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Glioblastoma Growth and Dissemination: Insights
from a Comprehensive Computational Framework
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Universidade de Aveiro, Portugal; montgomery@alumni.usp.br

Abstract: Glioblastoma is a highly aggressive brain tumor characterized by rapid growth, extensive
infiltration, and poor prognosis. Understanding the complex interplay of biological processes
driving glioblastoma progression is crucial for developing effective therapeutic strategies. In this
study, we present a comprehensive mathematical model that incorporates key aspects of
glioblastoma growth and dissemination, including tumor cell diffusion, angiogenesis, nutrient
availability, molecular signaling pathways, and blood-brain barrier (BBB) interactions. The model
is based on a system of coupled partial differential equations (PDEs) and ordinary differential
equations (ODEs) that capture the spatiotemporal dynamics of tumor cell density, nutrient
concentration, signaling molecule concentrations, and BBB integrity. We employ numerical
simulation techniques, such as the finite difference method and the Runge-Kutta method, to solve
the model equations and visualize the evolution of tumor growth and its associated biological
processes. The model parameters are estimated using experimental data from the literature, and the
model is validated against clinical observations. Furthermore, we perform a comprehensive
sensitivity analysis to identify the key parameters that significantly influence tumor growth,
diffusion, and dissemination. The sensitivity analysis reveals the relative importance of each
parameter in driving glioblastoma progression and highlights potential targets for therapeutic
interventions. Our computational framework provides a powerful tool for understanding the
complex dynamics of glioblastoma growth and offers valuable insights into the underlying
biological mechanisms. The model can be used to test hypotheses, predict tumor response to various
treatment strategies, and guide the design of targeted therapies. The findings from this study
contribute to the ongoing efforts in developing personalized treatment approaches for glioblastoma
patients and improving their clinical outcomes.

Keywords: Glioblastoma; Computational Model; Markers; Sensitivity Analysis

1. Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in
adults, with a median survival of only 15 months despite advanced treatment options (Ostrom et al.,
2021). GBM is characterized by rapid proliferation, extensive infiltration into surrounding brain
tissue, and a complex tumor microenvironment that poses significant challenges for effective
therapeutic interventions (Aldape et al., 2019). The invasive nature of GBM cells, coupled with their
ability to evade immune surveillance and develop resistance to therapy, contributes to the poor
prognosis associated with this disease (Gimple et al., 2019).

Mathematical modeling has emerged as a powerful tool for understanding the complex
dynamics of cancer growth and progression (Anderson & Quaranta, 2008). By integrating
experimental data and biological knowledge into mathematical frameworks, researchers can
simulate tumor behavior, predict treatment outcomes, and identify key drivers of tumor progression
(Konstorum et al., 2018). In the context of glioblastoma, several mathematical models have been
developed to capture various aspects of tumor growth and invasion (Alfonso et al., 2017; Rutter et
al., 2017; Swanson et al., 2011).

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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One of the fundamental processes driving GBM progression is the diffusion of tumor cells into
the surrounding brain tissue (Cai et al., 2021). Reaction-diffusion equations have been widely used
to model the spatial and temporal dynamics of tumor cell density (Harpold et al., 2007; Rockne et al.,
2010). These models incorporate tumor cell proliferation, migration, and interaction with the
microenvironment, providing insights into the invasive behavior of GBM cells (Martirosyan et al.,
2015).

Angiogenesis, the formation of new blood vessels, plays a crucial role in supporting tumor
growth and facilitating nutrient delivery to the rapidly proliferating tumor cells (Kargiotis et al.,
2006). Mathematical models of angiogenesis in GBM have been developed to understand the
interplay between tumor cells, endothelial cells, and pro-angiogenic factors (Jain et al., 2007; Stamper
et al., 2015). These models help elucidate the mechanisms underlying abnormal vascular formation
and the impact of anti-angiogenic therapies on tumor progression (Batchelor et al., 2007).

Molecular signaling pathways, such as the epidermal growth factor receptor (EGFR),
phosphoinositide 3-kinase (PI3K), and hepatocyte growth factor receptor (MET) pathways, are
frequently dysregulated in GBM and contribute to tumor cell survival, proliferation, and invasion
(Pearson & Regad, 2017). Mathematical models incorporating these signaling cascades have been
developed to understand their role in driving GBM progression and to identify potential therapeutic
targets (Cloughesy et al., 2014; Leder et al., 2014).

The blood-brain barrier (BBB) is a critical component of the GBM microenvironment, regulating
the exchange of molecules between the blood and the brain (Arvanitis et al., 2020). Disruption of the
BBB is a hallmark of GBM progression, facilitating tumor cell invasion and limiting the delivery of
therapeutic agents (Sarkaria et al., 2018). Mathematical models have been proposed to capture the
dynamics of BBB breakdown and its impact on tumor growth and treatment response (Boujelben et
al., 2016; Suo et al., 2020).

Sensitivity analysis is a powerful technique for identifying the key parameters that significantly
influence the behavior of a mathematical model (Saltelli et al., 2008). By systematically varying model
parameters and assessing their impact on model outputs, researchers can gain insights into the
relative importance of different biological processes in driving tumor progression (Iooss & Lemaitre,
2015). Sensitivity analysis has been applied to various cancer models, including GBM, to identify
potential therapeutic targets and optimize treatment strategies (Bueno-Orovio et al.,, 2012; Pérez-
Garcia et al., 2015).

In this study, we present a comprehensive mathematical model of glioblastoma growth and
dissemination, integrating tumor cell diffusion, angiogenesis, nutrient availability, molecular
signaling pathways, and blood-brain barrier interactions. The model is based on a system of coupled
partial differential equations (PDEs) and ordinary differential equations (ODEs) that capture the
spatiotemporal dynamics of tumor progression. We perform numerical simulations to visualize the
evolution of tumor growth and its associated biological processes. The model parameters are
estimated using experimental data from the literature, and the model is validated against clinical
observations. Furthermore, we conduct a comprehensive sensitivity analysis to identify the key
parameters driving glioblastoma progression and potential therapeutic targets. Our computational
framework provides a valuable tool for understanding the complex dynamics of glioblastoma growth
and offers insights into the underlying biological mechanisms, paving the way for the development
of personalized treatment strategies.

Our mathematical model of glioblastoma growth and dissemination incorporates several key
biological processes, including tumor cell diffusion, angiogenesis, nutrient availability, molecular
signaling pathways, and blood-brain barrier interactions. The model is based on a system of coupled
partial differential equations (PDEs) and ordinary differential equations (ODEs) that describe the
spatiotemporal dynamics of these processes.

2. Methodology
2.1 Tumor Cell Diffusion
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The spatial and temporal evolution of tumor cell density u is modeled using a reaction-
diffusion equation:

ou 2 _u
()% = DVPu +ru(1-%)
where:
e D isthe diffusion coefficient,
e 1 is the proliferation rate,
e K isthe carrying capacity.
The term DV?u describes the diffusion of tumor cells, while ru (1 —%) represents logistic

growth, accounting for the limited resources available for tumor growth.

2.2. Angiogenesis and Nutrient Availability
The formation of new blood vessels and the availability of nutrients are modeled using another
reaction-diffusion equation:
¢ — pvec — _y _<
(25 = D.V2C —yNC (1-%) +aC (1 B)
where:

e  ( represents the nutrient concentration,

e D, is the nutrient diffusion coefficient,

e vy is the nutrient consumption rate by tumor cells,
e N isthe tumor cell density,

e « isthe angiogenesis rate,

e [ is the maximum nutrient concentration.

The term D,V2C describes the diffusion of nutrients, while —yNC (1 - g) represents the
consumption of nutrients by tumor cells. The term aC (1 - %) models the production of nutrients

through angiogenesis, with a saturation effect.

2.3. Molecular Signaling Pathways

The dynamics of key molecular signaling pathways involved in glioblastoma progression are
modeled using a system of ODEs:

d(EGFR)
(S)T = kEGFRN - EGFR
d(PI3 K)
(4)T = kPIB KEGFR - PI3 K
d(MET)
d (ApoptosisResistance ) 1 ) .
(6) =1+ - — Apoptosis Resistance
dt 1 apoptosis PI3K
ODEs
(7)) = K ion (EGFR + MET ) — Migration Rate

where:
e EGFR, PI3K, and MET represent the concentrations of the respective signaling molecules,
o kgcrr kpizxo kmpr are the activation rates,
e N isthe tumor cell density,
e  Apoptosis Resistance is the resistance to apoptosis,
®  kapoptosis 18 the apoptosis resistance factor,
e  Migration Rate is the migration rate of tumor cells,
®  Kmigration 18 the migration rate factor.
These equations describe the activation and deactivation dynamics of the signaling pathways
based on tumor cell density and the concentrations of upstream molecules.
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2.4. Blood-Brain Barrier Interactions

The integrity of the blood-brain barrier (BBB) and its interactions with tumor cells are modeled
using a reaction-diffusion equation:

0B

@)y, = DgV?B + kgg(1 — B) — krgNB

where:

e B represents the BBB integrity,

e Dy is the BBB diffusion coefficient,

e  kgp is the BBB formation rate,

e kg isthe BBB degradation rate by tumor cells,
e N isthe tumor cell density.

The term DyzV?B describes the diffusion of BBB integrity, while kgg(1— B) models the
formation of the BBB. The term —krgNB represents the degradation of the BBB by tumor cells.

2.5. Numerical Simulation

The PDEs (Equations (1), (2), and (8)) are solved using the finite difference method, discretizing
the spatial domain into a uniform grid and applying appropriate boundary conditions. The time
integration is performed using explicit schemes, such as the forward Euler method or higher-order
Runge-Kutta methods.

The ODEs (Equations (3)-(7)) are solved using numerical integration techniques, such as the
RungeKutta method, at each time step of the PDE solver.

2.6. Parameter Estimation and Sensitivity Analysis

The model parameters are estimated using experimental data from the literature. The estimation
process involves minimizing the difference between the model predictions and the experimental
observations using optimization techniques, such as least squares or maximum likelihood estimation.

Sensitivity analysis is performed to identify the key parameters that significantly influence the
model outcomes. This is done by systematically varying each parameter within a specified range and
assessing the impact on tumor growth, nutrient concentration, and BBB integrity. Sensitivity indices,
such as Sobol indices or Morris indices, can be computed to quantify the relative importance of each
parameter.

2.7. Model Validation and Prediction

The model is validated against independent experimental data or clinical observations to assess
its predictive capability. The model predictions are compared with the validation data, and statistical
measures, such as root mean square error (RMSE) or correlation coefficients, are computed to
quantify the agreement between the model and the data.

Once validated, the model can be used to predict tumor growth and response to various
treatment strategies by modifying the model parameters or introducing additional terms in the
equations to represent the effects of therapeutic interventions.

The mathematical model presented here provides a comprehensive framework for
understanding the complex dynamics of glioblastoma growth and dissemination. The model
incorporates key biological processes and their interactions, allowing for the simulation and analysis
of tumor progression. The use of PDEs and ODEs enables the capture of both spatial and temporal
aspects of tumor growth, while the numerical simulation techniques and sensitivity analysis provide
insights into the underlying mechanisms and the identification of potential therapeutic targets.

3. Results
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Our mathematical model of glioblastoma growth and dissemination, implemented in the
provided code, generates several key results that shed light on the spatial and temporal dynamics of
tumor progression. The results are presented through a series of visualizations, each focusing on a
specific aspect of the model.

Estimated parameters:

D =0.0005995931589337519 mm”2/h

r=0.011840547371649171 1/h

K'=9.978800654934664 arbitrary units

3.1. Graphs Explanation

1. Tumor Cell Density: The first graph (Figure 1) depicts the spatial distribution of tumor cell
density at the end of the simulation (t = 120 days). The color map represents the density of
tumor cells, with warmer colors indicating higher densities. The plot clearly shows the growth
and spread of the tumor from the initial starting point at the center of the domain (50, 50). The
tumor exhibits a compact, dense core surrounded by a diffuse rim of infiltrating cells. This
pattern is consistent with the invasive nature of glioblastoma, where tumor cells migrate into
the surrounding brain tissue heterogeneously.

2. Nutrient Concentration: The second graph (Figure 2) illustrates the spatial distribution of
nutrient concentration at the end of the simulation. The color map represents the nutrient
levels, with warmer colors indicating higher concentrations. The plot reveals a heterogeneous
distribution of nutrients within the tumor region. The nutrients are more abundant in the
peripheral areas, where the tumor cells are less dense, and are depleted in the tumor core due
to the high consumption rate by the tightly packed tumor cells. This nutrient gradient is a key
factor driving tumor cell migration and invasion.

3. Molecular Signaling Pathways: The third graph (Figure 3) presents the temporal evolution of
the concentrations of key signaling molecules (EGFR, PI3K, and MET) at a specific location
within the tumor (50, 50). The plot shows the relative levels of these molecules over time, with
each line representing a different signaling pathway. The concentrations of EGFR and MET
increase rapidly in the early stages of tumor growth, indicating their activation by the
increasing tumor cell density. The PI3K concentration follows a similar trend, albeit with a
slight delay, as it is activated by EGFR. These signaling pathways play crucial roles in
regulating tumor cell survival, proliferation, and migration (RM, Montgomery et al., 2015). The
graph also displays the temporal evolution of cellular processes, specifically apoptosis
resistance and migration rate, at the same location within the tumor (50, 50). The plot shows
how these processes change over time in response to the underlying signaling pathways.
Apoptosis resistance increases as the PI3K pathway becomes more active, allowing tumor cells
to evade programmed cell death. The migration rate also rises as the EGFR and MET pathways
are activated, promoting tumor cell infiltration into the surrounding tissue.

4.  Blood-Brain Barrier Integrity: The fourth graph (Figure 4) depicts the spatial distribution of
blood-brain barrier (BBB) integrity at the end of the simulation. The color map represents the
level of BBB integrity, with warmer colors indicating a more intact barrier. The plot reveals a
heterogeneous pattern of BBB breakdown, with the most significant disruption occurring in
the regions of high tumor cell density. The degradation of the BBB is mediated by the tumor
cells, which secrete factors that compromise the barrier’s integrity. The loss of BBB integrity
facilitates the invasion of tumor cells into the surrounding brain tissue and enhances the
delivery of nutrients to the tumor.

5. Sensitivity Analysis: The sensitivity analysis results (Figures 5, 6 and 7)) provide insights into
the relative importance of different model parameters in shaping the tumor growth dynamics.
The plots show the impact of varying each parameter on the tumor volume, nutrient
concentration, and BBB integrity. The analysis reveals that parameters such as the tumor cell
diffusion coefficient (D), proliferation rate (r), and angiogenesis rate () have a significant
influence on tumor growth and spread. Other parameters, such BBB degradation rate K, also
play important roles in modulating tumor progression.


https://doi.org/10.20944/preprints202406.0806.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2024 d0i:10.20944/preprints202406.0806.v1

Diffusion Simulation
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Figure 1. Tumor Cell Diffusion graph showing a cell multiplication and invasivenesss to multiple
directions heterogeneously, a mark of malignancy.
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Angiogenesis Simulation
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Figure 2. It's well known that Glioblastoma cells stimulate angiogenesis to feed its spreading and
infiltrating cells. The format is also heterogeneous, with common bleeding due to endothelial and
vessels malformations.
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Figure 3. See the initial exponential rise and stabilization of Glioblastoma markers such as EGFR,
PIK3, MET and migration rate. Molecular Signaling grows until its limit, exponentially.
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BBB Integrity at Day 120 with Varying Degradation Rates
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Figure 4. This graph shows progressive parallel and multidimensional crescent of decaying BBC
integrity, note the graphs are, though, for better comprehension, in 2 dimensions.
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Figure 5. Sensitivity Analysis for parameter D.
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Sensitivity Analysis forr
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Figure 6. Sensitivity Analysis for parameter r.

Sensitivity Analysis for K
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Figure 7. Sensitivity Analysis for parameter K.

The results generated by our mathematical model highlight the complex interplay between
tumor cell diffusion, nutrient availability, molecular signaling pathways, cellular processes, and
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blood-brain barrier interactions in driving glioblastoma growth and dissemination. The spatial and
temporal patterns observed in the visualizations provide valuable insights into the underlying
mechanisms of tumor progression and can guide the development of targeted therapeutic strategies.
The sensitivity analysis further identifies the key parameters that could be potential targets for
intervention. Overall, our model serves as a comprehensive framework for understanding the
multifaceted nature of glioblastoma and offers a platform for exploring new treatment approaches.

4. Discussion

Glioblastoma multiforme (GBM) is an extremely aggressive and lethal brain cancer that poses
significant treatment challenges [Ostrom et al., 2018]. Despite advances in understanding GBM's
molecular and cellular basis, patient prognosis remains poor, with a median survival of only 15
months [Stupp et al, 2017]. GBM’s complexity, characterized by rapid proliferation, extensive
infiltration, and a dynamic tumor microenvironment, necessitates comprehensive mathematical
models that capture this disease’s multifaceted nature [Alfonso et al., 2017].

Our mathematical model of glioblastoma growth and dissemination represents a significant
stride in unraveling the intricate dynamics of tumor progression. By integrating key biological
processes, such as tumor cell diffusion, angiogenesis, nutrient availability, molecular signaling
pathways, and blood-brain barrier interactions, our model provides a holistic framework for
understanding GBM’s spatiotemporal evolution [Harpold et al., 2007; Martirosyan et al., 2015].

The model highlights several important aspects of GBM biology. The spatial patterns of tumor
cell density and nutrient concentration reveal the tumor microenvironment’s heterogeneous nature
[Swanson et al., 2000]. The dense tumor core, surrounded by a diffuse rim of infiltrating cells, is a
GBM hallmark and a major contributor to treatment resistance [Giese et al., 2003]. The nutrient
gradient, with higher concentrations in peripheral regions and depletion in the tumor core, drives
tumor cell migration and invasion [Sander and Deisboeck, 2002]. This phenomenon, known as the
“go or grow” hypothesis, suggests that tumor cells prioritize either proliferation or migration
depending on local nutrient availability [Giese et al., 1996]. Our model captures this behavior and
provides a mechanistic understanding of how nutrient gradients shape tumor growth patterns.

The temporal evolution of molecular signaling pathways, such as EGFR, PI3K, and MET,
highlights their critical role in regulating tumor cell behavior [Cloughesy et al., 2014]. The activation
of these pathways in response to increasing tumor cell density and nutrient availability promotes cell
survival, proliferation, and migration [Pearson and Regad, 2017]. The interplay between these
signaling cascades and cellular processes, such as apoptosis resistance and migration rate,
underscores the complex feedback loops that drive tumor progression [Furnari et al., 2007].

The blood-brain barrier (BBB) is a critical tumor microenvironment component, and its
breakdown is a key factor in GBM invasion and treatment resistance [Arvanitis et al., 2020]. Our
model incorporates BBB integrity dynamics and interactions with tumor cells, showing a
heterogeneous BBB disruption pattern, with the most significant breakdown occurring in high tumor
cell density regions [Gerstner and Fine, 2007]. BBB degradation by tumor cells facilitates their
invasion into surrounding brain tissue and enhances nutrient delivery to the tumor [Wolburg et al.,
2012], highlighting the importance of considering BBB dynamics in developing effective treatment
strategies, as the BBB can hinder therapeutic agent delivery to the tumor site [van Tellingen et al.,
2015].

The sensitivity analysis reveals key parameters significantly influencing tumor growth and
dissemination [Zhao et al., 2014]. Parameters such as the tumor cell diffusion coefficient, proliferation
rate, and angiogenesis rate emerge as critical drivers of tumor progression [Raman et al., 2016; Kim
and Roh, 2013], suggesting potential therapeutic intervention targets, where modulating these
parameters could slow or halt tumor growth [Alarcon et al., 2004; Vainstein et al., 2012].

5. Conclusion

In conclusion, our mathematical model of glioblastoma growth and dissemination provides a
comprehensive framework for understanding the complex dynamics of tumor progression. The
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model incorporates key biological processes and their interactions, offering insights into the
spatiotemporal patterns of tumor growth, nutrient availability, molecular signaling pathways,
cellular processes, and blood-brain barrier interactions. The results highlight the heterogeneous
nature of the tumor microenvironment and the critical role of nutrient gradients, signaling networks,
and BBB dynamics in driving tumor invasion and treatment resistance [Hanahan and Weinberg,
2011; Laird, 1964].

The sensitivity analysis identifies potential therapeutic intervention targets, such as the tumor
cell diffusion coefficient, proliferation rate, and angiogenesis rate. However, the model has
limitations, and future extensions could incorporate additional cellular components, treatment
modalities, and patient-specific data to enhance its predictive power [Rockne et al., 2009; Stein et al.,
2007; Eikenberry et al., 2009].

Despite these limitations, our model represents a significant contribution to mathematical
oncology and provides a platform for further research into GBM’s complex biology. By integrating
mathematical modeling with experimental and clinical data, we can deepen our understanding of the
underlying mechanisms of tumor progression and identify new therapeutic strategies to improve
patient outcomes [Swanson et al., 2011; Jackson et al., 2015; Neal et al., 2013].

The fight against glioblastoma requires a multidisciplinary effort, combining mathematicians,
biologists, clinicians, and computer scientists. Our mathematical model is a testament to the power
of interdisciplinary collaboration in tackling complex diseases like GBM. By working together and
leveraging different fields’ strengths, we can accelerate the pace of discovery and bring hope to
patients and families affected by this devastating disease.

*The Author claims no conflicts of interests.

6. Attachments

Please a see separate file for Python Codes
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