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Abstract: With increasing electronic medical data and the development of artificial intelligence,
Clinical Decision Support Systems (CDSSs) assist clinicians in diagnosis and prescription.
Traditional knowledge-based CDSSs follow an accumulated medical knowledgebase and a
predefined rule system, which clarifies the decision-making process; however, maintenance cost
issues exist in the medical data quality control and standardization process. Non-knowledge-based
CDSSs utilize vast amounts of data and algorithms to effectively decide; however, the deep learning
black-box problem causes unreliable results. EXplainable Artificial Intelligence (XAI)-based CDSS
provides a valid rationale and explainable results. It ensures trustworthiness and transparency by
showing the recommendation and prediction results process through explainable techniques.
However, existing systems have limitations, such as the scope of data utilization and the lack of
explanatory power of Al models. This study proposes a new XAl-based CDSS framework to address
these issues; introduce resources, datasets, and models that can be utilized; and provides a
foundation model to support decision-making in various disease domains. Finally, we propose
future directions for CDSS technology and highlight societal issues that need to be addressed to
emphasize the potential of CDSS in the future.

Keywords: explainable Al deep learning; clinical decision support system

1. Introduction

A Clinical Decision Support System(CDSS) [1] supports decision-making for clinicians in
diagnosing and treating diseases based on the patient’s clinical information. With the advancing big
data analysis and artificial intelligence (Al) lately, the research on these techniques to CDSS has
gained considerable attention. Notably, Al-based CDSSis highly valuable because of its effectiveness
in supporting clinical diagnosis, prescription, prognosis, and treatment through Al models.

Traditional CDSS is categorized into knowledge-based CDSS, where rules are defined in
advance and non-knowledge-based CDSS, where the rules are not predefined [2]. The principle of
knowledge-based CDSS is to make decisions using correlations and If-Then rules for accumulated data.
Knowledge-based CDSS is beneficial as the decision-making process is transparent because it follows
predefined rules. However, it has the limitation that knowledge and rules must be defined in advance
for all cases.

Conversely, non-knowledge-based CDSS provides decision-making by learning patterns found
in past clinical information through machine learning or Al without rules. Non-knowledge based
CDSS has been extensively studied in various medical areas [3,4], dealing with issues such as
hypertension, heart failure, and lung disease. It is expected to be abreakthrough methodology that can
reduce the cost of knowledge construction and provide personalized treatment. However, the black-
box problem [5], in which explaining the process behind the results derived by AI models is not
possible, makes it difficult toapply them in healthcare, where transparency is essential. Therefore, to
utilize non-knowledge-based CDSS, it is necessary to introduce robust clinical validation and
evaluations or provide convincing evidence to support the results.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Explainable AI (XAI) [6] was proposed to explain the process of the results of Al-based systems.
The differencesin knowledge-, non-knowledge-, and XAl-based CDSS are shown in Figure 1. XAl can
explain the process and rationale behind an AI model’s decision in a manner that can be interpreted
by the user. XAl technologies can be broadly categorized into feature, model-, complexity, and
methodology-based, and XAI technologies can be applied to CDSS to ensure the transparency and
reliability of the healthcare system. In this study, we propose an XAl-based CDSS framework and
introduce its application. Our main contributions are summarized as follows:

e  We perform a systematic review of explainable Al techniques that can ensure trust-worthiness
and transparency in the medical domain and present a forward-looking roadmap for XAlI-based
CDSS.

e  We categorized various studies from traditional CDSS to state-of-the-art XAl-based CDSS by
appropriate criteria and summarize the features and limitations of each CDSS to propose a new
XAl-based CDSS framework.

e  We propose a novel CDSS framework using the latest XAl technology and show that potential
value by introducing areas that can be utilized most effectively.
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Figure 1. Difference between knowledge-based, non-knowledge-based, and XAl-based CDSS.

This paper is organized as follows. In Section 2, we describe the research trends related to
knowledge-based, nonknowledge-based, and XAl-based CDSS and the limitations of existing
technologies. In Section 3, we present the XAl-based CDSS framework and introduce the datasets and
models required for its construction. Applications of XAl-based CDSS is presented in Section 4,
followed by the conclusion in Section 5.

2. Related Work

This section categorizes CDSS into knowledge-based, nonknowledge-based, and XAl-based,
and each section describes the main research, technologies, and methodologies, with the overview
shown in Figure 2.
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Figure 2. Overview of related work.

2.1. Knowledge-Based CDSS

To manage and utilize big data, an architecture called a knowledge base has emerged, and a
methodology has been proposed to incorporate a knowledge base built by correlation of the
accumulated data based on the experience of clinicians in a CDSS [7]. This is categorized as a
knowledge-based CDSS that supports decision-making by inferring results from a rule-based
knowledge base with an inference engine. Accordingly, it is important to design a knowledge base
structure and appropriate rule system for each field. The features, functions and applied domain of
knowledge-based CDSS are organized in Table 1.
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Table 1. Knowledge-based CDSS.
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Knowledge-based CDSSs define rules based on the literature, practice, or patient-oriented
evidence [8] and are therefore often used in clinical practice based on clinical guidelines orin Evidence
Based Medicine (EBM). Rule-base Inference Methodology using the Evidential Reasoning (RIMER) is
based on a Belief Rule Base (BRB) system [9-11]. BRB systems set belief degrees to represent different
types of uncertain knowledge and extend the If-Then rules to represent knowledge. Most BRB-based
CDSS frameworks comprise an interfacial layer, an application processing layer and a data
management layer [12-14]. These frameworks have proven their performance by in various fields,
such as COVID-19 [15] and heart failure [16], psychogenic pain [17], tuberculosis [18], acute coronary
syndrome (ACS) [19], and lymph node cancer metastasis[20].

However, an effective knowledge representation for CDSS could be Decision Tree, Bayesian
Network, or Nearest Neighbors [21]. A study leveraging decision trees proposed a knowledge
modeling method in which a clinical model extracted from glaucoma clinical practice guidelines was
represented as mind maps and converted into iterative decision trees by clinicians and engineers [22].
In a similar study, mind maps representing the clinical treatment process for thyroid nodules obtained
from clinicians is converted into an iterative decision tree model to extract rules [23]. This is followed
by the process of representing tacit knowledge to explicit knowledge and finally converting it to
executable knowledge. In another study on a decision-tree-based CDSS, a pediatric allergy knowledge
base, ONNX inference engine, and tree algorithm were used to provide knowledge of diagnosis
and treatment to clinicians [24].

Additionally, Bayesian network-based CDSS, which is used in various medical areas, (such as
liver disease [25], breast cancer [26], infectious diseases [27], diabetes [28], angina [29], respiratory
diseases [30], and lymph node cancer metastasis [31]) uses a what-if analysis mechanism. In the
field of dental hygiene, CNNs have recently been used in conjunction with a Bayesian network
framework based on the (Expectation-Maximization (EM) algorithm to detect abnormal oral images
[32]. Additionally, a diagnosis of an Hepatitis C Virus (HCV) diagnosis system has been proposed
using a fuzzy Bayesian network with a fuzzy ontology to resolve ambiguity and uncertainty in
outbreaks [33].

Research using the K-Nearest Neighbor (KNN) algorithm structured medical information by
classifying similar clinical cases through ontology extraction methods for Case Based Reasoning
(CBR) [34]. Moreover, a Computer-Aided Diagnosis (CAD) system proposed for melanoma diagnosis
provides a related ontology based on Asymmetry, Border, Color and Differential (ABCD) structure
rules, and classifies similar melanoma cases using the KNN algorithm [35]. Another study that uses
similarity of knowledge for decision-making, as in the aforementioned studies, provides an
appropriate diagnosis for patients semantically classified by time-series similarity based on the
patient’s medical history [36].

Knowledge-based CDSS supports decision-making based on pre-built knowledge base, effective
data modeling, and knowledge-based updating for each domain is also ongoing. Recently, in
genomics, a clinical genomic data model has been proposed to analyze clinical genomic workflow
and extract attributes using genomic data for clinical application of genomic information [37].
Additionally, methodologies have appeared to facilitate knowledge base updating by analyzing
newly acquired textualknowledge through natural language processing to generate rules [38].

Knowledge-based CDSS has potential in that the decision-making process is clear and traceable.
However, it is limited by maintenance and construction costs because it relies on medical specialists
and knowledge engineers for standardization and error correction, as data quality control is essential
[39,40].

2.2. Non-Knowledge-Based CDSS

With the explosion of data and specialized knowledge, the amount of information that must be
processed to make clinical decisions is growing astronomically. To learn on its own like a human,
using massive amounts of data, deep learning, and Al, which is based on artificial neural networks,
supports clinical decision-making. These methods analyze patterns in patient data to draw
associations between symptoms and diagnoses. Moreover, deep learning and Al can be used to
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analyze various data, including text, images, videos, audio, and signals, enabling the development
of non-knowledge-based CDSS that can understand the overall clinical situation and context. The
first step toward a nonknowledge-based CDSS began with analyzing images and using them to
make clinical decisions. A convolutional neural network (CNN) [41], which trains image patterns by
mimicking the structure of the human optic nerve has been used to diagnose obstructive sleep apnea
by learning high-order correlation features between polysomnography images and their labels
[42,43], and an automated system has been proposed to optimize patient satisfaction by analyzing
patients” experiences with ambulance transport services with a combined model of CNN and word
embeddings [44]. Similarly, a technique for diagnosing melanoma using a single CNN trained on
a dataset of clinical images has been introduced [45].

There are also a number of cases of recurrent neural networks (RNNs) that can handle time-series
data. EHR data are good candidates for using RNNs [46] because it provide clinical records with
temporal information. A previous study [47] applied RNNs to the EHR data of heart failure patients
to predict heart failure outperformed machine learning methods such as SVMs [48], MLPs [49], logistic
regression [50], and KNNs [51]. Because ECG data also contain temporal information, ECG signals can
be analyzed using RNN-based models detect sleep apnea [52].

When dealing with clinical data, owing to its long-term properties, the problem of forgetting
previous data and ignoring past information may arise. Therefore, studies using LSTMs [53] to
predict future data by considering past data have been proposed. An LSTM was used to learn
multiple diagnostic labels to classify diagnoses [54] and oral-nasal thermal airflow, nasal pressure,
and abdominal breathing-guided plethysmography data from polysomnography were analyzed
with a bidirectional LSTM model to diagnose sleep apnea [55]. Deep learning is frequently applied
in medical image analysis. Chest radiographs can be analyzed using deep learning to diagnose chest
diseases such as lung nodules [56], lung cancer [57], and pulmonary tuberculosis [58].

Unlike traditional supervised and unsupervised learning, reinforcement learning [59] generated
its own training data by observing the current state and selecting future actions. Because existing CDSSs
are trained based on evaluations made by different clinicians with different criteria, interrelated
symptoms are not considered in some cases. This problem can be solved by applying reinforcement
learning, which is used to learn complex environments. A CDSS based on a deep reinforcement
learning algorithm has been introduced to determine the initial dose for ICU patients, where an
accurate medication prescription is critical, and prevents mis-dosing and complications. [60]
Reinforcement learning of secure computations enables the implementation of patient-centered
clinical decision-making systems while protecting sensitive clinical data. A privacy-preserving
reinforcement learning framework with iterative secure computation was proposed to provide
dynamic treatment decisions without leaking sensitive information to unauthorized users [3]. A
reinforcement learning-based conversational software for radiotherapy was also studied, where the
framework used graph neural networks and reinforcement learning to improve clinical decision-
making performance in radiology with many variables, uncertain treatment responses, and inter-
patient heterogeneity [61].

BERT [62], a large language model based on a Transformer [63], was used to develop a CDSS
with natural language understanding capabilities. To reduce diagnostic errors, a framework for multi-
classifying diagnosis codes in EHRs using BERT [64] has been developed to help clinicians predict the
most likely diagnosis. However, specialists have raised concerns about the reliability and
responsibility of these deep learning and AI models because of their inability to explain their
decisions. Therefore, they are often unwilling to use them in diagnosis. To this end, it is necessary to
adopt Al, which provides evidence for prediction and an understandable explanation.

2.3. XAI-Based CDSS

EXplainable AI (XAI)[5], has emerged to overcome the black-box[6] problem of deep learning
models, which means that deep learning models have the highest perfor-mance compared to other
rule-based or machine learning models but have the limitation of lacking interpretability. This can be
described as the "performance—-interpretability trade-off, " and is shown in Figure 3. Performance is
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highest for deep learning, followed by machine learning models (Decision Tree, Nearest Neighbors,
Bayesian Network), and rule-based models; however, transparency (interpretability) is inversely
proportional. In other words, applying XAI to deep learning models is capable of explaining the
reason and logic behind the results predicted by the model to ensure transparency and reliability of
the results with high-performance deep learning. With attempts to apply XAl in various fields [65],
XAl is gained attention as a solution to the uncertainty problem in CDSS systems where accuracy and
reliability are important [66].

A
XAl’s Future directions
Deep Learning o
‘- (e.g. CNN, RNN) ‘- XAl-based Models
Bayesian Network
>
(€]
© Nearest Neighbors
>
v
é Decision
Tree
Rule-based Models

Interpretability

Figure 3. Trade-off between Performance and Interpretability.

The description techniques used in XAI can be broadly categorized into scoop-, model-,
complexity-, and methodology-based [67]. The most popular XAI methods in recent research include
SHapley Additive exPlanations (SHAP) [68], (local interpretable model-agnostic Explanations (LIME)
[69], Post hoc Interpretability [70], and (Gradient-weighted Class Activation Mapping (GradCAM) [70].

Scoop-based techniques determine the contribution of data based on the importance features to
train the AI model. A prominent example is the local explainers method (LIME) [71] is a method
specific to a particular instance or outcome. LIMEs directly explain how the model’s input data
change the outcome, and after training the model, it can make guesses about samples that have not
appeared before [72]. For COVID-19, LIME and traditional machine learning models were combined
to identify the features that had the greatest impact on medical history, time of onset, and patients’
primary symptoms [68]. Similarly, an LSTM model was used in a study on depressive-symptom
detection, in conjunction with a LIME approach to identify text suggestive of depressive symptoms
[73]. Other applications include the diagnosis of Parkinson disease [74], hip disease [75],
Alzheimer’s disease and mild cognitive impairment [76].

By contrast, SHAP is a global explainer method that provides a theoretical interpretation of any
dataset uses cooperative game theory concepts [77] to calculate the contributions of biomarkers or
clinical features (players) for a specific disease outcome (Reward) [72]. To predict postoperative
malnutrition in children with congenital heart disease, the XGBoost and SHAP algorithms were used
to calculate the average of five risk factors (weight one month after surgery, weight at discharge, etc.)
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for all patients [78]. PHysiologicAl Signal Embeddings (PHASE), a method for transforming time-series
signals into input features, wasfirst applied to embed body signals with an LSTM model to features
extracted using SHAP from EMR/EHR data [79]. In addition, a multi-layer XAl framework utilizing
multimodal data, such as MRI and PET images, cognitive scores, and medical histories, have been
proposed [80].

SHAP is applied to all layers of the framework, where the first layer performs multiple
classification for the early diagnosis of AD. In the second layer, the binary classification score is
were used to determine the transition from cognitive impairment to AD [80]. Similarly, SHAP has
been widely used in various diseases and clinical domains such as predicting readmission [81,82],
COVID-19 [83-86], liver cancer [87], influenza [88], and malignant cerebral edema [89].

More recently, researchers have utilized LIME and SHAP simultaneously to ensure a convincing
description of the system. A hybrid approach combining Vision Transformer (ViT) and a Gated
Recurrent Unit) was used to generate LIME heat maps using the top three features from the brain MRI
images, and SHAP was used to visualize the model’s predictions to demonstrate the validity of data
patterns [90]. In addition, the Department of Chronic Kidney Disease also used LIME and SHAP
algorithms simultaneously to represent the importance of features in the best model trained by five
machine learning methods methods (Random Forest, Decision Tree, Naive Bayes, XGBoost, and
Logistic Regression) [91].

Model-based techniques can be classified into model-specific and model-agnostic methods. Model-
specific methods utilize the unique features of a model to make decisions, indicating that they can only
be applied to the internal operations of a specific model. An example is Score-CAM [92], which is
based on CNNs and compares output for the given input features, thereby indicating their
importance. A previous study proposed asystem for classifying images from a clock-drawing test
as a tool for diagnosing dementia was trained on API-Net [93] and visualized it using Score-CAM to
provide explainability, and transparency[94]. However, model-agnostic methods are model-
independent and can be applied to any model or algorithm. As a CDSS tool that reduces the model
dependency, a COVID-19 symptom severity classifier that utilizes different machine learning models
to identify high-risk patients for COVID-19 has been proposed [95].

Complexity-based techniques make machine learning or deep learning models fully
interpretable. Interpretability can be categorized into intrinsic interpretability [96] and post hoc
interpretability [72] depending on the viewpoint. In general, intrinsic interpretability indicates that a
model with a simple architecture can be explained by the trained model itself, whereas post hoc
interpretability means that the trained model has a complex architecture and must be retrained to explain
this phenomenon. In a study on brain tumor detection based on MRI images, three pre-trained CNNSs,
DarkNet53 [92], EfficientNet-BO [97], and DenseNet201 [98], were used to extract features using a
hybrid methodology to explain post-interpretability [99].

Another framework for brain tumor diagnosis, NeuroNet19, combines a 19-layer VGG19 that
detects complex hierarchical features in images with an inverted pyramid pooling module (iPPM)
model, which refines these features, leveraging post-interpretability [100]. Methodology- based
techniques are categorized into Backpropagation-based and Perturbation-based [67], among which
Backpropagation-based GradCAM was proposed to describe CNN models with good performance
[101]. GradCAM was applied to the convolutional layer at the end of the CNN, and uses the gradient
information of the layer to find the features that are highly involved in a particular decision [72,102].
To further improve classification performance, several studies have been proposed to predict oral
cancer from oral images using guided attention inference network (GAIN) along with the
aforementioned CNN-based VGG19 model GradCAM [103], and also to diagnose glaucoma from
fundus images using GradCAM’s heatmap and ResNet-50 model [104]. SBecause CNN models are
widely applied in image classification and processing, GradCAM technology is used in several
studies utilizing image data [105-111].
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Table 3. XAl-based CDSS.
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3. XAI CDSS Framework

3.1. Proposed Architecture

This study proposes an XAl-based CDSS framework that can handle both high-performance
and interpretation of the decision-making process. This is achieved by applying explainable Al
technology to artificial intelligence models. Details of this framework are shown in Figure 4. The
proposed framework handles multimodal data from various medical domains, including text, audio,
images, and genomes. It applies the explainable Al methodology to representative deep learning
models. Finally, we demonstrate the potential value of the proposed framework through the
presentation of application plans, illustrating the circumstances under which they can be utilized

effectively.
XAl CDSS Framework
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Figure 4. XAl-based CDSS Framework.

Most of the existing Al-based CDSSs are limited to text data. Even if the data-usage range is
extended, only one additional type of biometric signal or image is used. However, a multimodal
data utilization plan is necessary to make clinical decisions considering factors that are difficult to
record in formal form, such as the patient’s condition, facial expressions, and behavior that change
in real time. Consequently, the proposed framework must be capable of expanding its knowledge
through the continuous learning and analysis of information derived from multimodal data. As
illustrated in Figure 2, a knowledge graph was constructed by extracting the relationship between
features based on multimodal features obtained using models such as large-scale language models,
VATT, and audio analysis models derived from multimodal data such as text, images, and signals.
Furthermore, through reinforcement learning or continuous learning, knowledge graphs can expand
automatically, enabling them to respond flexibly to new knowledge, while retaining previous
information.

A multimodal clinical XAl learning model for an explanatory clinical decision-making system
requires three elements: a deep explanatory label, an interpretable model, and model inference.
First, the features that can explain the prediction results must be identified and labeled, and a model
must be created in connection with a decision tree with high explanatory power. The explainable


https://doi.org/10.20944/preprints202406.0721.v1

d0i:10.20944/preprints202406.0721.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2024

13

models were inferred from the black boxes, which are the largest problem of existing Al methodologies.
Explanations are generated with predictions. All of the aforementioned processes [114] are conducted
through interactions for patients, medical professionals, and clinical systems in real time. The
predictions and explanations generated by analyzing the data obtained from each participant are
provided to the participants once more to facilitate overall clinical decision-making, including
monitoring, diagnosis, prescription, warning, and document management.

3.2. Dataset

3.2.1. Clinical Dataset

The first large-scale multimodal clinical dataset is UK Biobank [115]. It has been collected
since 2006 and includes several hierarchical data types such as lifestyle habits, body information,
biological samples, electrocardiogram data, and EHR data from more than 500,000 participants. In
addition to basic biometric data, the dataset provides genomic analysis, exon mutation testing, full-
length genome sequencing, brain MRI, cardiac MRI, abdominal MRI, carotid artery ultrasonography
and radiographic findings. Similar datasets were also collected from the China Kadoori Biobank [116]
and Biobank Japan [117]. The MMIC dataset [118], published by the Massachusetts Institute of
Technology, has now been published up to the fourth version. This is an open-source dataset
comprising EHR data, including demographic information, diagnostic codes, and medications obtained
from ICU patients at the Beth Israel Deaconess Medical Center. MMIC-IV is one of the the most
representative datasets of clinical AI models that aim to predict clinical events or readmissions. It
contains textual data, such as reports, medical notes, and imaging data, including laboratory and
physiological data, and chest radiographs. Furthermore, it is possible to reconstruct the multimodal
dataset by utilizing a combination of data from a single modality. This may include, for example,
an Alzheimer’s patient’s brain image dataset, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI)[119], and exercise activity data from patients with schizophrenia and depression[120]. Table
4 lists the summary of the monomodal and multimodal clinical datasets.

Table 4. Datasets.

Category Modality Dataset Features
Single- modality Image MURA[120] Musculoskeletal radiology images
MRNet[121] MRI images
RSNA[122] Chest X-ray images
Demner, F., 2016[123] Chest X-ray images
OASIS[124] MRI images
ADNI[119] CT images
X. Wang, 2017[125] Chest X-ray images
Armato III 2011[126] CT images
TCIA[127] Cancer tumor images
EHR MIMIC-III[128] Demographics, clinical history,
diagnoses, prescrip- tions, physical
information, etc
elCU[129] Management activities, clinical
assessments, treat- ment plans, vital
sign measurements, etc.
Text 2010 i2b2/VA[130] Discharge statements, progress
reports, radiology reports, pathology
reports
2012 i2b2[131] Discharge statements

2014 i2b2/UTHealth[132]

Longitudinal medical record

2018 n2c2[133]

Discharge statements
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Multi-Modality Genome, Image TCGA[134] Genome, medical images
Genome, Image, UK Biobank[115] Clinical information, genomic analysis,
EHR exon variant testing, whole genome

sequencing testing, MR, etc.

Image, Text ImageCLEFmed[135] Diagnostic images, visible light
images, signals, waves, etc.

Openi[136] Medical articles, images
Multiple signal PhysiNet[137] Biomedical signals
Video MedVidCL[138] Medical instruction images
UNBC-McMaster[139] Patient with shoulder pain
MedVidOA[140] Medical instruction images

3.2.2. Knowledge Graph

The use of knowledge graphs enables the formal expression of medical expertise and the semantic
structuring of unstructured multimodal data. During this period, while learning existing HKG, the
knowledge graph can be expanded using new data. In particular, the emergence of large language
models has facilitated the construction of more comprehensive and accurate HKG. HKG for CDSS exists
in fields such as medicine (prescription) [141,142], genetics [142,143], and disease [144,145], and based
on this, an extended knowledge graph can be generated.

To effectively respond to new clinical cases, information collected in real time should be used in
conjunction with existing knowledge. As mentioned previously, an automatic scalability of knowledge
graphs is required and reinforcement learning can be applied to ensures persuasive power. Numerous
knowledge graphs exist in the clinical fields other than CDSS, which are summarized in Table 5 by

application range.
Table 5. Clinical Knowledge Graphs.
CDSS Bio-informatics Medicine Pharmaceutical Chemistry
HKG DrugBank[141] Gene Ontology|[146] GEFA[147] HetioNet[148]
POBOKOP[142] Reaction[149]
KnowLife[143] KEGGJ[150] ASICS[151] DrKG[152]
Disease Ontology[144] Hetionet[152]
iBKH[145] Cell Ontology[153] GP-KGJ[154] PrimeKG[155]
PharmKG[156] DRKE[157]

3.3. XAI Model

Prior to the analysis of the multimodal data, the process of fusing multimodal data is required.
In particular, it is important to select meaningful features to obtain the desired information from the
vast amounts of data. To achieve this, deep learning, which trains a neural network composed of
multiple layers, can be used to extract features and representations from complex data. Deep learning
models[158] are well-suited to the integration and extraction of meaningful information owing to
their capacity to learn complexpatterns and generate knowledge for decision-making through the
processing of vast amounts of data. Deep learning models[159], such as those pre-trained on large
datasets such as ImageNet[160] or natural language corpora can be employed to obtain correlations
through the generation of new samples from multiple modalities with generative models from
GAN[J161] or VAE [162].

The advent of the transformer [62] has made multimodal data more accessible as it enables
immediate inference based on an attention network rather than a model using convolutional
structure, as previously described. Using the transformer structure, it is possible to learn multiple
modalities together because encoding is possible in a consistent structure for all data modalities. Since
the proposal of the Vision Transformer (VT) [163], that encodes images in a manner similar to natural
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language, there have been numerous attempts to apply the Transformer to other modalities in video
and voice.

Recently, VATT [164], a framework for learning multimodal representations from unlabeled
data, has been developed for the extraction of multimodal representations from unlabeled signals. It
is possible to perform a range of tasks, including behavioral recognition, Voice event classification,
image classification, and text-video search using video and audio, and text features extracted from
Internet images. Based on the VATT model, the patient’s daily, and counseling videos can be
analyzed to identify biometric signals, changes over time and nonverbal expressions and use them in
clinical decision-making.

XAI techniques can be largely divided based on explanation method, interpretation method,
model specificity, and explanation range [165], as shown in Figure 5. The backpropagation-based XAl
measures the degree to which each feature affects the result as a gradient value. Class activity map-
based XAl visualizes features with a significant impact using the feature map of the uppermost layer,
which aggregates the necessary information. Finally, input interference-based XAI provides
explanatory power through the process of repeatedly investigating the model while making various
changes to the input value of the model.

XAl Taxonomy

)\
{ { 1 1

Scoop-based Model-based Complexity-based Methodology-based

Explanation scopes Model specificity

Interpretation types

y . y . - ¥ Backpropagation- Perturbation-
[ Local ] [ Global ] [Model specmc] [Model agnosnc] [ Intrinsic ] [ Post-hoc ] [ based based

Figure 5. XAI Taxonomy.

Methodology

4. Applications

4.1. Function of CDSS

The objective of CDSS is to facilitate optimal decision-making for patient safety. Consequently,
the role of CDSS is to support the decision-making processes involved in Diagnosis, treatment, and
prescription, which are directly related to patient safety. Table 6 illustrates the functions of CDSS.

The first function of CDSS is diagnostic support. CDSS provides diagnostic information on
suspected diseases by collecting and monitoring figures showing the patient’s conditions, such as
biosignals. This function provides efficient management of beds by supporting useful decision-
making to inexperienced clinicians or nursing personnel.
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Table 6. XAI Models.

Category Model Features XAI Methods

Post-hoc Global Local Model- Model-
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Category Muodel Features XAI Methods

Post-hoc Global Local Model- Model-

specific agnostic
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based ing window and average the difference in

output as a feature attribute

Shapley Value Compute Shapley values over a subset of all v v v
Sampling[173] possible feature combinations
Kernel Shap[77] Use non-modality spedific heatmaps v v
Feature Replace image features by shuffling feature val- v v
Permulalion[174] ues within a batch and compute the resulting

prediction difference

LIME[68] Sampling neighboring data around the input to v v v
learn an inlerprelable model

1o
(0]
2
=
=
5
g
@
=
<
=
=
(0]
©
§.
2
g
e
Z
@)
3
Y
m
m
2
2y
m
<
=
m
O
0
o
)
D
=
[y
[
(&
=
=
(0]
N
o
N
H

TA'TCL0790%¢0¢sIuliasia/yy60C°0T-10P



https://doi.org/10.20944/preprints202406.0721.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 June 2024 d0i:10.20944/preprints202406.0721.v1

18

The second function is treatment support. This function supports the determination of the
optimal treatment by analyzing all applicable treatment methods in consideration of the patient’s
current condition. Through treatment method analysis, information analysis such as inconsistencies,
errors, omissions, and side effects between the treatment methods is possible. This function is the
most commonly studied area, and provides interaction information between prescribed drugs or
checks for side effects when multiple drugs are prescribed together. The third function of CDSS is
medical image analysis. As the performance of deep learning models using image data develops, it
is the most commonly used CDSS functions related to Al in the medical field. By analyzing medical
image data such as X-rays, MRIs, and CT scans, which are most commonly used to identify patient
diseases through deep learning, more accurate decision support can be provided to clinicians.

Finally, the system serves as a risk notification function. This function is typically activated in
patients admitted to the hospital, and immediately alerts medical personel when abnormal
symptoms or dangerous levels are identified while collecting and monitoring patient biometric
signals, such as pulse rate, blood pressure, and temperature.

4.2. The Potential of XAl-Based CDSS

The most significant features of the proposed XAl-based CDSS framework are generalizations
owing to the use of multimodal data, scalability to apply various deep learning SOTA models, and
trustworthiness through explainable Al technologies. The Fusion and learning of various types of
multimodal data generated in the medical domain can result in the discovery of features and patterns
that were not found in models that only address single modalities. This can be achieved by developing a
generalized foundation model using deep learning models that achieved SOTA performance in each
field. Finally, the decision-making process can be explained and interpreted as various explainable Al
technologies, enabling the development of a transparent and reliable clinical decision-making system.
Figure 6 illustrates the areas where the XAl-based CDSS.framework proposed in this study is the
most efficiently utilized. Disease detection represents the first field in which it can be used. Research
related to deep learning-based disease detection has already demonstrated high performance;
however, there is a challenge in utilizing it in the actual medical domain because of issues such as the
black-box nature of deep learning. To address this challenge, explainable Al technology is employed
to elucidate the rationale behind the predictions generated by the deep learning model, thereby
facilitating its deployment in the medical domain.

a) Disease Detection b) Bedside Decision Support
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The second area of application is bed decision support for inpatients. In comparison to current
inpatients, there is a significant challenge in that the number of professional nursing personnel in
charge of patients is insufficient. Furthermore, in the case of an inexperienced nursing personnel, it
is challenging to identify and diagnose appropriate symptoms necessary for patients. The XAl-based
CDSS framework is capable of simultaneously monitoring multiple patients and efficiently supporting
the decision-making of professional nursing personnel by providing the cause and basis when
abnormal symptoms are detected.

The third area of application is treatment and prescription. By analyzing the patient’s medical
history or medical record, customized treatment and prescription optimized for the current patient
are possible. Specifically, when prescribing a drug, it is possible to derive more optimal prescription
results for patient safety by analyzing potential side effects that may occur between the components
of the drug prescribed together in advance and providing information to professional medical
personnel.

The final area in which XAl-based CDSS can be utilized is clinical practice. Unlike the
aforementioned applications in hospitals and medical institutions, it is employed in the education
of professional personnel. In particular, in the case of professional nursing personnel, clinical practice
is conducted in educational institutions on cases that may occur in hospitals. The use of XAl-based
CDSS explains the decisions that should be made about the situations that may occur in the ward
and the reasons for the decisions.

5. Discussion and Conclusion

This paper addressed the technological trends of the clinical decision-making system CDSS in
accordance with the decision-making system (DSS) framework. It begins with a traditional
knowledge-based CDSS and then moves on to a non-knowledge-based CDSS incorporating Al and
a multimodal-based XAI CDSS that ensures reliability. By organizing the CDSS services introduced
above by field and feature, it is possible to grasp the strengths and weaknesses of each CDSS service,
and the matters required for CDSS services in the future. However, in the case of existing systems,
there are limitations. These include a limited data utilization range, lack of explanatory power for Al
models, and the opacity of the decision-making process. Consequently, in the medical field, which
demands reliability and transparency, the decision-making process must be clearly represented for
users to interpret it. This paper addressed the black-box problem of unknown-based CDSS as a
solution to the problem and proposed an XAl-based CDSS framework that provides valid evidence
and reasons for the results. Furthermore, it introduced the available datasets, models, and resources.

The proposed framework is designed to construct an automated extended knowledge graph with
multimodal features derived from multi-format data. It comprises three key elements: a deep
explanatory label, an interpretable model, and model inference, which collectively facilitate
explainable Al The framework has the potential to automate the entire process of medical clinical
services, from personalized treatment to real-time patient condition reflection. It distinguishes itself
from existing systems in terms of multimodal data management, utilization plan, explainable Al
application plan, and CDSS application range. Furthermore, the medical knowledge graph and HKG,
which are structured using available medical multimodal data, are summarized to enhance
expertise in decision-making. The proposed XAl-based CDSS framework serves as a foundational
model that can be flexibly applied to multiple disease domains. This approach enables the development
of a medical system with minimal temporal and spatial constraints.

Furthermore, advancements in the medical field are facilitated by the ease with which
computerized data can be used for research purposes. However, measures to enhance social
awareness are necessary because the current medical data are not readily accessible owing to concerns
regarding the protection of sensitive personal information. Additionally, there is a prevailing attitude
that humans should be trusted even when explanations of the data sources, transparency regarding
decision-making processes, and the results are provided. As non-face-to-face medical systems
become increasingly prevalent, it is imperative that relevant legal deregulation be enacted. If social
awareness and institutional improvements are guaranteed, it is expected that this will facilitate the
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development of compelling medical solutions through CDSS research and development that
integrate richer medical multimodal data, medical knowledge graphs, and XAI technology.
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