
Review Not peer-reviewed version

XAI-based Clinical Decision Support

System: A Systematic Review

SeYoung Kim , DaeHo Kim , MinJi Kim , HyoJin Ko , OkRan Jeong *

Posted Date: 11 June 2024

doi: 10.20944/preprints202406.0721.v1

Keywords: Explainable AI; Deep learning; Clinical Decision Support System

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2551408
https://sciprofiles.com/profile/771574


 

Review 

XAI-Based Clinical Decision Support System: A 
Systematic Review 
SeYoung Kim 1, DaeHo Kim 2, MinJi Kim 2, HyoJin Ko 2 and OkRan Jeong 2,* 

1 Department of Nursing, Changwon National University, Changwon-si, 51140, Republic of Korea 
2 School of Computing, Gachon University, Seongnam-si, 13120, Republic of Korea 
* Correspondence: orjeong@gachon.ac.kr 

Abstract: With increasing electronic medical data and the development of artificial intelligence, 
Clinical Decision Support Systems (CDSSs) assist clinicians in diagnosis and prescription. 
Traditional knowledge-based CDSSs follow an accumulated medical knowledgebase and a 
predefined rule system, which clarifies the decision-making process; however, maintenance cost 
issues exist in the medical data quality control and standardization process. Non-knowledge-based 
CDSSs utilize vast amounts of data and algorithms to effectively decide; however, the deep learning 
black-box problem causes unreliable results. EXplainable Artificial Intelligence (XAI)-based CDSS 
provides a valid rationale and explainable results. It ensures trustworthiness and transparency by 
showing the recommendation and prediction results process through explainable techniques. 
However, existing systems have limitations, such as the scope of data utilization and the lack of 
explanatory power of AI models. This study proposes a new XAI-based CDSS framework to address 
these issues; introduce resources, datasets, and models that can be utilized; and provides a 
foundation model to support decision-making in various disease domains. Finally, we propose 
future directions for CDSS technology and highlight societal issues that need to be addressed to 
emphasize the potential of CDSS in the future. 

Keywords: explainable AI; deep learning; clinical decision support system 
 

1. Introduction 

A Clinical Decision Support System(CDSS) [1] supports decision-making for clinicians in 
diagnosing and treating diseases based on the patient’s clinical information. With the advancing big 
data analysis and artificial intelligence (AI) lately, the research on these techniques to CDSS has 
gained considerable attention. Notably, AI-based CDSS is highly valuable because of its effectiveness 
in supporting clinical diagnosis, prescription, prognosis, and treatment through AI models. 

Traditional CDSS is categorized into knowledge-based CDSS, where rules are defined in 
advance and non-knowledge-based CDSS, where the rules are not predefined [2]. The principle of 
knowledge-based CDSS is to make decisions using correlations and If–Then rules for accumulated data. 
Knowledge-based CDSS is beneficial as the decision-making process is transparent because it follows 
predefined rules. However, it has the limitation that knowledge and rules must be defined in advance 
for all cases. 

Conversely, non-knowledge-based CDSS provides decision-making by learning patterns found 
in past clinical information through machine learning or AI without rules. Non-knowledge based 
CDSS has been extensively studied in various medical areas [3,4], dealing with issues such as 
hypertension, heart failure, and lung disease. It is expected to be a breakthrough methodology that can 
reduce the cost of knowledge construction and provide personalized treatment. However, the black-
box problem [5], in which explaining the process behind the results derived by AI models is not 
possible, makes it difficult to apply them in healthcare, where transparency is essential. Therefore, to 
utilize non-knowledge-based CDSS, it is necessary to introduce robust clinical validation and 
evaluations or provide convincing evidence to support the results. 
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Explainable AI (XAI) [6] was proposed to explain the process of the results of AI-based systems. 
The differences in knowledge-, non-knowledge-, and XAI-based CDSS are shown in Figure 1. XAI can 
explain the process and rationale behind an AI model’s decision in a manner that can be interpreted 
by the user. XAI technologies can be broadly categorized into feature, model-, complexity, and 
methodology-based, and XAI technologies can be applied to CDSS to ensure the transparency and 
reliability of the healthcare system. In this study, we propose an XAI-based CDSS framework and 
introduce its application. Our main contributions are summarized as follows: 
• We perform a systematic review of explainable AI techniques that can ensure trust-worthiness 

and transparency in the medical domain and present a forward-looking roadmap for XAI-based 
CDSS. 

• We categorized various studies from traditional CDSS to state-of-the-art XAI-based CDSS by 
appropriate criteria and summarize the features and limitations of each CDSS to propose a new 
XAI-based CDSS framework. 

• We propose a novel CDSS framework using the latest XAI technology and show that potential 
value by introducing areas that can be utilized most effectively. 

 

Figure 1. Difference between knowledge-based, non-knowledge-based, and XAI-based CDSS. 

This paper is organized as follows. In Section 2, we describe the research trends related to 
knowledge-based, nonknowledge-based, and XAI-based CDSS and the limitations of existing 
technologies. In Section 3, we present the XAI-based CDSS framework and introduce the datasets and 
models required for its construction. Applications of XAI-based CDSS is presented in Section 4, 
followed by the conclusion in Section 5. 

2. Related Work 

This section categorizes CDSS into knowledge-based, nonknowledge-based, and XAI-based, 
and each section describes the main research, technologies, and methodologies, with the overview 
shown in Figure 2. 
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Figure 2. Overview of related work. 

2.1. Knowledge-Based CDSS 

To manage and utilize big data, an architecture called a knowledge base has emerged, and a 
methodology has been proposed to incorporate a knowledge base built by correlation of the 
accumulated data based on the experience of clinicians in a CDSS [7]. This is categorized as a 
knowledge-based CDSS that supports decision-making by inferring results from a rule-based 
knowledge base with an inference engine. Accordingly, it is important to design a knowledge base 
structure and appropriate rule system for each field. The features, functions and applied domain of 
knowledge-based CDSS are organized in Table 1. 
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Table 1. Knowledge-based CDSS. 
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Knowledge-based CDSSs define rules based on the literature, practice, or patient-oriented 
evidence [8] and are therefore often used in clinical practice based on clinical guidelines or in Evidence 
Based Medicine (EBM). Rule-base Inference Methodology using the Evidential Reasoning (RIMER) is 
based on a Belief Rule Base (BRB) system [9–11]. BRB systems set belief degrees to represent different 
types of uncertain knowledge and extend the If–Then rules to represent knowledge. Most BRB-based 
CDSS frameworks comprise an interfacial layer, an application processing layer and a data 
management layer [12–14]. These frameworks have proven their performance by in various fields, 
such as COVID-19 [15] and heart failure [16], psychogenic pain [17], tuberculosis [18], acute coronary 
syndrome (ACS) [19], and lymph node cancer metastasis[20]. 

However, an effective knowledge representation for CDSS could be Decision Tree, Bayesian 
Network, or Nearest Neighbors [21]. A study leveraging decision trees proposed a knowledge 
modeling method in which a clinical model extracted from glaucoma clinical practice guidelines was 
represented as mind maps and converted into iterative decision trees by clinicians and engineers [22]. 
In a similar study, mind maps representing the clinical treatment process for thyroid nodules obtained 
from clinicians is converted into an iterative decision tree model to extract rules [23]. This is followed 
by the process of representing tacit knowledge to explicit knowledge and finally converting it to 
executable knowledge. In another study on a decision-tree-based CDSS, a pediatric allergy knowledge 
base, ONNX inference engine, and tree algorithm were used to provide knowledge of diagnosis 
and treatment to clinicians [24]. 

Additionally, Bayesian network-based CDSS, which is used in various medical areas, (such as 
liver disease [25], breast cancer [26], infectious diseases [27], diabetes [28], angina [29], respiratory 
diseases [30], and lymph node cancer metastasis [31]) uses a what–if analysis mechanism. In the 
field of dental hygiene, CNNs have recently been used in conjunction with a Bayesian network 
framework based on the (Expectation-Maximization (EM) algorithm to detect abnormal oral images 
[32]. Additionally, a diagnosis of an Hepatitis C Virus (HCV) diagnosis system has been proposed 
using a fuzzy Bayesian network with a fuzzy ontology to resolve ambiguity and uncertainty in 
outbreaks [33]. 

Research using the K-Nearest Neighbor (KNN) algorithm structured medical information by 
classifying similar clinical cases through ontology extraction methods for Case Based Reasoning 
(CBR) [34]. Moreover, a Computer-Aided Diagnosis (CAD) system proposed for melanoma diagnosis 
provides a related ontology based on Asymmetry, Border, Color and Differential (ABCD) structure 
rules, and classifies similar melanoma cases using the KNN algorithm [35]. Another study that uses 
similarity of knowledge for decision-making, as in the aforementioned studies, provides an 
appropriate diagnosis for patients semantically classified by time-series similarity based on the 
patient’s medical history [36]. 

Knowledge-based CDSS supports decision-making based on pre-built knowledge base, effective 
data modeling, and knowledge-based updating for each domain is also ongoing. Recently, in 
genomics, a clinical genomic data model has been proposed to analyze clinical genomic workflow 
and extract attributes using genomic data for clinical application of genomic information [37]. 
Additionally, methodologies have appeared to facilitate knowledge base updating by analyzing 
newly acquired textual knowledge through natural language processing to generate rules [38]. 

Knowledge-based CDSS has potential in that the decision-making process is clear and traceable. 
However, it is limited by maintenance and construction costs because it relies on medical specialists 
and knowledge engineers for standardization and error correction, as data quality control is essential 
[39,40]. 

2.2. Non-Knowledge-Based CDSS 

With the explosion of data and specialized knowledge, the amount of information that must be 
processed to make clinical decisions is growing astronomically. To learn on its own like a human, 
using massive amounts of data, deep learning, and AI, which is based on artificial neural networks, 
supports clinical decision-making. These methods analyze patterns in patient data to draw 
associations between symptoms and diagnoses. Moreover, deep learning and AI can be used to 
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analyze various data, including text, images, videos, audio, and signals, enabling the development 
of non-knowledge-based CDSS that can understand the overall clinical situation and context. The 
first step toward a nonknowledge-based CDSS began with analyzing images and using them to 
make clinical decisions. A convolutional neural network (CNN) [41], which trains image patterns by 
mimicking the structure of the human optic nerve has been used to diagnose obstructive sleep apnea 
by learning high-order correlation features between polysomnography images and their labels 
[42,43], and an automated system has been proposed to optimize patient satisfaction by analyzing 
patients’ experiences with ambulance transport services with a combined model of CNN and word 
embeddings [44]. Similarly, a technique for diagnosing melanoma using a single CNN trained on 
a dataset of clinical images has been introduced [45]. 

There are also a number of cases of recurrent neural networks (RNNs) that can handle time-series 
data. EHR data are good candidates for using RNNs [46] because it provide clinical records with 
temporal information. A previous study [47] applied RNNs to the EHR data of heart failure patients 
to predict heart failure outperformed machine learning methods such as SVMs [48], MLPs [49], logistic 
regression [50], and KNNs [51]. Because ECG data also contain temporal information, ECG signals can 
be analyzed using RNN-based models detect sleep apnea [52]. 

When dealing with clinical data, owing to its long-term properties, the problem of forgetting 
previous data and ignoring past information may arise. Therefore, studies using LSTMs [53] to 
predict future data by considering past data have been proposed. An LSTM was used to learn 
multiple diagnostic labels to classify diagnoses [54] and oral–nasal thermal airflow, nasal pressure, 
and abdominal breathing-guided plethysmography data from polysomnography were analyzed 
with a bidirectional LSTM model to diagnose sleep apnea [55]. Deep learning is frequently applied 
in medical image analysis. Chest radiographs can be analyzed using deep learning to diagnose chest 
diseases such as lung nodules [56], lung cancer [57], and pulmonary tuberculosis [58]. 

Unlike traditional supervised and unsupervised learning, reinforcement learning [59] generated 
its own training data by observing the current state and selecting future actions. Because existing CDSSs 
are trained based on evaluations made by different clinicians with different criteria, interrelated 
symptoms are not considered in some cases. This problem can be solved by applying reinforcement 
learning, which is used to learn complex environments. A CDSS based on a deep reinforcement 
learning algorithm has been introduced to determine the initial dose for ICU patients, where an 
accurate medication prescription is critical, and prevents mis-dosing and complications. [60] 
Reinforcement learning of secure computations enables the implementation of patient-centered 
clinical decision-making systems while protecting sensitive clinical data. A privacy-preserving 
reinforcement learning framework with iterative secure computation was proposed to provide 
dynamic treatment decisions without leaking sensitive information to unauthorized users [3]. A 
reinforcement learning-based conversational software for radiotherapy was also studied, where the 
framework used graph neural networks and reinforcement learning to improve clinical decision-
making performance in radiology with many variables, uncertain treatment responses, and inter-
patient heterogeneity [61]. 

BERT [62], a large language model based on a Transformer [63], was used to develop a CDSS 
with natural language understanding capabilities. To reduce diagnostic errors, a framework for multi-
classifying diagnosis codes in EHRs using BERT [64] has been developed to help clinicians predict the 
most likely diagnosis. However, specialists have raised concerns about the reliability and 
responsibility of these deep learning and AI models because of their inability to explain their 
decisions. Therefore, they are often unwilling to use them in diagnosis. To this end, it is necessary to 
adopt AI, which provides evidence for prediction and an understandable explanation. 

2.3. XAI-Based CDSS 

EXplainable AI (XAI)[5], has emerged to overcome the black-box[6] problem of deep learning 
models, which means that deep learning models have the highest perfor-mance compared to other 
rule-based or machine learning models but have the limitation of lacking interpretability. This can be 
described as the "performance–interpretability trade-off, " and is shown in Figure 3. Performance is 
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highest for deep learning, followed by machine learning models (Decision Tree, Nearest Neighbors, 
Bayesian Network), and rule-based models; however, transparency (interpretability) is inversely 
proportional. In other words, applying XAI to deep learning models is capable of explaining the 
reason and logic behind the results predicted by the model to ensure transparency and reliability of 
the results with high-performance deep learning. With attempts to apply XAI in various fields [65], 
XAI is gained attention as a solution to the uncertainty problem in CDSS systems where accuracy and 
reliability are important [66]. 

 
Figure 3. Trade-off between Performance and Interpretability. 

The description techniques used in XAI can be broadly categorized into scoop-, model-, 
complexity-, and methodology-based [67]. The most popular XAI methods in recent research include 
SHapley Additive exPlanations (SHAP) [68], (local interpretable model–agnostic Explanations (LIME) 
[69], Post hoc Interpretability [70], and (Gradient-weighted Class Activation Mapping (GradCAM) [70]. 

Scoop-based techniques determine the contribution of data based on the importance features to 
train the AI model. A prominent example is the local explainers method (LIME) [71] is a method 
specific to a particular instance or outcome. LIMEs directly explain how the model’s input data 
change the outcome, and after training the model, it can make guesses about samples that have not 
appeared before [72]. For COVID-19, LIME and traditional machine learning models were combined 
to identify the features that had the greatest impact on medical history, time of onset, and patients’ 
primary symptoms [68]. Similarly, an LSTM model was used in a study on depressive-symptom 
detection, in conjunction with a LIME approach to identify text suggestive of depressive symptoms 
[73]. Other applications include the diagnosis of Parkinson disease [74], hip disease [75], 
Alzheimer’s disease and mild cognitive impairment [76]. 

By contrast, SHAP is a global explainer method that provides a theoretical interpretation of any 
dataset uses cooperative game theory concepts [77] to calculate the contributions of biomarkers or 
clinical features (players) for a specific disease outcome (Reward) [72]. To predict postoperative 
malnutrition in children with congenital heart disease, the XGBoost and SHAP algorithms were used 
to calculate the average of five risk factors (weight one month after surgery, weight at discharge, etc.) 
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for all patients [78]. PHysiologicAl Signal Embeddings (PHASE), a method for transforming time-series 
signals into input features, wasfirst applied to embed body signals with an LSTM model to features 
extracted using SHAP from EMR/EHR data [79]. In addition, a multi-layer XAI framework utilizing 
multimodal data, such as MRI and PET images, cognitive scores, and medical histories, have been 
proposed [80]. 

SHAP is applied to all layers of the framework, where the first layer performs multiple 
classification for the early diagnosis of AD. In the second layer, the binary classification score is 
were used to determine the transition from cognitive impairment to AD [80]. Similarly, SHAP has 
been widely used in various diseases and clinical domains such as predicting readmission [81,82], 
COVID-19 [83–86], liver cancer [87], influenza [88], and malignant cerebral edema [89]. 

More recently, researchers have utilized LIME and SHAP simultaneously to ensure a convincing 
description of the system. A hybrid approach combining Vision Transformer (ViT) and a Gated 
Recurrent Unit) was used to generate LIME heat maps using the top three features from the brain MRI 
images, and SHAP was used to visualize the model’s predictions to demonstrate the validity of data 
patterns [90]. In addition, the Department of Chronic Kidney Disease also used LIME and SHAP 
algorithms simultaneously to represent the importance of features in the best model trained by five 
machine learning methods methods (Random Forest, Decision Tree, Naïve Bayes, XGBoost, and 
Logistic Regression) [91]. 

Model-based techniques can be classified into model-specific and model-agnostic methods. Model-
specific methods utilize the unique features of a model to make decisions, indicating that they can only 
be applied to the internal operations of a specific model. An example is Score-CAM [92], which is 
based on CNNs and compares output for the given input features,  thereby indicating their 
importance. A previous study proposed a system for classifying images from a clock-drawing test 
as a tool for diagnosing dementia was trained on API-Net [93] and visualized it using Score-CAM to 
provide explainability, and transparency[94]. However, model-agnostic methods are model-
independent and can be applied to any model or algorithm. As a CDSS tool that reduces the model 
dependency, a COVID-19 symptom severity classifier that utilizes different machine learning models 
to identify high-risk patients for COVID-19 has been proposed [95]. 

Complexity-based techniques make machine learning or deep learning models fully 
interpretable. Interpretability can be categorized into intrinsic interpretability [96] and post hoc 
interpretability [72] depending on the viewpoint. In general, intrinsic interpretability indicates that a 
model with a simple architecture can be explained by the trained model itself, whereas post hoc 
interpretability means that the trained model has a complex architecture and must be retrained to explain 
this phenomenon. In a study on brain tumor detection based on MRI images, three pre-trained CNNs, 
DarkNet53 [92], EfficientNet-B0 [97], and DenseNet201 [98], were used to extract features using a 
hybrid methodology to explain post-interpretability [99]. 

Another framework for brain tumor diagnosis, NeuroNet19, combines a 19-layer VGG19 that 
detects complex hierarchical features in images with an inverted pyramid pooling module (iPPM) 
model, which refines these features, leveraging post-interpretability [100]. Methodology- based 
techniques are categorized into Backpropagation-based and Perturbation-based [67], among which 
Backpropagation-based GradCAM was proposed to describe CNN models with good performance 
[101]. GradCAM was applied to the convolutional layer at the end of the CNN, and uses the gradient 
information of the layer to find the features that are highly involved in a particular decision [72,102]. 
To further improve classification performance, several studies have been proposed to predict oral 
cancer from oral images using guided attention inference network (GAIN) along with the 
aforementioned CNN-based VGG19 model GradCAM [103], and also to diagnose glaucoma from 
fundus images using GradCAM’s heatmap and ResNet-50 model [104]. SBecause CNN models are 
widely applied in image classification and processing, GradCAM technology is used in several 
studies utilizing image data [105–111]. 
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Table 2. Non-Knowledge-based CDSS. 
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Table 3. XAI-based CDSS. 
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3. XAI CDSS Framework 

3.1. Proposed Architecture 

This study proposes an XAI-based CDSS framework that can handle both high-performance 
and interpretation of the decision-making process. This is achieved by applying explainable AI 
technology to artificial intelligence models. Details of this framework are shown in Figure 4. The 
proposed framework handles multimodal data from various medical domains, including text, audio, 
images, and genomes. It applies the explainable AI methodology to representative deep learning 
models. Finally, we demonstrate the potential value of the proposed framework through the 
presentation of application plans, illustrating the circumstances under which they can be utilized 
effectively. 

 
Figure 4. XAI-based CDSS Framework. 

Most of the existing AI-based CDSSs are limited to text data. Even if the data-usage range is 
extended, only one additional type of biometric signal or image is used. However, a multimodal 
data utilization plan is necessary to make clinical decisions considering factors that are difficult to 
record in formal form, such as the patient’s condition, facial expressions, and behavior that change 
in real time. Consequently, the proposed framework must be capable of expanding its knowledge 

through the continuous learning and analysis of information derived from multimodal data. As 
illustrated in Figure 2, a knowledge graph was constructed by extracting the relationship between 
features based on multimodal features obtained using models such as large-scale language models, 
VATT, and audio analysis models derived from multimodal data such as text, images, and signals. 
Furthermore, through reinforcement learning or continuous learning, knowledge graphs can expand 
automatically, enabling them to respond flexibly to new knowledge, while retaining previous 
information. 

A multimodal clinical XAI learning model for an explanatory clinical decision-making system 
requires three elements: a deep explanatory label, an interpretable model, and model inference. 
First, the features that can explain the prediction results must be identified and labeled, and a model 
must be created in connection with a decision tree with high explanatory power. The explainable 
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models were inferred from the black boxes, which are the largest problem of existing AI methodologies. 
Explanations are generated with predictions. All of the aforementioned processes [114] are conducted 
through interactions for patients, medical professionals, and clinical systems in real time. The 
predictions and explanations generated by analyzing the data obtained from each participant are 
provided to the participants once more to facilitate overall clinical decision-making, including 
monitoring, diagnosis, prescription, warning, and document management. 

3.2. Dataset 

3.2.1. Clinical Dataset 

The first large-scale multimodal clinical dataset is UK Biobank [115]. It has been collected 
since 2006 and includes several hierarchical data types such as lifestyle habits, body information, 
biological samples, electrocardiogram data, and EHR data from more than 500,000 participants. In 
addition to basic biometric data, the dataset provides genomic analysis, exon mutation testing, full-
length genome sequencing, brain MRI, cardiac MRI, abdominal MRI, carotid artery ultrasonography 
and radiographic findings. Similar datasets were also collected from the China Kadoori Biobank [116] 
and Biobank Japan [117]. The MMIC dataset [118], published by the Massachusetts Institute of 
Technology, has now been published up to the fourth version. This is an open-source dataset 
comprising EHR data, including demographic information, diagnostic codes, and medications obtained 
from ICU patients at the Beth Israel Deaconess Medical Center. MMIC-IV is one of the the most 
representative datasets of clinical AI models that aim to predict clinical events or readmissions. It 
contains textual data, such as reports, medical notes, and imaging data, including laboratory and 
physiological data, and chest radiographs. Furthermore, it is possible to reconstruct the multimodal 
dataset by utilizing a combination of data from a single modality. This may include, for example, 
an Alzheimer’s patient’s brain image dataset, the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI)[119], and exercise activity data from patients with schizophrenia and depression[120]. Table 
4 lists the summary of the monomodal and multimodal clinical datasets. 

Table 4. Datasets. 

Category Modality Dataset Features 
Single- modality Image MURA[120] Musculoskeletal radiology images 

MRNet[121] MRI images 
RSNA[122] Chest X-ray images 

Demner, F., 2016[123] Chest X-ray images 
OASIS[124] MRI images 
ADNI[119] CT images 

X. Wang, 2017[125] Chest X-ray images 
Armato III 2011[126] CT images 

TCIA[127] Cancer tumor images 
EHR MIMIC-III[128] Demographics, clinical history, 

diagnoses, prescrip- tions, physical 
information, etc 

eICU[129] Management activities, clinical 
assessments, treat- ment plans, vital 

sign measurements, etc. 
Text 2010 i2b2/VA[130] Discharge statements, progress 

reports, radiology reports, pathology 
reports 

2012 i2b2[131] Discharge statements 
2014 i2b2/UTHealth[132] Longitudinal medical record 

2018 n2c2[133] Discharge statements 
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Multi-Modality Genome, Image TCGA[134] Genome, medical images 
Genome, Image, 

EHR 
UK Biobank[115] Clinical information, genomic analysis, 

exon variant testing, whole genome 
sequencing testing, MRI, etc. 

Image, Text ImageCLEFmed[135] Diagnostic images, visible light 
images, signals, waves, etc. 

Openi[136] Medical articles, images 
Multiple signal PhysiNet[137] Biomedical signals 

Video MedVidCL[138] Medical instruction images 
UNBC-McMaster[139] Patient with shoulder pain 

MedVidOA[140] Medical instruction images 

3.2.2. Knowledge Graph 

The use of knowledge graphs enables the formal expression of medical expertise and the semantic 
structuring of unstructured multimodal data. During this period, while learning existing HKG, the 
knowledge graph can be expanded using new data. In particular, the emergence of large language 
models has facilitated the construction of more comprehensive and accurate HKG. HKG for CDSS exists 
in fields such as medicine (prescription) [141,142], genetics [142,143], and disease [144,145], and based 
on this, an extended knowledge graph can be generated. 

To effectively respond to new clinical cases, information collected in real time should be used in 
conjunction with existing knowledge. As mentioned previously, an automatic scalability of knowledge 
graphs is required and reinforcement learning can be applied to ensures persuasive power. Numerous 
knowledge graphs exist in the clinical fields other than CDSS, which are summarized in Table 5 by 
application range. 

Table 5. Clinical Knowledge Graphs. 

 CDSS Bio-informatics Medicine Pharmaceutical Chemistry 
HKG DrugBank[141] Gene Ontology[146] GEFA[147] HetioNet[148] 

POBOKOP[142] Reaction[149] 
KnowLife[143] KEGG[150] ASICS[151] DrKG[152] 

Disease Ontology[144] Hetionet[152] 
iBKH[145] Cell Ontology[153] GP-KG[154] PrimeKG[155] 

PharmKG[156] DRKF[157] 

3.3. XAI Model 

Prior to the analysis of the multimodal data, the process of fusing multimodal data is required. 
In particular, it is important to select meaningful features to obtain the desired information from the 
vast amounts of data. To achieve this, deep learning, which trains a neural network composed of 
multiple layers, can be used to extract features and representations from complex data. Deep learning 
models[158] are well-suited to the integration and extraction of meaningful information owing to 
their capacity to learn complexpatterns and generate knowledge for decision-making through the 
processing of vast amounts of data. Deep learning models[159], such as those pre-trained on large 
datasets such as ImageNet[160] or natural language corpora can be employed to obtain correlations 
through the generation of new samples from multiple modalities with generative models from 
GAN[161] or VAE [162]. 

The advent of the transformer [62] has made multimodal data more accessible as it enables 
immediate inference based on an attention network rather than a model using convolutional 
structure, as previously described. Using the transformer structure, it is possible to learn multiple 
modalities together because encoding is possible in a consistent structure for all data modalities. Since 
the proposal of the Vision Transformer (VT) [163], that encodes images in a manner similar to natural 
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language, there have been numerous attempts to apply the Transformer to other modalities in video 
and voice. 

Recently, VATT [164], a framework for learning multimodal representations from unlabeled 
data, has been developed for the extraction of multimodal representations from unlabeled signals. It 
is possible to perform a range of tasks, including behavioral recognition, Voice event classification, 
image classification, and text-video search using video and audio, and text features extracted from 
Internet images. Based on the VATT model, the patient’s daily, and counseling videos can be 
analyzed to identify biometric signals, changes over time and nonverbal expressions and use them in 
clinical decision-making. 

XAI techniques can be largely divided based on explanation method, interpretation method, 
model specificity, and explanation range [165], as shown in Figure 5. The backpropagation-based XAI 
measures the degree to which each feature affects the result as a gradient value. Class activity map-
based XAI visualizes features with a significant impact using the feature map of the uppermost layer, 
which aggregates the necessary information. Finally, input interference-based XAI provides 
explanatory power through the process of repeatedly investigating the model while making various 
changes to the input value of the model. 

 

Figure 5. XAI Taxonomy. 

4. Applications 

4.1. Function of CDSS 

The objective of CDSS is to facilitate optimal decision-making for patient safety. Consequently, 
the role of CDSS is to support the decision-making processes involved in Diagnosis, treatment, and 
prescription, which are directly related to patient safety. Table 6 illustrates the functions of CDSS. 

The first function of CDSS is diagnostic support. CDSS provides diagnostic information on 
suspected diseases by collecting and monitoring figures showing the patient’s conditions, such as 
biosignals. This function provides efficient management of beds by supporting useful decision-
making to inexperienced clinicians or nursing personnel. 
  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 June 2024                   doi:10.20944/preprints202406.0721.v1

https://doi.org/10.20944/preprints202406.0721.v1


 16 

 

Table 6. XAI Models. 

 

P
rep

rin
ts.o

rg
 (w

w
w

.p
rep

rin
ts.o

rg
)  |  N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
  |  P

o
sted

: 11 Ju
n

e 2024                   d
o

i:10.20944/p
rep

rin
ts202406.0721.v1

https://doi.org/10.20944/preprints202406.0721.v1


 17 

 

 

 

P
rep

rin
ts.o

rg
 (w

w
w

.p
rep

rin
ts.o

rg
)  |  N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
  |  P

o
sted

: 11 Ju
n

e 2024                   d
o

i:10.20944/p
rep

rin
ts202406.0721.v1

https://doi.org/10.20944/preprints202406.0721.v1


 18 

 

The second function is treatment support. This function supports the determination of the 
optimal treatment by analyzing all applicable treatment methods in consideration of the patient’s 
current condition. Through treatment method analysis, information analysis such as inconsistencies, 
errors, omissions, and side effects between the treatment methods is possible. This function is the 
most commonly studied area, and provides interaction information between prescribed drugs or 
checks for side effects when multiple drugs are prescribed together. The third function of CDSS is 
medical image analysis. As the performance of deep learning models using image data develops, it 
is the most commonly used CDSS functions related to AI in the medical field. By analyzing medical 
image data such as X-rays, MRIs, and CT scans, which are most commonly used to identify patient 
diseases through deep learning, more accurate decision support can be provided to clinicians. 

Finally, the system serves as a risk notification function. This function is typically activated in 
patients admitted to the hospital, and immediately alerts medical personel when abnormal 
symptoms or dangerous levels are identified while collecting and monitoring patient biometric 
signals, such as pulse rate, blood pressure, and temperature. 

4.2. The Potential of XAI-Based CDSS 

The most significant features of the proposed XAI-based CDSS framework are generalizations 
owing to the use of multimodal data, scalability to apply various deep learning SOTA models, and 
trustworthiness through explainable AI technologies. The Fusion and learning of various types of 
multimodal data generated in the medical domain can result in the discovery of features and patterns 
that were not found in models that only address single modalities. This can be achieved by developing a 
generalized foundation model using deep learning models that achieved SOTA performance in each 
field. Finally, the decision-making process can be explained and interpreted as various explainable AI 
technologies, enabling the development of a transparent and reliable clinical decision-making system. 
Figure 6 illustrates the areas where the XAI-based CDSS. framework proposed in this study is the 
most efficiently utilized. Disease detection represents the first field in which it can be used. Research 
related to deep learning-based disease detection has already demonstrated high performance; 
however, there is a challenge in utilizing it in the actual medical domain because of issues such as the 
black-box nature of deep learning. To address this challenge, explainable AI technology is employed 
to elucidate the rationale behind the predictions generated by the deep learning model, thereby 
facilitating its deployment in the medical domain. 

 
Figure 6. Applications of XAI-based CDSS. 
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The second area of application is bed decision support for inpatients. In comparison to current 
inpatients, there is a significant challenge in that the number of professional nursing personnel in 
charge of patients is insufficient. Furthermore, in the case of an inexperienced nursing personnel, it 
is challenging to identify and diagnose appropriate symptoms necessary for patients. The XAI-based 
CDSS framework is capable of simultaneously monitoring multiple patients and efficiently supporting 
the decision-making of professional nursing personnel by providing the cause and basis when 
abnormal symptoms are detected. 

The third area of application is treatment and prescription. By analyzing the patient’s medical 
history or medical record, customized treatment and prescription optimized for the current patient 
are possible. Specifically, when prescribing a drug, it is possible to derive more optimal prescription 
results for patient safety by analyzing potential side effects that may occur between the components 
of the drug prescribed together in advance and providing information to professional medical 
personnel. 

The final area in which XAI-based CDSS can be utilized is clinical practice. Unlike the 
aforementioned applications in hospitals and medical institutions, it is employed in the education 
of professional personnel. In particular, in the case of professional nursing personnel, clinical practice 
is conducted in educational institutions on cases that may occur in hospitals. The use of XAI-based 
CDSS explains the decisions that should be made about the situations that may occur in the ward 
and the reasons for the decisions. 

5. Discussion and Conclusion 

This paper addressed the technological trends of the clinical decision-making system CDSS in 
accordance with the decision-making system (DSS) framework. It begins with a traditional 
knowledge-based CDSS and then moves on to a non-knowledge-based CDSS incorporating AI and 
a multimodal-based XAI CDSS that ensures reliability. By organizing the CDSS services introduced 
above by field and feature, it is possible to grasp the strengths and weaknesses of each CDSS service, 
and the matters required for CDSS services in the future. However, in the case of existing systems, 
there are limitations. These include a limited data utilization range, lack of explanatory power for AI 
models, and the opacity of the decision-making process. Consequently, in the medical field, which 
demands reliability and transparency, the decision-making process must be clearly represented for 
users to interpret it. This paper addressed the black-box problem of unknown-based CDSS as a 
solution to the problem and proposed an XAI-based CDSS framework that provides valid evidence 
and reasons for the results. Furthermore, it introduced the available datasets, models, and resources. 

The proposed framework is designed to construct an automated extended knowledge graph with 
multimodal features derived from multi-format data. It comprises three key elements: a deep 
explanatory label, an interpretable model, and model inference, which collectively facilitate 
explainable AI. The framework has the potential to automate the entire process of medical clinical 
services, from personalized treatment to real-time patient condition reflection. It distinguishes itself 
from existing systems in terms of multimodal data management, utilization plan, explainable AI 
application plan, and CDSS application range. Furthermore, the medical knowledge graph and HKG, 
which are structured using available medical multimodal data, are summarized to enhance 
expertise in decision-making. The proposed XAI-based CDSS framework serves as a foundational 
model that can be flexibly applied to multiple disease domains. This approach enables the development 
of a medical system with minimal temporal and spatial constraints. 

Furthermore, advancements in the medical field are facilitated by the ease with which 
computerized data can be used for research purposes. However, measures to enhance social 
awareness are necessary because the current medical data are not readily accessible owing to concerns 
regarding the protection of sensitive personal information. Additionally, there is a prevailing attitude 
that humans should be trusted even when explanations of the data sources, transparency regarding 
decision-making processes, and the results are provided. As non-face-to-face medical systems 
become increasingly prevalent, it is imperative that relevant legal deregulation be enacted. If social 
awareness and institutional improvements are guaranteed, it is expected that this will facilitate the 
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development of compelling medical solutions through CDSS research and development that 
integrate richer medical multimodal data, medical knowledge graphs, and XAI technology. 
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