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Abstract: Gestational diabetes mellitus (GDM) triggers alterations in the maternal microbiome. Alongside 
metabolic shifts, microbial products may impact clinical factors and influence pregnancy outcomes. Here, we 
performed analyses to investigate maternal microbiome-metabolomic changes from a subset of the “Choosing 
Healthy Options in Carbohydrate Energy” (CHOICE) study. Women diagnosed with GDM were randomized 
to a diet higher in complex carbohydrates (CHOICE, n=18, 60% complex carbohydrate/25% fat/15% protein) or 
conventional GDM diet (CONV, n=16, 40% carbohydrate/45% fat/15% protein). All meals were provided, diets 
were eucaloric, and fiber content was similar. CHOICE was associated with increases in TMAO, indoxyl 
sulfate, and several triglycerides (TG), while CONV associated with hippuric acid, betaine, and indole 
propionic acid, suggestive of a healthier metabolome. Conversely, the microbiome of CHOICE participants 
was enriched with carbohydrate metabolizing genes and beneficial taxa such as Bifidobacterium adolescentis, 
while CONV was associated with inflammatory pathways including antimicrobial resistance and LPS 
biosynthesis. We also identified latent metabolic groups not associated with diet: a metabolome associated with 
higher fasting glucose, and another associated with higher fasting TGs. Our results suggest that GDM diets 
produce specific microbial and metabolic responses during pregnancy, while host factors also play a role in TG 
and glucose metabolism. 

Keywords: GDM; diabetes; microbiome; pregnancy; diet intervention; metabolomics 
 

1. Introduction 

Maternal metabolism plays a critical role in regulation of fetal growth, organ development, 
epigenetic programming, and microbiome acquisition [1]. Of particular concern is the rise in maternal 
obesity, which now affects around 30% of women prior to pregnancy [2] and increases the risk of 
adverse pregnancy outcomes by 50% compared to women with a normal BMI [3]. During a healthy 
pregnancy, maternal insulin resistance develops in mid to late gestation to support fetal nutrient and 
energy demands [4]. Gestational diabetes mellitus (GDM) is a common condition in women with pre-
existing obesity and insulin resistance, typically diagnosed by week 26 of pregnancy. In 2020, GDM 
impacted 7.8% of pregnancies in the US, and was much more likely in women with pre-pregnancy 
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obesity compared to women with a lean BMI before pregnancy (12.6% vs 3.7%, respectively) [5]. In 
combination with obesity, GDM is associated with an increased risk for preeclampsia, cesarean 
section delivery, and preterm birth [6]. The American Diabetes Association suggests that dietary 
modifications alone may be sufficient to control GDM in 70-85% of diagnoses [7], achieved by 
reducing carbohydrate intake to 40% of total energy, and subsequently increasing lipid intake to 
offset the loss of energy [8].  However, evidence supporting a conventional GDM diet is currently 
lacking. GDM diets higher fat may accelerate weight gain and increase fetal fat mass, as well as 
exacerbate the chronic inflammatory profile developed during pregnancy, thereby increasing the 
long-term risk of offspring metabolic syndrome [8]. Thus, alternative diet options are needed that 
allow for adequate control of GDM while also providing lower fat and more palatable and culturally-
sensitive dietary choices for women with GDM.  

The maternal microbiome undergoes significant shifts and adapts in response to pregnancy-
related changes [9]. These microbiome modifications are thought to prepare the vaginal and gut 
communities for vertical transfer of Bifidobacteria and other beneficial microbes to the infant, seeding 
the early gut environment [10]. In contrast, women with GDM tend to have gut communities enriched 
in opportunistic pathogens from the Enterobacteriaceae family, while Bifidobacteria are depleted [11]. 
Vertically transmitted microbes from mother to infant are significantly more likely to persist past 8 
months of age [12], suggesting early life acquisition of maternal microbes shapes long-term 
development of the infant gut microbiome.  

We previously found CHOICE diet increases Bifidobacteria and alters early life acquisition of the 
infant microbiome in women with GDM based on shotgun metagenomics [13]. Here, we describe the 
interaction between the maternal microbiome and plasma metabolome after a 7-week GDM diet-
intervention using a randomized trial of a conventional high-fat, low complex carbohydrate 
intervention (CONV) or a low-fat, higher complex carbohydrate diet (CHOICE). We hypothesized 
that lipid species would differ in abundance between the CHOICE and CONV diets, and that these 
lipids would be associated with microbial metabolism of carbohydrates and lipid biosynthesis. 
Surprisingly, we found CHOICE was associated with higher triglyceride species, while CONV was 
associated with higher plasma amino acid levels and microbially-derived tryptophan metabolites. 
We also found latent metabolic clusters not associated with diet group, in which half of the 
participants responded to diet with higher fasting triglycerides (TGs), while the other half responded 
with elevated fasting glucose. 

2. Materials and Methods 

Participants & Study Protocol 

This study was approved by the Colorado Multiple Internal Review Board and was registered 
at http://www.clinicaltrials.gov (NCT02244814). All research was performed in accordance with 
relevant guidelines and regulations and study protocols have been described previously [14,15]. 
Briefly, GDM was diagnosed using the Carpenter and Coustan criteria [16] between gestational 
weeks 24 and 28. Entry criteria included age of 20-36 years, BMI of 26-39 kg/m2, a singleton 
pregnancy, no significant or obstetric comorbidities, no history of preterm labor or preeclampsia prior 
to term, and treatment of GDM with diet alone. Participants were excluded if they met criteria for 
overt diabetes, were likely to require more than GDM diet intervention (fasting glucose >105 mg/dL 
or fasting TGs >400 mg/dL), were taking beta blockers, antihypertensives, or glucocorticoids, were 
smokers, or were non-English speaking. From the original cohort of 46 women with GDM, 34 women 
in this subgroup had complete measurement data and stool samples from the study visits at 30- and 
37-weeks’ gestation (n=16, CONV; n=18, CHOICE). Maternal stool samples were excluded if the 
participant used antibiotics within 4 weeks of the sampling time. 

Dietary intervention began between gestational weeks 30 and 31 and continued to delivery. 
Detailed information on the diets has been described [17]. Briefly, diets were eucaloric, contained 
similar amounts of fiber, and had the following macronutrient distributions: CONV, 40% complex 
carbohydrate/45% fat/15% protein; CHOICE, 60% complex carbohydrate/25% fat/15% protein. Daily 
kilocalories were distributed as 25% breakfast/25% lunch/30% dinner/20% snacks. Importantly, 
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carbohydrates in both diet arms were composed of foods with a low- to moderate-glycemic index. 
We defined complex carbohydrates as “polysaccharides and starches primarily derived from grains, 
vegetables, and fruits that tend to attenuate a sharp postprandial rise in plasma glucose” [15] All 
menus were tailored to individual participant food preferences and meals were prepared by the 
Clinical Translational Research Center (CTRC) Nutrition Services at the University of Colorado 
Anschutz Medical Campus. Meals were picked up by the participants or delivered every 72 hours 
when they met with investigators. 

Blood measures 

Maternal blood samples were obtained at two different visits at 30-31- and 36-37-weeks’ 
gestation as described previously [15]. A fasting (10-h) blood sample was collected prior to a 2-h oral 
glucose tolerance test (OGTT) at baseline (30-31 weeks’) and again after 7 weeks on the diet (36-37 
weeks’). OGTT measurements were taken at 0, 30, 60, 90, and 120 minutes using a peripheral 
intravenous line. Matsuda index was calculated using the standard method [18]. HOMA-IR was 
calculated as [fasting_insulin (uU/L) x (fasting_glucose (mmol/L)]/22.5. Hepatic insulin resistance 
was calculated by multiplying glucose area under the curve (AUC) by insulin AUC calculated during 
the first 30 minutes of the OGTT [19]. Gestational weight gain was determined by the change in 
weight from the first prenatal visit to delivery and weight gain on diet by the change in weight from 
time of diet randomization to delivery. Additional blood measures (i.e., TGs, free fatty acids (FFAs), 
glycerol, glucose, C-peptide, and insulin) were performed at breakfast meal studies at baseline and 
36-37 weeks’ gestation, where participants consumed a standardized breakfast meal (30% of total 
daily energy intake) consistent with their randomized diet assignment after an overnight fast (≥10-h) 
as previously [15].  

Targeted plasma metabolomics 

Aliquots of plasma obtained before and after diet therapy were analyzed by Biocrates 
(Innsbruck, Austria). Samples were shipped on dry ice and were stored at -80°C upon arrival. 
Biocrates' commercially available MxP® Quant 500 kit was used for the quantification of several 
endogenous metabolites of various biochemical classes. Lipids and hexoses were measured by flow 
injection analysis-tandem mass spectrometry (FIA-MS/MS) using a 5500 QTRAP® instrument (AB 
Sciex, Darmstadt, Germany) with an electrospray ionization (ESI) source, and small molecules were 
measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a different 5500 
QTRAP® instrument (AB Sciex). The experimental metabolomics measurement technique is 
described in detail by patents EP1897014B1 and EP1875401B1. Briefly, a 96-well based sample 
preparation device was used to quantitatively analyze over 600 metabolites in each sample. The 
device consists of inserts that have been impregnated with internal standards, and a predefined 
sample amount was added to the inserts. Next, a phenyl isothiocyanate (PITC) solution was added 
to derivatize some of the analytes (e.g., amino acids), and after the derivatization was completed, the 
target analytes were extracted with an organic solvent, followed by a dilution step. The obtained 
extracts were then analyzed by FIA-MS/MS and LC-MS/MS methods using multiple reaction 
monitoring (MRM) to detect the analytes. Data were quantified using appropriate mass spectrometry 
software (SciexAnalyst®) and imported into Biocrates MetlDQ™ software for further analysis. 

A short and medium chain fatty acid assay was established for human plasma samples. Internal 
standards were added to the samples and afterwards derivatized with a mixture of N-(3-
dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and 3-nitrophenylhydrazine 
hydrochloride (3-NPH). The metabolites were determined by ultra-high-performance liquid 
chromatography-tandem mass spectrometry (UHPLC-MS/MS) with MRM in negative mode using a 
Xevo TQ-S (Waters, Vienna, Austria) instrument with ESI. All analytes were quantified using an 
external 7-point calibration. Data were quantified using appropriate mass spectrometry software 
(Waters MassLynx™) and imported into the Biocrates MetlDQ™ software for further analysis. The 
assay has been validated for human plasma according to European Medicines Agency (EMA) 
guidelines. As an alternate measure of health-associated metabolites, we used the Biocrates 
MetaboINDICATOR tool to combine metabolites into sums or ratios according to the analyte class or 
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their association with obesity and diabetes. From the MetaboINDICATOR list, we created the 
following variables: ratio of secondary to primary bile acids, secondary bile acid conjugation, 
secondary bile acid synthesis, total amino acids, total aromatic amino acids, total branched-chain 
amino acids, total indoles, total cholesterol esters, total diacylglycerides, total 
lysophosphatidylcholine, total phosphatidylcholine, total phosphatidylcholine aa (two acyl-bound 
groups), total phosphatidylcholine ae (one acyl- and one alkyl-bound group), total sphingomyelin, 
total saturated TGs, total unsaturated TGs, total TGs, total ceramides, total long-chain ceramides 
(C14-C20), total very long-chain ceramides (> C20), and trimethylamine-N-oxide (TMAO synthesis). 
A detailed table of the equations used to create these variables can be found in Table S1.  

Stool sample collection and metagenomics processing 

Maternal stool samples were collected at 30-31- and 36-37-weeks’ gestation by participants 
within 24 hours of their clinic visit and stored at -20°C until delivery to the laboratory, whereupon 
aliquots were separated and stored at -80°C until analysis. The DNA sequencing and processing 
protocols are described previously [13]. Briefly, DNA extraction was performed using the QIAamp 
PowerFecal DNA kit (Qiagen Inc, Carlsbad, CA). Triplicate shotgun metagenomic libraries were 
constructed for each stool sample (except for one pair of maternal samples, which was sequenced in 
duplicate) using the plexWell LP384 kit (seqWell Inc., Beverly, MA) following the manufacturer’s 
protocol. Shotgun metagenomic sequencing of the pooled libraries was performed on the NovaSeq 
6000 (Illumina, San Diego, CA) at 2 x 150 bp read length by Novogene Inc. (Sacramento, CA). Raw 
sequence reads were trimmed and processed for quality using BBMap [20]. Metaphlan2 was used to 
retrieve the taxonomy and relative abundances using default settings [21]. The participants’ sequence 
libraries at all timepoints were further concatenated for contig assembly using MEGAHIT [22] 
Contigs ≥1000 bp were mapped to the MEGAHIT co-assembly using bowtie2 [23]. Contigs were 
predicted for gene function with Prodigal [24] using default settings and annotated to the KEGG 
database using KofamScan [25] Reads per kilobyte million (RPKM) were calculated for each 
annotation for downstream analysis. 

Statistical analysis 

Metabolites were removed prior to analyses if >50% of the samples had values below the level 
of detection. The remaining values were imputed using ClustImpute if they were below the level of 
detection [26] with the following settings: 10 iterations, 10 steps to convergence, 2 clusters, 50 steps 
per iteration. Before conducting the analysis, the data were transformed. For the microbiota species, 
a pseudo-count of one was added to the count table, followed by transformation to relative 
abundance, and CLR-transformation. Species were removed from the analysis if more than 60% of 
stool samples had no detection of the taxa. The KEGG gene annotation RPKM values and 
metabolomics data were log2 transformed using a pseudo-count of one. We then used the 
transformed data to compute the delta (difference from baseline (31 weeks gestation) to 37 weeks 
gestation), allowing us to inspect the change in taxonomic abundances, KEGG gene content, and 
metabolomic measures associated with each diet group. The MixOmics R package [27] was used to 
identify metagenomic and metabolomic features that were altered between diet groups using the 
delta-transformed measures. Since we were interested in both taxonomy and KEGG gene annotation 
in the metagenomics data, we performed two separate analyses to integrate the taxonomic-
metabolomics data, as well as the KEGG annotations-metabolomics data using the DIABLO method 
in the MixOmics package with a design matrix value of 0.1 to bias the model toward finding features 
related to diet. DIABLO models were tuned to determine the optimal number of features to keep 
(minimum 5, maximum 50) and the number of components required to fit the data. ANOVA was 
used to test for group-wise significance within the sPLS-DA ordination along component one. K-
means clustering was used to split the metabolomics data into two groups based on the change in 
metabolic profile. These K-means groups were used to test for differences in the log fold change in 
clinical data including: fasting glucose, fasting insulin, fasting FFAs, fasting glycerol, fasting TGs, 
and values calculated from an OGTT for Matsuda index, glucose AUC, insulin AUC, hepatic insulin 
resistance, and HOMA-IR. LASSO regression identified features linking microbiota species or KEGG 
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annotation with the metabolomics data and ANOVA was used to test for statistical significance. Next, 
Clusterprofiler [28] was used to conduct an over-representation analysis on the KEGG genes 
associated with diet, the metabolome, or our latent K-groups and to summarize the KEGG genes into 
KEGG pathways. False-discovery rate correction was applied to all statistical tests using the 
Benjamini-Hochberg method. 

3. Results 

3.1. CHOICE Diet Enriches Carbohydrate Metabolizing Pathways in the Gut Microbiome, Altering Lipid 
Metabolism and Tryptophan Utilization Pathways 

To expand our secondary analysis of microbiome alterations in the CHOICE study [13], we 
measured maternal plasma metabolites at baseline and 37 weeks gestation. Our targeted 
metabolomics assay generated over 630 metabolites from the Biocrates MxP® Quant500 assay and 19 
short-/medium-chain fatty acids for a total of 649 metabolites measured. Filtering metabolites in 
which >50% of samples had values below the level of detection produced a final total of 535 
metabolites composed of 525 metabolites from the Quant500 assay, and 10 metabolites from the short-
/medium-chain fatty acids assay. Of the metabolites removed, a majority belonged to lipid-related 
classes such as carnitines, ceramides, choline, diacylglycerides, or TGs. Several microbiome-related 
metabolites were also removed, including selected tryptophan derivatives (indole and serotonin) as 
well as the short-chain fatty acids propionate and butyrate, which were undetectable in the majority 
of subjects. Since these metabolites are biologically active compounds, we assessed whether there 
was a difference in detection between diet groups and found no evidence of a difference (chi-squared 
p > 0.05 for indole, serotonin, propionate, and butyrate). A full list of metabolites and their 
inclusion/exclusion from this analysis are available in Table S2. Unless noted otherwise, all 
subsequent data analyses were applied to values representing changes in microbiome or metabolome 
features through time (i.e., delta-transformed values). 

We first integrated our gut taxonomic and plasma metabolomic data by diet group using the 
DIABLO pipeline in the MixOmics R package. sPLS-DA analysis selected nine microbial taxa and 50 
metabolites that were significantly changed between diet groups. An ANOVA on component one of 
the sPLS-DA ordination suggests the DIABLO model significantly discriminates between diet groups 
(microbiome p<0.001, metabolome p<0.001) (Figure 1A). Several microbes were selected that were in 
accordance with our previous results (Figure 1B). Both Bifidobacterium adolescentis, and Ruminococcus 
bromii were enriched after CHOICE diet, as well as Bacteroides ovatus, Faecalibacterium prausnitzii, 
Parabacteroides merdae, and Bacteroides fragilis. In comparison, CONV diet resulted in a microbiome 
enriched in Bacteroides uniformis, Ruminococcus obeum, and Prevotella copri. Within the metabolomics 
data, CHOICE diet was associated with increases in TMAO, lysophosphotidylcholines, indoxyl 
sulfate, and several TG species, while CONV diet was associated with higher plasma hippuric acid, 
aspartic acid, betaine, glutamic acid, indole propionic acid, and indoleacetic acid, suggesting that 
differences in lipid metabolism and tryptophan utilization pathways are linked to diet. 
MetaboINDICATOR-transformed values showed no difference between diet groups, in agreement 
with our primary lipid outcomes (Figure 1C). 
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Figure 1. DIABLO integration of Diet group versus log fold change of gut microbiota species and log 
fold change of plasma metabolite profile after 7 weeks on diet treatment. (A) sPLS-DA ordination of 
participant microbiome taxonomy (circles) and plasma metabolomics (triangles) split by CHOICE 
diet (purple) and CONV diet (green). Arrows are drawn between each participant’s microbiome and 
metabolome. (B) Loading values for gut microbiota species and metabolites versus diet group along 
sPLS-DA comp 1. Metabolite names are shown in blue, species are shown in red. (C) 
MetaboINDICATOR-transformed metabolomics data describing log-fold change metabolomics 
measurements compared by diet group (all p>0.05). 

We then performed a similar analysis using microbial gene annotations in place of microbiota 
taxonomy (Figure 2A) and found 26 KEGG genes associated with diet group. Of these gene-diet 
associations, 19 were more abundant after CHOICE diet and eight were more abundant after CONV 
diet (Figure 2B and 2C, which display features discriminating diet groups along ordination 
components one and two, respectively). An ANOVA on component one of the sPLS-DA ordination 
suggests the DIABLO model with KEGG genes also discriminates between diet groups (microbiome 
p<0.01, metabolome p<0.001) (Figure 1A). (Figure 2A). Over-representation analysis suggests 
CHOICE diet increased the abundance of microbial genes related to carbohydrate metabolism, while 
CONV diet was associated with an enrichment of amino acid metabolism and inflammatory 
pathways, such as antimicrobial resistance and lipopolysaccharide (LPS) biosynthesis (Figure 2D).  
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Figure 2. DIABLO integration of diet group versus log fold change of gut microbiome KEGG 
annotations and log fold change of plasma metabolite profile. (A) sPLS-DA ordination of participant 
KEGG genes (circles) and plasma metabolomics (triangles) split by CHOICE diet (purple) and CONV 
diet (green). Arrows are drawn between the KEGG-annotated microbiome and metabolome for each 
participant. (B) Loading values for gut microbiota functional genes and metabolites versus diet group 
along sPLS-DA comp 1. Metabolite names are shown in blue, KEG annotations are shown in red. (C) 
Loading values for gut microbiota functional genes and metabolites versus diet group along sPLS-
DA comp 2. Metabolite names are shown in blue, KEG annotations are shown in red. (D) Pathways 
identified by over-representation analysis of the diet associated KEGG genes identified in panels A 
and C. Pathways significant after FDR correction are shown as yellow ribbons, while pathways not 
significant after FDR are shown as grey ribbons. Ribbon width represents the number of KEGG genes 
identified within the pathway. 

3.2. Bimodal Response to GDM Diet Intervention Is Characterized by a Relative Increase of Fasting TGs or 
Fasting Glucose in Participants Independent of Diet Treatment Group 

Next, we sought to identify latent metabolic groups within our data to identify differences in 
how participants responded to each diet treatment (i.e., how parameters changed relative to start of 
diet in terms of fold-change). Using K-means clustering on the transformed metabolomics data, we 
found two clusters that were not associated with either diet (chi-squared p=0.699). Upon further 
analysis, we found cluster one was associated with relatively higher levels of fasting plasma TGs after 
the diet treatment (KTG), while cluster two was associated with relatively higher fasting glucose 
(KGL) (Figure 3A, Table S3). Note that on average, both K groups displayed an increase in fasting 
TGs and a decrease in fasting glucose, which are changes we expected in late gestation (higher fasting 
TGs) and after several weeks on GDM diet intervention (lower fasting glucose). Compared to KGL, 
KTG had 50% higher fasting TGs (log2 fold change 0.169±0.272 and 0.338±0.180, respectively), 
concomitant with 62% lower fasting glucose (log2 fold change -0.063±0.112 and -0.165±0.133, 
respectively). MetaboINDICATOR-transformed values suggest that KTG has much higher plasma 
fasting lipid levels (total ceramides, total lysophosphatidylcholines, total TGs, total saturated TGs, 
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total unsaturated TGs) compared to KGL (Figure 3B). We also found nominally significant 
associations between KGL and the relative abundances of Escherichia coli (p=0.017, p-adjust=0.173) 
and Ruminococcus torques (p=0.025, p-adjust=0.173), while KTG was enriched in Bacteroides 
xylanisolvens (p=0.044, p-adjust=0.173), though these comparisons did not survive FDR correction 
(Figure 3C, Table S4). 

 

Figure 3. Participants responded to GDM diet intervention with either relatively higher fasting 
triglycerides or relatively higher fasting glucose after 7 weeks on either diet. (A) K-means clustering 
of the metabolomics revealed two metabolic groups: KTG, which was associate with relatively 
increased fasting TGs (measured by enzymatic method), and KGL, which was associated with 
relatively increased fasting glucose (measured by OGTT) after 7 weeks on diet intervention. 
Participant diet group is overlaid on the boxplot, with CHOICE in purple and CONV in green. Diet 
was not associated with K-means groupings. (B) MetaboINDICATOR-transformed metabolomics 
data of log-fold change metabolomics measurements compared by K-means groups (* p < 0.05). (C) 
Taxa found to be associated with K-means groups by LASSO regression (all p > 0.05). (D) Summary 
of pathways identified by over-representation analysis of diet-associated KEGG genes identified by 
LASSO regression. Pathways significant after FDR correction are shown as yellow ribbons, while 
pathways not significant after FDR are shown as grey ribbons. Ribbon width represents the number 
of KEGG genes identified within the pathway. 

While none of the KEGG genes were significantly associated with K-means groups after FDR 
(Table S5), the pathways represented by the genes differed significantly between KTG and KGL 
microbiomes (Figure 3D). The KTG cluster acquired genes related to the biosynthesis of cofactors (B 
vitamins), including Riboflavin (B2) Metabolism, Pantothenate (B5) Biosynthesis, Folate (B9) 
Biosynthesis, and Nicotinate and Nicotinamide (B3) Metabolism. In contrast, KGL was characterized 
by an increase in carbohydrate-metabolizing pathways (Ascorbate and Aldarate Metabolism, Pentose 
and Glucuronate Interconversions, Propanoate Metabolism, and Glycolysis/Gluconeogenesis), 
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amino acid/nucleotide metabolism (Nucleotide Metabolism, Purine Metabolism, Pyrimidine 
Metabolism, and Arginine Biosynthesis), and pathways related to virulence factors (Teichoic Acid 
Biosynthesis, Cationic Antimicrobial Peptide (CAMP) Resistance, and Staphylococcus Aureus 
Infection). The full list of pathways can be found in Table S6. 

3.3. Microbiome Metabolic Pathways Are Negatively Associated with Host Plasma Lipid Levels 

Since we found evidence of latent metabolic groups within our data, we interrogated the data 
for linear associations between gut microbes and plasma metabolites regardless of diet or K-group. 
Using LASSO variable selection and ANOVA, we identified associations between various lipids and 
common gut bacteria such as Ruminococcus hominis, P. copri, and Dorea formicigenerans. Notably, many 
of the lipids associated with gut microbes had a fatty acid C18 chain length (Table S7). We also found 
a negative relationship between taxa and two amino acids: Bifidobacterium bifidum and glycine, as well 
as Klebsiella pneumoniae and isovalerate.  

LASSO regression between metabolites and KEGG gene annotations identified 1131 significant 
associations after FDR correction. To interpret these results, KEGG genes were grouped by metabolite 
class and direction of association before differentially abundant pathways were determined using an 
over-representation analysis (Table S8). To aid in the interpretation of these data, a network plot 
showing the KEGG pathways linked to metabolites, diet group, and K-means group is shown in 
Figure 4. Around 2/3s of the pathways identified from the KEGG annotations were negatively 
associated with plasma metabolites (negative n=67, positive n=25), and almost half of the analyte 
classes belonged to Fatty Acids, TGs, or Acylcarnitines (n=45).  

 
Figure 4. Network of pathways associated with diet group, K-means clusters, and metabolomic 
profile. Microbiome KEGG gene annotations associated with diet group (purple and green nodes) 
were determined using DIABLO, while KEGG genes associated with K-means groups (red and dark 
green nodes) and plasma metabolites (grey nodes) were determined using LASSO regression, 
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followed by ANVOA and FDR correction. Over-representation analysis was then used to summarize 
the KEGG genes into their respective pathways (light purple nodes). Blue edges connect nodes with 
a positive association, while pink edges connect nodes with a negative association. 

Plasma fatty acids (specifically, docosahexaenoic acid, dodecanoic acid, eicosadienoic acid, and 
eicosapentaenoic acid) were positively associated with Folate (B9) Biosynthesis and CAMP 
Resistance. Negative associations (n=15 pathways) were with Riboflavin (B2) Metabolism, 
Carotenoid Biosynthesis, and K01692 (paaF, echA; enoyl-CoA hydratase), which is involved in the 
beta oxidation of fatty acids and has activity in a variety of pathways (Beta-Alanine Metabolism; 
Valine, Leucine and Isoleucine Degradation; Phenylalanine Metabolism; Tryptophan Metabolism; 
Aminobenzoate Degradation; and Lysine Degradation). Despite being composed of fatty acid chains, 
plasma TGs were not associated with any fatty acid-related pathways. Rather, TGs were positively 
associated with Nitrotoluene Degradation and the Citrate Cycle (TCA cycle), and negatively 
associated with carbohydrate metabolism and uptake pathways (Glycolysis/Gluconeogenesis, 
Phosphotransferase System (PTS), and Ascorbate and Aldarate Metabolism) as well as nucleotide 
and amino acid recycling (Amino Sugar and Nucleotide Sugar Metabolism, Purine Metabolism, 
Arginine Biosynthesis, and Biosynthesis of Nucleotide Sugars). 

Several lipid classes (carnitines, TGs, fatty acids) shared KEGG gene pathways with each other. 
Metabolite classes acylcarnitines-fatty acids shared Fatty Acid Metabolism and Butanoate 
Metabolism; acylcarnitine-TGs shared amino acid metabolism pathways (Arginine Biosynthesis, 
Atrazine Degradation, Purine Metabolism, Sulfur Metabolism); fatty acids-bile acids shared phenolic-
compound metabolism (Tryptophan and Phenylalanine Metabolism and Aminobenzoate 
Degradation). The KEGG pathway Amino Sugar and Nucleotide Sugar Metabolism was negatively 
associated with six plasma lipid classes within TGs, ceramides, sphingomyelins, and 
lysophosphotidylcholines, representing the pathway with the greatest number of associations with 
the change in plasma metabolite levels after 7 weeks on diet. A full list of the over-representation 
analysis results can be found in Table S6. 

4. Discussion 

As global rates of GDM incidence continue to climb, it is more important than ever to have 
effective and well-tolerated dietary interventions to manage glycemia, reduce the risk of adverse 
pregnancy outcomes, and improve maternal and fetal health. In this follow-up sub-analysis of the 
CHOICE cohort, we investigated the impact of two GDM diet treatments on the gut microbiome and 
plasma metabolomic profile in pregnant women with GDM. We identified several changes to the gut 
microbiome at the taxonomic and functional levels as well as two latent metabolic groups associated 
with relatively higher late gestation fasting TG and glucose levels. Our findings revealed significant 
associations between GDM diet intervention, microbial taxa, and plasma metabolites, shedding light 
on potential mechanisms underlying metabolic changes observed in diet control of GDM. 

Several of the diet-associated metabolites can be produced by gut microbes. For instance, we 
found CHOICE diet enriched in indoxyl sulfate and CONV diet enriched in indole propionic acid, 
indoleacetic acid, hippuric acid, and betaine. Tryptophan metabolism occurs through three 
pathways: one human (kynurenine), one bacterial (indole and indole derivatives), and one shared 
(serotonin) [29,30]. In a recent analysis on a multi-ethnic cohort of type 2 diabetes (T2D) patients, 
indoleacetic acid was positively associated with T2D, while indole propionic acid was negatively 
associated, and indoxyl sulfate had no association with T2D [31]. In particular, indole propionic acid 
has been investigated for its beneficial role in health [32] and it may play a role in T2D development 
through the regulation and preservation of pancreatic beta cells [33,34]. Other examples of 
microbially-derived metabolites can be found in germ-free mouse studies, where germ-free mice 
have decreased levels of TMAO, hippuric acid, and indole derivatives compared to specific 
pathogen-free mice [35]. We saw increases in plasma hippuric acid in participants on CONV diet; 
hippuric acid has been linked to better insulin secretion and lower fasting glucose levels in patients 
at high risk for T2D [36]. Similarly, supplementation of betaine has been shown to lower circulating 
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TGs [37], which, in addition to diet, may explain why CONV diet was not associated with increases 
in many fasting TG species compared to CHOICE diet.  

In contrast to CONV diet, one of the top metabolites associated with CHOICE diet was TMAO, 
a metabolic byproduct of gut microbiome metabolism of dietary choline, carnitine, and betaine [38]. 
TMAO has been implicated in various physiological processes in health and disease. These include 
lipid metabolism, inflammation, and cardiovascular health, though its exact role remains 
controversial [38]. This controversy continues in its role with GDM, where some studies report 
positive associations between TMAO levels and GDM [39,40], while others report a negative [41,42] 
or no association [43]. A recent study measured plasma TMAO and its metabolic precursor, TMA, 
and found the conversion of TMA to TMAO conversion ratio (TMAO:TMA) was inversely associated 
with GDM, while TMA levels were positively associated with GDM [44]. Moreover, the highest levels 
of circulating TMAO are achieved after fish consumption, a dietary pattern known to have beneficial 
effects on health [38]. Together, this suggests a potential role of TMA, rather than TMAO, in GDM 
pathophysiology, though more research is needed to elucidate the mechanisms underlying the effects 
of TMA and TMAO in pregnancy. Despite the primary analysis finding no difference in GDM 
glycemia between diet arms [15], these findings suggest CONV diet participants have an overall 
healthier metabolomic profile than CHOICE diet participants, reflected by changes in lipid 
metabolism, amino acid utilization, and microbial metabolism of dietary components. 

Concordant with our previous microbiome analysis [14], we identified distinct shifts in gut 
microbiome composition associated with diet intervention. CHOICE diet was enriched in beneficial 
taxa such as B. adolescentis and R. bromii. We also observed an enrichment of genes related to 
carbohydrate metabolism after CHOICE diet. Both B. adolescentis and R. bromii are key metabolizers 
of complex carbohydrates within the gut microbiome [45]. A reduction in B. adolescentis has 
previously been linked to T2D in humans [46], while administration of B. adolescentis has been shown 
to improve insulin sensitivity and reduce accumulated fat mass in high-fat diet-fed rats [47]. In the 
human gut, R. bromii is a key primary degrader of complex carbohydrates [48], though its relationship 
with diabetes is unclear. R. bromii was significantly higher in women with GDM in the second 
trimester [49], while others have found R. bromii was decreased in women with GDM across all 
trimesters of pregnancy [50]. Similar to our previous analysis, CONV diet treatment was associated 
with an enrichment in P. copri. A higher abundance of P. copri is associated with worse insulin 
resistance and glycemic control both in adults with and without T2D [51–53] through the biosynthesis 
of branched-chain amino acids and LPS by the taxon [51,52]. Both branched-chain amino acids [54] 
and LPS [55,56] are implicated in the development and maintenance of insulin resistance by 
enhancing inflammation and lipid accumulation in various tissues [57,58]. While CONV diet was not 
associated with changes in branched-chain amino acid levels, KEGG gene pathways revealed an 
enrichment in amino acid metabolism and inflammatory pathways such as antimicrobial resistance 
and LPS biosynthesis, that potentially impact gut function in women with GDM on higher fat diets.  

Despite no significant associations between taxonomy and K-group, the gene content between 
KTG and KGL microbiomes differed significantly after GDM diet intervention. Interestingly, several 
pathways negatively associated with the lipid class of analytes were positively associated with KGL 
(relatively higher fasting glucose), including CAMP Resistance, Propanoate Metabolism, 
Ascorbate/Alderate Metabolism, Atrazine Degradation, Arginine Biosynthesis, Sulfur Metabolism, 
Nucleotide Metabolism, Pyrimidine Metabolism, and Purine Metabolism. This suggests that the KGL 
group, which has relatively lower fasting plasma TGs, may be due to shifts in microbial gene content 
associated with reductions in plasma lipid levels. We also identified a link between the Folate 
Biosynthesis pathway and increased plasma docosahexaenoic acid and eicosapentaenoic acid, which 
are downstream products of linolenic acid. A murine study investigating the effects of a folate-poor 
diet on circulating lipids found hypermethylation of Fads2, which encodes the first step in the 
desaturation and elongation of linoleic acid and linolenic acid to arachidonic acid and 
docosahexaenoic acid, respectively [59]. These findings align with previous studies suggesting that 
diet modulates the gut microbiome, with implications for host metabolism and health outcomes. For 
example, plant-based diets (legumes, grains, fruits, and vegetables) promote the growth of beneficial 
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bacteria and enhance metabolic function, while diets rich in saturated fats (meat, eggs, cheese) can 
alter microbial composition and contribute to metabolic dysfunction [60,61]. Within this paradigm, it 
is interesting to note that microbiome shifts in CHOICE diet participants resemble alterations due to 
plant-based diets, while microbiome shifts on CONV diet resembled a microbiome fed an animal-
based diet, despite the diets only differing in macronutrient content of carbohydrate and fat (i.e., 
protein was the same). On the other hand, our plasma metabolomics data suggest CHOICE diet 
participants had relatively larger increases in fasting TGs and other lipid species, while CONV diet 
shows evidence of metabolic shifts towards healthier GDM outcomes, as noted above. Moreover, 
KTG and KGL were not associated with diet group, but likely reflect differences in response to diet 
treatment within each diet arm. Thus, in our cohort of pregnant women with GDM, alterations to 
microbiome composition and function were closely linked to the intake of carbohydrates and lipids, 
while plasma metabolic changes relied on diet and other variables such as host response to diet as 
well as microbiome metabolic responses to changes in macronutrient availability. 

While the primary outcomes of this cohort were adequately powered [17], human gut 
microbiome and metabolomics data contain a large amount of variability due to differences in 
genetics, developmental programming events, and lifestyle. Additionally, since this is a secondary 
analysis using a subset of CHOICE participants, limitations of this study include the small sample 
size relative to the number of variables included in the analysis. We also acknowledge that several 
biologically-relevant metabolites (e.g., indole and butyrate) were excluded from the analysis due to 
the measurements falling below the limit of detection. Strengths of the study include the randomized 
controlled trial study design, and close monitoring of participant adherence to diet. Future studies 
with larger cohorts are warranted to validate our findings and elucidate causal relationships between 
dietary interventions, gut microbiome dynamics, and maternal metabolic health in GDM. Moreover, 
mechanistic studies exploring the functional roles of specific microbial taxa and metabolic pathways 
in modulating host metabolism during pregnancy are needed to provide deeper insights into the 
underlying mechanisms. Integrating multi-omics approaches, including metagenomics, 
transcriptomics, proteomics, and metabolomics, will enable comprehensive characterization of the 
host-microbiome interactions driving metabolic changes in GDM and illuminate the intricate 
processes linking gut microbiome activity to host metabolism in circulation and in tissues. 

Our study highlights the complex interplay between dietary interventions, gut microbiome 
composition, and plasma metabolites in pregnant women with GDM. Given the significant 
associations between diet, microbiome, and metabolic health, personalized dietary approaches 
tailored to individual metabolic profiles and microbial communities may offer promising strategies 
for optimizing maternal-fetal health outcomes in GDM diet interventions. 
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