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Abstract: The inverse system identification toolbox named INVSID 1.0 for MATLAB, which is used to identify the

inversion of single-input single-output systems, is developed. The complete process from theoretical derivation to

toolbox creation of developing the toolbox is demonstrated. Afterwards, numerical examples are illustrated to

describe how the toolbox can be used to solve inverse identification problems. Simulation results demonstrate the

effectiveness of the toolbox.
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1. Introduction

Nowadays, in many motion control systems, the requirements of high performance such as short
motion times and small settling times. To fulfill these demands, combing feedback with feedforward
control is normally implemented [1]. Figure 1 displays how a feedforward controller can be involved
in feedback control systems, totally there are two kinds of modes. The feedback controller guarantees
stability and improves disturbance rejection, while the feedforward controller enhances tracking
performance such that the feedforward controller should be designed as F = G† (in the first mode)
and F = G†

c (in the second mode), where the symbol “ † ” denotes the Moore-Penrose pseudo inverse
[2]. So system inversion is the key to the problem of feedforward control. Actually, in addition to
applications in control systems, system inversion is frequently used in the areas of sensor calibration,
loudspeaker linearization, digital predistortion for radio frequency communications, and so on [3]. So
system inversion plays an important role in various research areas.

Figure 1. Inverse model-based feedforward-feedback control (r: reference signal; F: feedforward con-
troller; C: feedback controller; G: plant model; Gc: closed-loop system model; e: error; f : feedforward
controller output; y: control system output).

System inversion can be conducted by direct inversion and indirect inversion [4]. There exists
several kinds of intrinsic limitations of direct inversion approaches, here an example is used to illustrate
this, denote the transfer function of a finite-dimensional, discrete-time, single-input single-output,
linear, constant dynamical system as

G(z) = C(zIn − A)−1B + D :=

[
A B
C D

]
, (1)
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where A ∈ Rn×n, B ∈ Rn, C ∈ R1×n, D ∈ R, In denotes an n-dimensional identity matrix,
and (A, B, C, D) is a state-space realization of G(z). Based on (1), the inversion of G(z) can be
represented as [5]

G†(z) :=

[
A − BD†C −BD†

D†C D†

]
. (2)

There are at least two challenges in the direct inversion (2): (i) when D† does not exist, the direct
inversion cannot be conducted; (ii) when there exist nonminimum-phase zeros1 in G(z), the inversion
G†(z) will be unstable.

Due to the limitations of direct inversion approaches, various indirect inversion approaches have
thus been proposed. A possible classification of existing indirect system inversion approaches consists
in distinguishing between preview-based and non-preview-based approaches [4,6]:

(a) Preview-based inversion approaches can be further categorized into infinite preview-based
approaches and finite preview-based approaches. Infinite preview-based approaches admit an
exact stable inversion solution, however, such a solution may require an infinite pre-actuation
[7–10]. Because the length of the pre-actuation is proportional to the length of the desired
output preview, infinite preview-based approaches is not applicable from a practical point
of view. To handel the problem of applicability, finite preview-based approaches have been
proposed [11–18].

(b) Non-preview-based inversion approaches are preferred in practice. A family of approaches
called pseudo-inversion, which can be conducted without preview, has been proposed [19,20].
However, such approaches will encounter other problems such as the difficulty of choosing a
suitable basis function; Direct system identification-based inversion approaches the input-output
data from the system to be inverted to identify the inverse system directly, however, the system
identification cannot be conducted when the system to be inverted not stable [3]; For signal
modeling-based inversion approaches, the input signal, which is to be reconstructed, must be a
periodic signal under stationary operating conditions [21,22].

It should be noted that guaranteeing the stability of obtained solutions is a priority of both direct
and indirect inversion approaches. So for some indirect inversion approaches, stability is ensured,
but infinite or finite pre-actuation is needed.

In this paper, an entirely different system inversion approach by combing time-domain observer
design and frequency-domain subspace identification is proposed. The presented approach can
guarantee the stability of obtained system inversion, and simultaneously the proposed approach does
not need any pre-actuation; Furthermore, the approach can be applied to stable or unstable, proper or
improper systems2 to be inverted, and there is also no requirement for the type of input and output
signals. Furthermore, it does not suffer non-convex or input noise problems.

To facilitate the use of the proposed system inversion approach by third parties, a MATLAB
toolbox implementing the approach is created in this paper after theoretical derivation of the approach.
The full name of the MATLAB toolbox is INVerse System IDentification with the first version which is
abbreviated as INVSID 1.0.

The remainder of the paper is organized as follows. In Section 2, the inversion approach is
proposed, and corresponding MATLAB codes are generated, based on which the toolbox NIVSID
1.0 is created, followed by Section 3, in which the usage of the toolbox NIVSID 1.0 is validated by a
numerical example. Finally conclusions and future perspectives are given in Section 4.

1 For discrete-time systems, nonminimum-phase zeros are zeros that lie outside the unit disk.
2 The system is proper when the degree of the numerator does not exceed the degree of the denominator of its transfer

function, otherwise the system is improper.
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2. Creation of INVSID 1.0

This section is illustrated by using three subsections with a progressive relationship: the proposed
inverse identification approach is first presented, on the basis of which the corresponding MATLAB
codes and the toolbox INVSID 1.0 are finally created. It should be noted that the toolbox INVSID 1.0 is
only used for the inverse identification of single-input single-out systems.

2.1. Inverse Identification Approach

Given a finite-dimensional, discrete-time, single-input single-output, linear, constant dynamical
system Gd which is minimal-realized3 and proper, the given system Gd can be either stable or unstable,
and the sampling period of system Gd is Ts in seconds.

Figure 2 is used to demonstrate the basic idea behind the proposed inverse system identification
approach, based on which the inverse model of the nominal model Gd can be derived. As can be seen
in Figure 2, the proposed approach mainly consists of five steps:

(a) Obtain a state-space representation of the nominal system Gd.
(b) Given a number of sine signals um(k), m = 1, 2, . . . , N, corresponding to a number of N specified

frequencies, and model them in state-space representation such that N signal models Gm, m =

1, 2, . . . , N, can be obtained.
(c) By combing the signal models Gm for m = 1, 2, . . . , N with the model Gd, respectively, the aug-

mented models Ga,m, m = 1, 2, . . . , N, can be obtained. Then based on using the observers for the
augmented models Ga,m, m = 1, 2, . . . , N, inverse models Ginv,m with m = 1, 2, . . . , N, which can
be used for reconstructing the input signals um(k), m = 1, 2, . . . , N, can be obtained.

(d) Use frequency-domain system identification approaches to identify the inverse model of Gd
based on the frequency response function values of the models Ginv,m with m = 1, 2, . . . , N at
specified frequencies.

(e) Choose the best inverse model by validating the identified inverse models.

3 The dynamical system Gd is minimal-realized if and only if it is both controllable and observable.
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Figure 2. Framework of proposed inverse system identification approach. (The symbol ”ˆ” denotes
reconstructed or estimated value.).

The above steps are discussed in detail as follows:

Step 1: If the transfer function of the system Gd is denoted as Gd(z), and (Ad, Bd, Cd, Dd) represents a
minimal realization of Gd(z), the corresponding state-space model of the system Gd can be
represented as {

xd(k + 1) = Adxd(k) + Bdu(k),

y(k) = Cdxd(k) + Ddu(k),
(3)

where xd(k) ∈ Rnd is the state vector of the model (3), u(k) ∈ R and y(k) ∈ R are the input
and output of the system Gd, respectively.

Remark 1. Actually, the proposed inverse identification approach is not limited to proper
systems, the approach can also be used for identifying inversion of improper systems by
replacing the present input u(k) by future input in (3).
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Step 2: Given a set S containing N discrete-time sine signals:

S = {um(k), m = 1, 2, . . . , N}, (4)

where
um(k) = sin(2πm fmkTs), (5)

where fm denotes the ordinary frequency in Hz, and the sequence ( fm)N
m=1 is an arithmetic

sequence, each sine wave in the set S can be represented as the output of a state-space model
Gm, i.e., {

xm(k + 1) = Amxm(k),

um(k) = Cmxm(k),
(6)

where xm(k) ∈ R2 denotes the state vector of the model (6), the matrices Am and Cm can be
denoted as

Am =

(
cos(2π fmTs) sin(2π fmTs)

− sin(2π fmTs) cos(2π fmTs)

)
(7)

and
Cm =

(
1 0

)
, (8)

respectively.

Remark 2. The frequencies of the signal um(k), m = 1, 2, . . . , N, in the set S can be specified by
the following rule:

fm = fb + (m − 1)d, (9)

where fb is a non-negative value, and d is a positive value.

The rule in Equation (9) is not the only way to specify the frequencies.

The values of fm for m = 1, 2, . . . , N belong to the range (0, fs
2 ) with fs =

1
Ts

.

Step 3: If the signal um(k) is used as the input signal of the model (3), we can obtain{
xd(k + 1) = Adxd(k) + Bdum(k),

ym(k) = Cdxd(k) + Ddum(k),
(10)

where ym(k) denotes the output of the model (3) when the input signal is um(k).

By augmenting the model (10) with the state vector of the model (6), an augmented model
Ga,m can be obtained, and it can be represented as{

xa,m(k + 1) = Aa,mxa,m(k),

ym(k) = Ca,mxa,m(k),
(11)

where the state vector xa,m(k) can be denoted as

xa,m(k) =

(
xd(k)
xm(k)

)
, (12)

and the matrices Aa,m and Ca,m can be denoted as

Aa,m =

(
Ad BdCm

0 Am

)
(13)
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and
Ca,m =

(
Cd DdCm

)
, (14)

respectively.

Based on the state-space model representation (11) for the augmented models Ga,m, m =

1, 2, . . . , N, we can totally build N full-order observers corresponding to the augmented models
Ga,m, m = 1, 2, . . . , N, and we denote the m-th observer for the m-th augmented model Ga,m as
Ea,m which can be described by

x̂a,m(k + 1) = (Aa,m − La,mCa,m)x̂a,m(k) + La,mym(k), (15)

where La,m denotes the observer gain, and x̂a,m(k) denotes the reconstructed value of xa,m(k)
using the observer.

With the reconstructed value x̂a,m(k), we can obtain the reconstructed value of um(k) which
can be calculated by the following equation:

ûm(k) = Cr,m x̂a,m(k), (16)

where
Cr,m =

(
0 × Cd Cm

)
. (17)

By combing (15) with (16), we can get a state-space model{
x̂a,m(k + 1) = (Aa,m − La,mCa,m)x̂a,m(k) + La,mym(k),

ûm(k) = Cr,m x̂a,m(k),
(18)

which can be regarded as a reconstructor of the input um(k) of the model (10).

Let the model (18) be denoted as Ginv,m, and the value of the frequency response function
of the model Ginv,m at the frequency fm can then be represented as Ginv,m(e−jΩmTs) where
Ωm = 2π fm.

Step 4: Let the inverse model of the model Gd be denoted as Ginv, and with the frequency response
function values Ginv,m(e−jΩmTs), m = 1, 2, . . . , N, the inverse model Ginv in state-space rep-
resentation can be identified by using the subspace-based system identification method in
frequency domain [23]. After system identification, the identified inverse model is denoted as
Ĝinv.

Remark 3. The effective frequency range of the inverse model Ginv can be specified by selecting
the range of the frequencies of the signals um(k), m = 1, 2, . . . , N, in the set S.

Step 5: Connect the models Gd and Ĝinv in series, and the resulted model can be represented as

Gs = ĜinvGd (19)

of which the frequency response function is written as

Gs(e−jΩTs) = |Gs(e−jΩTs)|ej∠Gs(e−jΩTs ), (20)

where Ω = 2π f with f the ordinary frequency in Hz, so if the identified inverse model Ĝinv is
perfect, the frequency response of the model Gs should satisfy:

(a) |Gs(e−jΩTs)| = 1.
(b) ∠Gs(e−jΩTs) ∈ {θ | θ = 2kπ with k = 0, 1, 2, . . .}.
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By observing whether the frequency response function of the model Gs within the frequency
range specified by inverse system identification satisfies the above conditions (a) and (b) and
to what extent it satisfies, the goodness of the identified inverse model Ĝinv can be validated.

2.2. MATLAB Codes

The corresponding MATLAB (R2020b) commands to realize the above inverse identification
approach are illustrated step by step:

Step 1: Given the transfer function of a nominal model Gd, make a state-space realization of the
transfer function:

» systf=tf(numerator,denominator,Ts);

» sysss=ss(systf);

» Figure (1);

» opts=bodeoptions;

» opts.FreqUnits=’Hz’;

» bode(sysss,opts);

» set(title(’Bode plot of Gd’),’interpreter’,’latex’);

» grid;
Step 2: According to the bandwidth of the nominal model Gd, specify the frequencies fm, m =

1, 2, . . . , N, using the rule stated in Remark 2 and Remark 3, and stack all the frequencies into
the vector FN , i.e.,

FN =


f1

f2
...

fN

. (21)

Based on Equation (7) and Equation (8), create the matrices Am and Cm for m = 1, 2, . . . , N in
the models of the N discrete-time sine signals in the set S, and stack them into the matrices AN
and CN , respectively, i.e.,

AN =


A1

A2
...

AN

, (22)

and

CN =


C1

C2
...

CN

, (23)

so we can get the following MATLAB codes correspondingly:

» dim=N;

» FN=zeros(dim,1);

» for m=1:dim
FN(m,:)=fb+(m-1)*d;

end

» AN=zeros(2*dim,2);
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» for m=1:dim
AN(((2*m-1):2*m),:)=[cos(2*pi*FN(m,:)*Ts) sin(2*pi*FN(m,:)*Ts)

-sin(2*pi*FN(m,:)*Ts) cos(2*pi*FN(m,:)*Ts)];
end

» CN=zeros(dim,2);

» for m=1:dim
CN(m,:)=[1 0];

end
Step 3: With the created matrices Am and Cm for m = 1, 2, . . . , N, create the matrices Aa,m, Ca,m,

and Cr,m for m = 1, 2, . . . , N by using Equation (13), Equation (14), and Equation (17), re-
spectively. Then stack the matrices Aa,m and Ca,m, m = 1, 2, . . . , N, into the matrices Aa

N , Ca
N ,

and Cr
N , respectively, i.e.,

Aa
N =


Aa,1

Aa,2
...

Aa,N

, (24)

Ca
N =


Ca,1

Ca,2
...

Ca,N

, (25)

and

Cr
N =


Cr,1

Cr,2
...

Cr,N

. (26)

Based on the expression of the model (18), calculate the transfer function of the reconstructors
Ginv,m by using

Ginv,m(z) = Cr,m[zI − (Aa,m − La,mCa,m)]
−1La,m, (27)

where the observer gain La,m can be chosen in a linear least-squares sense for stochastic
systems, i.e., the observer gain La,m can be obtained as the gain of the steady-state Kalman
filter for the model (11) with process noise and measurement noise or can be obtained in a
minimum mean-integral squared error sense [24], denote the process noise and measurement
noise as w(k) ∈ Rna with na = nd + 2 and v(k) ∈ R, respectively, and assume that both
{w(k), k = 1, 2, . . .} and {v(k), k = 1, 2, . . .} are white Gaussian sequences, w(k) ∼ N(0, Q)

with Q > 0, v(k) ∼ N(0, R) with R > 0, and assume that the distribution of xa,m(0) is Gaussian,
and assume that {w(k), k = 1, 2, . . .} and {v(k), k = 1, 2, . . .} are uncorrelated with xa,m(0) and
with each other. Then derive the gain of the steady-state Kalman filter for the model (11) by
using the following equation [25]

La,m = Aa,mPmCT
a,m(Ca,mPmCT

a,m + R)−1, (28)

where the value of Pm can be derived as the unique solution of the following algebraic Riccati
equation

Pm = Aa,m[Pm − PmCT
a,m(Ca,mPmCT

a,m + R)−1Ca,mPm]AT
a,m + Q, (29)

under the following conditions:
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(a) (Aa,m, Ca,m) is detectable4.
(b) (Aa,m, Q) is controllable.

Then stack all the calculated observer gains La,m for m = 1, 2, . . . , N into the matrix LN , i.e.,

LN =
(

La,1 La,2 . . . La,N

)
. (30)

After calculating the reconstructor transfer functions Ginv,m(z) for m = 1, 2, . . . , N based on
(27), stack all the obtained transfer functions into the vector function EN which can be denoted
as

EN =


Ginv,1(z)
Ginv,2(z)

...
Ginv,N(z)

. (31)

Obtain the frequency response function values Ginv,m(e−jΩmTs) for m = 1, 2, . . . , N by replacing
z in Equation (27) with e−jΩmTs for m = 1, 2, . . . , N, then stack all the frequency response
function values into the vector GN , i.e.,

GN =


Ginv,1(e−jΩ1Ts)

Ginv,2(e−jΩ2Ts)
...

Ginv,N(e−jΩN Ts)

. (32)

The above process can be realized by the following MATLAB codes:

» r1=size(sysss.a,1)+2;

» AaN=zeros(r1*dim,r1);

» for m=1:dim
r2=1+(m-1)*r1;
AaN(r2:r1*m,:)=[sysss.a sysss.b*CN(m,:)

zeros(2,size(sysss.a,1)) AN(((2*m-1):2*m),:)];
end

» CaN=zeros(dim,r1);

» for m=1:dim
CaN(m,:)=[sysss.c sysss.d*CN(m,:)];

end

» CrN=zeros(dim,r1);

» for m=1:dim
CrN(m,:)=[zeros(1,size(sysss.a,1)) CN(m,:)];

end

» LN=zeros(r1,dim);

» for m=1:dim
Q=qc*eye(r1);
R=mc;
sysa=ss(AaN(r2:r1*m,:),zeros(r1,r1),CaN(m,:),zeros(1,r1),Ts);

4 A system is detectable if all the unobservable states are stable.
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[∼,LN(:,m),∼]=kalman(sysa,Q,R);
end

» g=cell(dim,1);

» GN=zeros(dim,1);

» for m=1:dim
r2=1+(m-1)*r1;
sysr=ss(AaN(r2:r1*m,:)-LN(:,m)*CaN(m,:),LN(:,m),CrN(m,:),0,Ts);
if isstable(sysr)==1
g{m,:}=sysr;
GN(m,:)=frd(g{m,:},FN(m,:),’Hz’).ResponseData;

else
break

end

Remark 4. The values of Q and R can be tuned by changing the values of pc and mc.

Step 4: With the calculated frequency response function values Ginv,m(e−jΩmTs), m = 1, 2, . . . , N,
the inverse model Ginv in state-space representation can be identified by using the MATLAB
function n4sid:

» fdata=idfrd(GN,2*pi*FN,Ts);

» opt=n4sidOptions("EnforceStability",1);

» Ginv=n4sid(fdata,nx,’Ts’,Ts,opt);

» figure;

» opts=bodeoptions;

» opts.FreqUnits=’Hz’;

» bode(Ginv,opts);

» set(title(’Bode plot of Ĝinv’),’interpreter’,’latex’);

» grid;

Remark 5. The values of nx denotes the inverse model order which can be specified.

Step 5: The following MATLAB command can be used for the series connection of the models Gd and
Ĝinv.

» Gs=series(sysss,Ginv);

Then the Bode plot of the combined model can be displayed using:

» figure;

» opts=bodeoptions;

» opts.FreqUnits=’Hz’;

» bode(Gs,opts);

» set(title(’Bode plot of Gs’),’interpreter’,’latex’);

» grid;
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2.3. Inverse System Identification Toolbox Creation

Building the inverse system identification toolbox consists of two parts:

Part 1: Based on the MATLAB codes of inverse identification obtained in Section 2.2, a MATLAB
function file, which is an m-file, can be created. The specific content of the m-file is given as
follows.

1 function Ginv = INVSIDToolbox(numerator ,denominator ,Ts,fb,d,N,pc ,
mc ,nx)

2 % numerator and denominator: The numerator and denominator
coefficients of the transfer function of the nomial model G_d.

3 % Ts: The sampling period of the nominal model G_d.
4 % fb: The smallest frequency among the frequency components for

inverse system identification.
5 % d: The common difference.
6 % N: The number of the frequency components for inverse system

identification.
7 % pc: The covariance of the process noise.
8 % mc: The covariance of the measurement noise.
9 % nx: Vector of model orders to scan.

10 % Ginv: The identified inverse model.
11
12 %% Step I
13 systf=tf(numerator ,denominator ,Ts);
14 sysss=ss(systf);
15 figure (1);
16 bode(sysss);
17 set(title('Bode plot of $G_{\rm d}$'),'interpreter ','latex');
18 grid;
19
20 %% Step II
21 dim=N;
22 FN=zeros(dim ,1);
23 for m=1: dim
24 FN(m,:)=fb+(m-1)*d;
25 end
26 AN=zeros (2*dim ,2);
27 for m=1: dim
28 AN(((2*m-1):2*m) ,:)=[cos (2*pi*FN(m,:)*Ts) sin (2*pi*FN(m,:)*Ts

)
29 -sin (2*pi*FN(m,:)*Ts) cos (2*pi*FN(m,:)*

Ts)];
30 end
31 CN=zeros(dim ,2);
32 for m=1: dim
33 CN(m,:)=[1 0];
34 end
35
36 %% Step III
37 r1=size(sysss.a,1) +2;
38 AaN=zeros(r1*dim ,r1);
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39 for m=1: dim
40 r2=1+(m-1)*r1;
41 AaN(r2:r1*m,:)=[sysss.a sysss.b*CN(m,:)
42 zeros(2,size(sysss.a,1)) AN (((2*m-1) :2*m) ,:)

];
43 end
44 CaN=zeros(dim ,r1);
45 for m=1: dim
46 CaN(m,:)=[sysss.c sysss.d*CN(m,:)];
47 end
48 CrN=zeros(dim ,r1);
49 for m=1: dim
50 CrN(m,:)=[zeros(1,size(sysss.a,1)) CN(m,:)];
51 end
52 LN=zeros(r1,dim);
53 for m=1: dim
54 Q=pc*eye(r1);
55 R=mc;
56 r2=1+(m-1)*r1;
57 LN(:,m)=dlqr(AaN(r2:r1*m,:) ',CaN(m,:) ',Q,R) ';
58 end
59 g=cell(dim ,1);
60 GN=zeros(dim ,1);
61 for m=1: dim
62 r2=1+(m-1)*r1;
63 sysr=ss(AaN(r2:r1*m,:)-LN(:,m)*CaN(m,:),LN(:,m),CrN(m,:) ,0,Ts

);
64 if isstable(sysr)==1
65 g{m,:}= sysr;
66 GN(m,:)=frd(g{m,:},FN(m,:),'Hz').ResponseData;
67 else
68 break
69 end
70 end
71
72 %% Step IV
73 fdata=idfrd(GN ,2*pi*FN,Ts);
74 opt=ssestOptions (" EnforceStability ",1);
75 Ginv=ssest(fdata ,nx ,'Ts',Ts,opt);
76 figure (2)
77 bode(Ginv);
78 set(title('Bode plot of $\hat{G}_{\rm{inv}}$'),'interpreter ','

latex');
79 grid;
80
81 %% Step V
82 Gs=series(sysss ,Ginv);
83 figure (3);
84 bode(Gs);
85 set(title('Bode plot of $G_{\rm{s}}$'),'interpreter ','latex');
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86 grid;
87 end

Part 2: With the MATLAB m-file created in the first part, the inverse system identification toolbox
INVSID 1.0 can be installed, the complete installation procedure contains five steps from the
first step about the selection of the item Package Toolbox from the Add-Ons menu to the end
step about saving the created toolbox5.

3. Numerical Studies

In this section, two numerical examples are used for validate the effectiveness of the toolbox
INSID 1.0, i.e., check the effectiveness of the proposed inverse system identification approach.

Firstly, given a discrete-time, single-input single-output, linear, constant dynamical system Gd of
which the transfer function is described by

Gd(z) =
z

z2 − 1.5z + 0.7
(33)

with the sampling period Ts = 1 × 10−5 seconds, and the Bode plot of the system Gd is displayed in
Figure 3.
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Figure 3. Bode plot of Gd.

According to the transfer function (34), the following observations can be made:

(a) Gd is stable.
(b) Gd is proper.
(c) Gd is minimal-realized.
(d) Gd has a nonminimum-phase zero.

5 Installation procedure of MATLAB toolboxes can be referred to https://www.mathworks.com/help/matlab/matlab_prog/
create-and-share-custom-matlab-toolboxes.html.
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According to the above observations, it can be known that the direct inversion of the system
G is a challenging problem. So now turn to using the proposed toolbox INVSID 1.0 to identify the
inverse model of the system G. The proposed inverse identification approach can specify the frequency
range of interest, i.e., by selecting the values of fb, m, and d in Equation (20), the frequency range to be
identified can be determined. The parameters showed in Table 1 are used as the inputs of the inverse
identification toolbox.

Table 1. Parameters for inverse identification.

Parameter Value in MATLAB

numerator [0,1,0]
denominator [1,-1.5,0.7]
Ts 1e-5
fb 10
d 10
N 50
pc 1e-3
mc 1e-3
nx 2:10

With the above inputs, the final output of the inverse identification toolbox is the identified
inverse model which is the best model corresponding to the recommended singular value. The model
order of the identified inverse model Ĝinv is recommended to be 4. The frequency response properties
of the model Ĝinv with fourth order is demonstrated in Figure 4.
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Figure 4. Bode plot of Ĝinv.

In addition, the inversion Ĝinv is identified using the MATLAB function n4sid with stability
enforcement, so the identified model Ĝinv is stable and causal.
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Figure 5. Bode plot of Gs.

By connecting the model Gd and the model Ĝinv in series using Equation (19), the model Gs can
be obtained. The obtained model Gs can then be used for validating the goodness of the identified
inverse model Ĝinv in the frequency range of interest. The frequency response of the obtained model
Ĝinv is shown in Figure 5, in the specified frequency range from 10 Hz to 500 Hz, the magnitude is
nearly a constant near to 0 dB, and the phase is nearly a constant around 0 degrees. The values of
magnitude and phase can indicate the effectiveness of the proposed inverse identification toolbox for
stable systems to be inverted.

In practice, unstable systems are also frequently encountered. So the second numerical example is
about using the toolbox INVSID 1.0 to solve system inversion problem of an unstable system.

Given a discrete-time, single-input single-output, linear, constant dynamical system G∗
d of which

the transfer function is described by

G∗
d(z) =

z
z2 − 5z + 6

(34)

with the sampling period Ts = 1 × 10−5 seconds, and the Bode plot of the system G∗
d is displayed in

Figure 6.
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Figure 6. Bode plot of G∗
d.

According to the transfer function (34), the following observations can be made:

(a) G∗
d is unstable.

(b) G∗
d is proper.

(c) G∗
d is minimal-realized.

(d) G∗
d has a nonminimum-phase zero.

The parameters showed in Table 2 are used as the inputs of the inverse identification toolbox.

Table 2. Parameters for inverse identification.

Parameter Value in MATLAB

numerator [0,1,0]
denominator [1,-5,6]
Ts 1e-5
fb 10
d 10
N 50
pc 1e-3
mc 1e-3
nx 2:10

With the above inputs, the final output of the inverse identification toolbox is the identified
inverse model which is the best model corresponding to the recommended singular value. The model
order of the identified inverse model Ĝ∗

inv is recommended to be 4. The frequency response properties
of the model Ĝ∗

inv with fourth order is demonstrated in Figure 7.
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Figure 7. Bode plot of Ĝ∗
inv.

In addition, the inversion Ĝ∗
inv is identified using the MATLAB function n4sid with stability

enforcement, so the identified model Ĝ∗
inv is stable and causal.
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Figure 8. Bode plot of G∗
s .

By connecting the model G∗
d and the model Ĝ∗

inv in series using Equation (19), the model G∗
s can

be obtained. The frequency response of the obtained model Ĝ∗
inv is shown in Figure 8, in the specified
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frequency range from 10 Hz to 500 Hz, the magnitude is nearly a constant near to 0 dB, and the phase is
nearly a constant around 0 degrees. The values of magnitude and phase can indicate the effectiveness
of the proposed inverse identification toolbox for unstable systems to be inverted.

4. Conclusion and Outlook

In this paper, an alternative system inversion approach is proposed, and based on which the
toolbox named INVSID 1.0 is developed. The advantages of the toolbox INVSID 1.0 can be concluded
as follows:

(a) The proposed inverse identification toolbox can be used for stable or unstable systems.
(b) Preview is not needed.
(c) The frequency range of interest can be specified.
(d) Stability of the identified inverse model can be guaranteed.
(e) Subspace identification is used such that there is no non-convex problem.

Furthermore, according to the theoretical derivation of the proposed system inversion approach,
it can be indicated that the proposed approach can be used for systems with noise, because an observer
is involved in the approach.

Currently, the inverse identification toolbox INVSID 1.0 is used for single-input single-output
systems, while in the future the proposed inverse system identification approach will be extended
to identify the inverse models of general multiple-input multiple-output systems such that more
advanced versions of the INVSID toolbox can be created.
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