.

(b) Given a number of sine signals u,,(k), m = 1,2,..., N, corresponding to a number of N specified
frequencies, and model them in state-space representation such that N signal models G, m =
1,2,...,N, can be obtained.

(c) By combing the signal models G, for m = 1,2, ..., N with the model Gy, respectively, the aug-
mented models G, 4, m = 1,2,..., N, can be obtained. Then based on using the observers for the
augmented models G, 4, m = 1,2,..., N, inverse models Giny,»n withm =1,2,..., N, which can
be used for reconstructing the input signals u, (k), m = 1,2,..., N, can be obtained.

(d) Use frequency-domain system identification approaches to identify the inverse model of G4
based on the frequency response function values of the models Giny,, withm =1,2,..., N at
specified frequencies.

(e) Choose the best inverse model by validating the identified inverse models.

3 The dynamical system G is minimal-realized if and only if it is both controllable and observable.


https://doi.org/10.20944/preprints202406.0681.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2024 d0i:10.20944/preprints202406.0681.v1

40f19
um ym
e Gy —
um ym
Gn Gy >
Gam

F—

| |

| um | yrﬂ

| G, Gy I

|

| |

- ]

vam @
|_ ____________________ il
(. ~
V| | X u,
—:—P Observer for G, ,, Recosltlzgucted f C, />
|

' |
- - a

Frequency-domain
@ (G withm=1,2, . N} system identification /C\"m\-

@ Model validation

Figure 2. Framework of proposed inverse system identification approach. (The symbol ”*” denotes

reconstructed or estimated value.).

The above steps are discussed in detail as follows:

Step 1: If the transfer function of the system G is denoted as G4(z), and (Aq, By, C4, Dq) represents a
minimal realization of G4(z), the corresponding state-space model of the system G4 can be
represented as

)

y(k) = Cqxa(k) + Dgu(k),

where x4 (k) € R" is the state vector of the model (3), u(k) € R and y(k) € R are the input

and output of the system Gy, respectively.

{xd(k +1) = Agxq(k) + Bgu(k),

Remark 1. Actually, the proposed inverse identification approach is not limited to proper
systems, the approach can also be used for identifying inversion of improper systems by
replacing the present input u(k) by future input in (3).


https://doi.org/10.20944/preprints202406.0681.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2024 d0i:10.20944/preprints202406.0681.v1

50f 19
Step 2: Given a set S containing N discrete-time sine signals:
S={um(k),m=1,2,...,N}, 4)
where
Uy (k) = sin(2wm f1,kTs), ()

where f;, denotes the ordinary frequency in Hz, and the sequence (f,;)N_, is an arithmetic
sequence, each sine wave in the set S can be represented as the output of a state-space model
Gy, 1.e.,

{xm(k+ 1) = Apxp(k), ©

U (k) = Cuxm(k),

where x,, (k) € R? denotes the state vector of the model (6), the matrices A, and C,, can be

denoted as
A — cos(2mfmTs)  sin(27fy, Ts) 7)
" —sin(27fuTs) cos(27t fu Ts)
and
Cu=(1 0), ®)
respectively.

Remark 2. The frequencies of the signal u,,(k), m =1,2,..., N, in the set S can be specified by
the following rule:

fn = fo +(m—=1)d, ©)
where f;, is a non-negative value, and 4 is a positive value.
The rule in Equation (9) is not the only way to specify the frequencies.

The values of f,, form =1,2,..., N belong to the range (0, J;—s) with fs = T%

Step 3: If the signal u,, (k) is used as the input signal of the model (3), we can obtain

{xd(k + 1) = Adxd(k) + Bdum(k), (10)

Ym(k) = Cqxq(k) + Dgtim(k),

where v, (k) denotes the output of the model (3) when the input signal is u,, (k).

By augmenting the model (10) with the state vector of the model (6), an augmented model
Ga,m can be obtained, and it can be represented as

{xa,m(k 1) = Agmxam(k), -

Ym (k) = Ca,mxa,m (k)r

where the state vector x, ,, (k) can be denoted as

. _ [ xa(k)
a,m(k) - (xm(k)>’ (12)

and the matrices A, and C, , can be denoted as

Ayq B4Cn
Aam = 1
o (0 o ) (13)
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and
Cam = (cd Ddcm), (14)

respectively.

Based on the state-space model representation (11) for the augmented models G, ;, m =
1,2,...,N, we can totally build N full-order observers corresponding to the augmented models
Gam,m=1,2,...,N, and we denote the m-th observer for the m-th augmented model G, as
Ea,m which can be described by

Xa,m (k + 1) = (Aa,m — Lam a,m)i'a,m (k) + LamYm (k)r (15)

where L, ,, denotes the observer gain, and £, (k) denotes the reconstructed value of x, », (k)
using the observer.

With the reconstructed value £, ,, (k), we can obtain the reconstructed value of u,, (k) which
can be calculated by the following equation:

(k) = ComRam(k), (16)

where
Com = (o x Cy Cm). (17)

By combing (15) with (16), we can get a state-space model

{ a, m(k + 1) (Aa,m - La,mca,m)fa,m (k) + La,m]/m (k)/ (18)

m(k) = Com#am(k),

which can be regarded as a reconstructor of the input 1, (k) of the model (10).

Let the model (18) be denoted as Giny,», and the value of the frequency response function
of the model Gipny,,; at the frequency f,, can then be represented as Giny (e 77 T5) where
Q=27 f.

Step 4: Let the inverse model of the model G4 be denoted as Giny, and with the frequency response
function values va,m(e’janS), m =1,2,...,N, the inverse model G;,y in state-space rep-
resentation can be identified by using the subspace-based system identification method in
frequency domain [23]. After system identification, the identified inverse model is denoted as
Ginv-

Remark 3. The effective frequency range of the inverse model Gi,y can be specified by selecting
the range of the frequencies of the signals u,,(k), m =1,2,..., N, in the set S.

Step 5: Connect the models G4 and Giny in series, and the resulted model can be represented as

A

Gs = Ginv Gd (19)

of which the frequency response function is written as

jOTs)
7

Gs(e 1T ) = |Gy (e 1T ) /20 (20)

where = 27tf with f the ordinary frequency in Hz, so if the identified inverse model Gipy is

perfect, the frequency response of the model G should satisfy:

) |Gs(e 17| =
zc(efﬂ €{9|9—2k7'cw1thk_012 3
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By observing whether the frequency response function of the model G5 within the frequency
range specified by inverse system identification satisfies the above conditions (a) and (b) and
to what extent it satisfies, the goodness of the identified inverse model Giny can be validated.

2.2. MATLAB Codes

The corresponding MATLAB (R2020b) commands to realize the above inverse identification
approach are illustrated step by step:

Step 1: Given the transfer function of a nominal model G4, make a state-space realization of the
transfer function:

» systf=tf (numerator,denominator,Ts);
» sysss=ss(systf);
» Figure (1);
» opts=bodeoptions;
» opts.FreqUnits="Hz’;
» bode(sysss,opts);
» set(title(’Bode plot of Gg’),’interpreter’,’latex’);
» grid;
Step 2: According to the bandwidth of the nominal model G4, specify the frequencies f,;,, m =

1,2,..., N, using the rule stated in Remark 2 and Remark 3, and stack all the frequencies into
the vector Fy;, i.e.,

fi

Fy = {2 . 1)

fn
Based on Equation (7) and Equation (8), create the matrices A, and Cy, form =1,2,...,Nin
the models of the N discrete-time sine signals in the set S, and stack them into the matrices Ay
and Cy, respectively, i.e.,

Aq

Ap
AN = . s (22)

AN
and

(6]

G
CN - . ’ (23)

Cn
so we can get the following MATLAB codes correspondingly:
» dim=N;

» FN=zeros(dim,1);

» for m=1:dim
FN(m, : )=fb+(m-1)*d;
end

» AN=zeros(2#*dim,2);
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» for m=1:dim
AN(((2*m-1) :2%m) , : )=[cos (2%pi*FN(m, : )*Ts) sin(2*pi*FN(m, :)*Ts)
-sin(2*pi*FN(m, :)*Ts) cos(2*pi*FN(m,:)*Ts)];
end

» CN=zeros(dim,2);

» for m=1:dim
CN(m,:)=[1 0];
end
Step 3: With the created matrices A, and C, for m = 1,2,..., N, create the matrices Aam, Cam,
and Cp, form = 1,2,...,N by using Equation (13), Equation (14), and Equation (17), re-
spectively. Then stack the matrices Ay and Gy, m = 1,2,..., N, into the matrices A}, C};,
and C}, respectively, i.e.,
Aa,l
Aa,Z

=
ZD’
Il

(24)

Cy = T, (25)

and

c,=| . (26)
Cr,N

Based on the expression of the model (18), calculate the transfer function of the reconstructors
Ginv,m by using
Ginv,m (z) = Comlzl — (Aam — La,mca,m)]_lLa,ml (27)

where the observer gain L,,; can be chosen in a linear least-squares sense for stochastic
systems, i.e., the observer gain L, ,; can be obtained as the gain of the steady-state Kalman
filter for the model (11) with process noise and measurement noise or can be obtained in a
minimum mean-integral squared error sense [24], denote the process noise and measurement
noise as w(k) € R" with n, = ng +2 and v(k) € R, respectively, and assume that both
{w(k),k =1,2,...} and {v(k),k = 1,2,...} are white Gaussian sequences, w(k) ~ N(0, Q)
with Q > 0, v(k) ~ N(0, R) with R > 0, and assume that the distribution of x, »,(0) is Gaussian,
and assume that {w(k),k =1,2,...} and {v(k),k = 1,2,...} are uncorrelated with x, ,,(0) and
with each other. Then derive the gain of the steady-state Kalman filter for the model (11) by
using the following equation [25]

La,m = Aa,um Cg,m(ca,mpmcg,m + R>_1/ (28)

where the value of P, can be derived as the unique solution of the following algebraic Riccati
equation
Py = Aam[Pu — PuCL, (CamPuCL,, + R) ' CamPulAL, + Q, (29)

under the following conditions:
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(@) (Aam, Cam) is detectable®.
(b) (Aam, Q) is controllable.

Then stack all the calculated observer gains L, for m = 1,2,..., N into the matrix Ly, i.e.,
Iy=(L1 Lip - Lan). (30)

After calculating the reconstructor transfer functions Giny,,(z) for m = 1,2,..., N based on
(27), stack all the obtained transfer functions into the vector function Ex which can be denoted
as

Ginv,l (Z )
Ginv,2(2)

En = : : (31)
Ginv,N(Z)

Obtain the frequency response function values Giny, (e 7/ T) for m = 1,2,..., N by replacing
z in Equation (27) with e 1Ts for m = 1,2,..., N, then stack all the frequency response
function values into the vector Gy , i.e.,

Ginv,l (eijol T )
Giny 2 (e 7/ %2Ts)
Gy = ) . (32)

GinV,N (eijONTs )

The above process can be realized by the following MATLAB codes:
» rl=size(sysss.a,1)+2;
» AaN=zeros(ri*dim,rl);
» for m=1:dim
r2=1+(m-1) *ri1;
AaN(r2:ri1#m,:)=[sysss.a sysss.b*CN(m,:)
zeros(2,size(sysss.a,1)) AN(((2*m-1):2*m),:)];
end
» CaN=zeros(dim,rl);
» for m=1:dim
CaN(m, :)=[sysss.c sysss.d*CN(m,:)];
end
» CrN=zeros(dim,rl);
» for m=1:dim
CrN(m, :)=[zeros(1,size(sysss.a,1)) CN(m,:)];
end
» LN=zeros(ri,dim);
» for m=1:dim
Q=qc*eye(rl);
R=mc;

sysa=ss(AaN(r2:ri*m,:),zeros(rl,rl),CaN(m,:),zeros(1l,rl),Ts);

4 A system is detectable if all the unobservable states are stable.
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[~,LN(:,m),~]=kalman(sysa,Q,R);
end
» g=cell(dim,1);
» GN=zeros(dim,1);
» for m=1:dim
r2=1+(m-1) *ri1;
sysr=ss(AaN(r2:ril*m,:)-LN(:,m)*CaN(m,:) ,LN(: ,m),CrN(m,:),0,Ts);
if isstable(sysr)==

g{m, :}=sysr;

GN(m, :)=frd(g{m, :},FN(m,:),’Hz’) .ResponseData;
else

break
end

Remark 4. The values of Q and R can be tuned by changing the values of pc and mc.

Step 4: With the calculated frequency response function values Gim,,m(e’]anS), m = 1,2,...,N,
the inverse model Gj,y in state-space representation can be identified by using the MATLAB
function n4sid:

» fdata=idfrd(GN,2*pi*FN,Ts);

» opt=n4sidOptions("EnforceStability",1);

» Ginv=n4sid(fdata,nx,’Ts’,Ts,opt);

» figure;

» opts=bodeoptions;

» opts.FreqUnits=’Hz’;

» bode(Ginv,opts);

» set(title(’Bode plot of th’),’interpreter’,’latex’);

» grid;
Remark 5. The values of nx denotes the inverse model order which can be specified.

Step 5: The following MATLAB command can be used for the series connection of the models G4 and
Ginv'

» Gs=series(sysss,Ginv);

Then the Bode plot of the combined model can be displayed using:
» figure;

» opts=bodeoptions;

» opts.FreqUnits="Hz’;

» bode(Gs,opts) ;

» set(title(’Bode plot of Gg’),’interpreter’,’latex’);

» grid;
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2.3. Inverse System Identification Toolbox Creation
Building the inverse system identification toolbox consists of two parts:
Part 1: Based on the MATLAB codes of inverse identification obtained in Section 2.2, a MATLAB

function file, which is an m-file, can be created. The specific content of the m-file is given as
follows.

function Ginv = INVSIDToolbox (numerator ,denominator ,Ts,fb,d,N,pc,
mc ,nx)

% numerator and denominator: The numerator and denominator
coefficients of the transfer function of the nomial model G_d.

% Ts: The sampling period of the nominal model G_d.

% fb: The smallest frequency among the frequency components for
inverse system identification.

% d: The common difference.

% N: The number of the frequency components for inverse system
identification.

% pc: The covariance of the process noise.

% mc: The covariance of the measurement noise.

% nx: Vector of model orders to scan.

% Ginv: The identified inverse model.

%% Step I

systf=tf (numerator ,denominator ,Ts);

sysss=ss(systf);

figure (1) ;

bode (sysss) ;

set(title('Bode plot of $G_{\rm d}$'),'interpreter','latex');
grid;

%% Step II
dim=N;
FN=zeros (dim,1) ;
for m=1:dim

FN(m,:)=fb+(m-1) *d;
end
AN=zeros (2*dim,2) ;
for m=1:dim

AN (((2*m-1) :2*m) ,:)=[cos (2*pi*FN(m,:)*Ts) sin(2*pi*FN(m,:)*Ts

)
-sin (2*%pi*FN(m, :)*Ts) cos (2*pi*FN(m, :)*
Ts)]1;

end
CN=zeros (dim,2) ;
for m=1:dim

CN(m,:)=[1 0];
end

%% Step III
ri=size(sysss.a,l1)+2;
AaN=zeros (ri1*dim,rl) ;
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for m=1:dim
r2=1+(m-1) *r1;
AaN(r2:ri1#*m,:)=[sysss.a sysss.b*CN(m,:)
zeros (2,size(sysss.a,1)) AN(((2*m-1) :2%m),:)
1;
end
CaN=zeros (dim,r1);
for m=1:dim
CaN(m,:)=[sysss.c sysss.d*CN(m,:)];
end
CrN=zeros(dim,r1);
for m=1:dim
CrN(m,:)=[zeros(1,size(sysss.a,1)) CN(m,:)];
end
LN=zeros(rl,dim);
for m=1:dim
Q=pc*eye(rl);
R=mc;
r2=1+(m-1) *r1;
LN(:,m)=dlqr (AaN(r2:rl1%*m,:)"',CaN(m,:)"',Q,R)"';
end
g=cell(dim,1);
GN=zeros (dim,1) ;
for m=1:dim
r2=1+(m-1) *r1;
sysr=ss(AaN(r2:ri1*m,:)-LN(:,m)*CaN(m,:) ,LN(:,m),CrN(m,:),0,Ts
)
if isstable(sysr)==1
g{m, :}=sysr;
GN(m,:)=frd(g{m,:},FN(m,:), 'Hz') .ResponseData;
else
break
end
end

%% Step IV

fdata=idfrd (GN,2*xpi*FN,Ts) ;

opt=ssestOptions ("EnforceStability",1);

Ginv=ssest (fdata,nx, 'Ts',Ts,opt);

figure (2)

bode (Ginv) ;

set(title ('Bode plot of $\hat{G}_{\rm{inv}}$'),'interpreter',’
latex');

grid;

%% Step V

Gs=series(sysss,Ginv);

figure (3);

bode (Gs) ;

set(title ('Bode plot of $G_{\rm{s}}$'),'interpreter','latex');
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grid;
end

Part 2: With the MATLAB m-file created in the first part, the inverse system identification toolbox
INVSID 1.0 can be installed, the complete installation procedure contains five steps from the
first step about the selection of the item Package Toolbox from the Add-Ons menu to the end

step about saving the created toolbox’.

3. Numerical Studies
In this section, two numerical examples are used for validate the effectiveness of the toolbox
INSID 1.0, i.e., check the effectiveness of the proposed inverse system identification approach.
Firstly, given a discrete-time, single-input single-output, linear, constant dynamical system G4 of
which the transfer function is described by

z
Ga(z) = 22 -15z+0.7 (33)

with the sampling period Ts = 1 x 10~° seconds, and the Bode plot of the system Gy is displayed in
Figure 3.

Bode plot of G4
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Figure 3. Bode plot of G4.
According to the transfer function (34), the following observations can be made:

(a) Ggq is stable.

(b) Gq is proper.

(c) Gq is minimal-realized.

(d) G4 has a nonminimum-phase zero.

5 Installation procedure of MATLAB toolboxes can be referred to https:/ /www.mathworks.com/help /matlab/matlab_prog/
create-and-share-custom-matlab-toolboxes.html.


https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-toolboxes.html
https://www.mathworks.com/help/matlab/matlab_prog/create-and-share-custom-matlab-toolboxes.html
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According to the above observations, it can be known that the direct inversion of the system
G is a challenging problem. So now turn to using the proposed toolbox INVSID 1.0 to identify the
inverse model of the system G. The proposed inverse identification approach can specify the frequency
range of interest, i.e., by selecting the values of f;,, m, and d in Equation (20), the frequency range to be
identified can be determined. The parameters showed in Table 1 are used as the inputs of the inverse
identification toolbox.

Table 1. Parameters for inverse identification.

Parameter Value in MATLAB
numerator [0,1,0]
denominator [1,-1.5,0.7]

Ts le-5

fb 10

d 10

N 50

pc le-3

mc le-3

nx 2:10

With the above inputs, the final output of the inverse identification toolbox is the identified
inverse model which is the best model corresponding to the recommended singular value. The model
order of the identified inverse model Giyy is recommended to be 4. The frequency response properties
of the model Gjpy with fourth order is demonstrated in Figure 4.

Bode plot of G'im,
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Figure 4. Bode plot of Giny-

In addition, the inversion Giyy is identified using the MATLAB function n4sid with stability
enforcement, so the identified model Gy, is stable and causal.
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Figure 5. Bode plot of Gs.

By connecting the model G4 and the model Giny In series using Equation (19), the model G can
be obtained. The obtained model G can then be used for validating the goodness of the identified
inverse model Gi,y in the frequency range of interest. The frequency response of the obtained model
Giny is shown in Figure 5, in the specified frequency range from 10 Hz to 500 Hz, the magnitude is
nearly a constant near to 0 dB, and the phase is nearly a constant around 0 degrees. The values of
magnitude and phase can indicate the effectiveness of the proposed inverse identification toolbox for
stable systems to be inverted.

In practice, unstable systems are also frequently encountered. So the second numerical example is
about using the toolbox INVSID 1.0 to solve system inversion problem of an unstable system.

Given a discrete-time, single-input single-output, linear, constant dynamical system G of which
the transfer function is described by

z

G = 727576 4
with the sampling period Ts = 1 x 107° seconds, and the Bode plot of the system G is displayed in

Figure 6.
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Bode plot of G}
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Figure 6. Bode plot of G}.
According to the transfer function (34), the following observations can be made:
(a) Gj is unstable.
(b) Gj is proper.
(c) Gj is minimal-realized.

(d) Gj has a nonminimum-phase zero.

The parameters showed in Table 2 are used as the inputs of the inverse identification toolbox.

Table 2. Parameters for inverse identification.

Parameter Value in MATLAB
numerator [0,1,0]
denominator [1,-5,6]

Ts le-5

fb 10

d 10

N 50

pc le-3

mc le-3

nx 2:10

With the above inputs, the final output of the inverse identification toolbox is the identified
inverse model which is the best model corresponding to the recommended singular value. The model
order of the identified inverse model G}, is recommended to be 4. The frequency response properties
of the model G}, with fourth order is demonstrated in Figure 7.
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Figure 7. Bode plot of G

mnv*

In addition, the inversion G, is identified using the MATLAB function n4sid with stability
enforcement, so the identified model éi*nv is stable and causal.

Bode plot of G}
%10

Magnitude (dB)
» >
T T

o
T

Phase (deg)

_3 Il 1 1
107! 10° 10" 102 10°
Frequency (Hz)

Figure 8. Bode plot of G;.

By connecting the model G} and the model G, , in series using Equation (19), the model G} can

be obtained. The frequency response of the obtained model G

iy 18 shown in Figure 8, in the specified
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frequency range from 10 Hz to 500 Hz, the magnitude is nearly a constant near to 0 dB, and the phase is
nearly a constant around 0 degrees. The values of magnitude and phase can indicate the effectiveness
of the proposed inverse identification toolbox for unstable systems to be inverted.

4. Conclusion and Outlook

In this paper, an alternative system inversion approach is proposed, and based on which the
toolbox named INVSID 1.0 is developed. The advantages of the toolbox INVSID 1.0 can be concluded
as follows:

(@) The proposed inverse identification toolbox can be used for stable or unstable systems.
(b) Preview is not needed.

(c) The frequency range of interest can be specified.

(d) Stability of the identified inverse model can be guaranteed.

(e) Subspace identification is used such that there is no non-convex problem.

Furthermore, according to the theoretical derivation of the proposed system inversion approach,
it can be indicated that the proposed approach can be used for systems with noise, because an observer
is involved in the approach.

Currently, the inverse identification toolbox INVSID 1.0 is used for single-input single-output
systems, while in the future the proposed inverse system identification approach will be extended
to identify the inverse models of general multiple-input multiple-output systems such that more
advanced versions of the INVSID toolbox can be created.
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