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Abstract: Input reconstruction problem is usually encountered in the areas such as virtual sensing, image

restoration, sensor linearization, and communications. The input reconstruction problem can be seen as an

inverse problem. Given a nominal system, two types of approaches are commonly used for solving the inverse

problem. The first one is to directly invert the nominal system, and the second one is to derive an inversion of

the nominal system in an indirect way. However, for the first type of approaches, system inversion cannot be

directly conducted under some conditions such as there exist nonminimum-phase zeros in the nominal system,

while for the second type of approaches, simultaneously guaranteeing stability and causality of the obtained

inversion is still not solved well. In order to avoid the drawbacks existing in the two types of approaches, an

alternative approach is proposed for input reconstruction. In this approach, the input signal is first modeled as the

output of a state-space model, afterwards two Kalman filters for the model resulted by combining the input signal

model and the nominal system model are implemented alternatively such that the input signal can be sequentially

reconstructed in an infinite horizon. The proposed input reconstruction approach is applied in two examples, and

simulation results can illustrate the effectiveness of the proposed approach.

Keywords: Kalman filtering; input reconstruction; inverse modeling; inverse problems; virtual sensing

1. Introduction

Inverse problems are important problems in both science and engineering [1,2], such as virtual
sensing [3], image processing (e.g., image restoration [4]), sensor linearization [5], and digital predis-
tortion for radio frequency communications [5]. In the point of view of system identification, there are
two kinds of inverse problems [6]:

(i) Reconstruct the system inputs based on the system outputs and the inverse system model, which
is also called the input reconstruction problem or the inverse system identification problem, see
Figure 1(a).

(ii) Identify the forward system model based on the input-output data, which is a normal system
identification problem, see Figure 1(b).

H

(a) Input reconstruction (b) Model identification
Figure 1. Inverse problems (u: input; y: output; H: inverse system model; G: forward system model).

In this paper, the first type of inverse problems (i.e., the input reconstruction problem) is investi-
gated. Generally, there are two types of approaches for solving the first kind of inverse problems:

(i) The first approach is to make a direct inversion of the nominal system firstly, and then input
reconstruction can be conducted. Denote the transfer function of a discrete-time model as G(z)
of which a state-space realization is (A, B, C, D), when the inverse of the feedthrough term D
does not exist, the direct inversion of the model G(z) cannot be conducted [7,8]. In addition, if
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there exist nonminimum-phase zeros in G(z), an unstable inversion solution will be obtained [9].
So in practical applications of direct inversion approaches,

(ii) The second approach is to obtain an inverse system model of the nominal system model indirectly,
and input reconstruction can then be realized. However, in order to obtain a stable inversion,
there are a number of drawbacks in existing approaches:

(a) For exact stable inversion approaches, an infinite preview of the desired output is needed
[10–13], which is not applicable in practice.

(b) For the approaches called pseudo-inversion, even though they do not need preview, how-
ever, they will encounter other problems such as the difficulty of choosing a suitable basis
function [14,15].

(c) For stable and unstable poles separation-based inversion methods, a finite preview is
necessary [16,17].

(d) For norm-based inversion methods, some of them suffer the problems such as input noise
[5] and non-convex optimization [18,19] which often occur in system identification, while
for H∞ norm-based methods [9,20–23], a finite preview is needed.

(e) For signal modelling-based inversion methods, the input signal, which is to be reconstructed,
must be a periodic signal under stationary operating conditions [24,25].

As seen, for some indirect system inversion approaches, even though a stale inversion can be
obtained, an infinite or a finite pre-actuation is still needed, which cannot be applied well in practice
because sometimes the desired output in unknown. In order to solve the input reconstruction problem
in a better way, in this paper an alternative approach is proposed. The presented approach can
guarantee the stability of the input reconstructor, and simultaneously the proposed approach does
not need any pre-actuation; Moreover, the approach can be applied to stable or unstable, proper or
improper systems1 with input to be reconstructed, and there is also no requirement for the type of
input and output signals; Furthermore, it does not suffer non-convex or input noise problems.

The remainder of the paper is organized as follows. In Section 2, the modeling of signals with
finite-length is introduced, based on which in Section 3 an alternative recursive Kalman filter-based
input reconstruction approach is proposed. In Section 4, the performance of the proposed approach is
verified and analyzed, and finally conclusions and future perspectives are given in Section 5.

2. Limited-Length Signal Modeling

In this section, the modeling of limited-length signals is illustrated. With the idea of Limited-length
signal modeling, an alternative input reconstruction approach is proposed in Section 3.

Given a discrete-time signal u(k) ∈ R with length N and the sampling period Ts in seconds, now
assume that the limited-length signal u(k) is a whole period of a periodic signal up(k) ∈ R, so within
the length N, the signal u(k) can be represented as the output of the following state-space model [24],
i.e., {

xu(k + 1) = Auxu(k),

u(k) = Cuxu(k) + vu(k),
(1)

where xu(k) ∈ Rnu denotes the state vector, the term vu(k) denotes the modeling error which is
induced by the limited dimension of the matrix Au, and the matrices Au and Cu can be represented as

Au =


1 0 · · · 0

0 A1
. . .

...
...

. . . . . . 0
0 · · · 0 Anu

 (2)

1 The system is proper when the degree of the numerator does not exceed the degree of the denominator of its transfer
function, otherwise the system is improper.
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and
Cu =

(
1 C1 · · · Cnu

)
, (3)

respectively, where 0 denotes a zero vector or a zero matrix, and the individual block entries in these
block matrices are

Ai =

(
cos(2πi fbTs) sin(2πi fbTs)

− sin(2πi fbTs) cos(2πi fbTs)

)
(4)

and
Ci =

(
1 0

)
, (5)

where fb = 1
NTs

, for i = 1, 2, . . . , nu.
In the end of this section, the following assumption is made.

Assumption 1. The sequence {vu(k)} is assumed to be a white-noise sequence. The covariance function of the
white-noise sequence {vu(k)} is σ2δkj where σ2 is a positive and constant scalar value, and δkj is the Kronecker
Delta function depending on two integral numbers k and j [26]:

δkj =

{
0, if k ̸= j,

1, if k = j.
(6)

3. Input Reconstruction Approach

In this section, an approach solving the reconstruction problem of an infinite-length input is
derived.

Consider the following discrete-time, linear, time-invariant model which is minimal-realized2

and proper3: {
x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k) + v(k),
(7)

where u(k) ∈ R, y(k) ∈ Rp, and x(k) ∈ Rn denote the input, the output, and the state vector,
respectively. The matrices A, B, C, D are the state matrix, the input matrix, the output matrix, and the
feedthrough matrix, respectively. The term v(k) ∈ Rq represents a noise term.

The sampling period of the discrete-time model (2) is the same as the sampling period of the
model (1), i.e., Ts in seconds. The model (7) can be stable or unstable.

In the model (7), the input signal u(k) is with length N, then u(k) can be modeled, see the
modeling process in Section 2. By augmenting the state vector xu(k) of the model (1) with the state
vector x(k) of the model (7), we can obtain the following augmented model:{

xa(k + 1) = Aaxa(k) + v1(k),

y(k) = Caxa(k) + v2(k),
(8)

where the state vector

xa(k) =

(
xu(k)
x(k)

)
∈ Rna , (9)

and the matrices

Aa =

(
Au 0

BCu A

)
(10)

2 A system is minimal-realized if and only if it is both controllable and observable.
3 Actually, the proposed input reconstruction approach is not limited to proper systems, the approach can also be used for

improper systems by replacing the present input u(k) by future input in (7).
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and
Ca =

(
DCu C

)
, (11)

and the noise terms

v1(k) =

(
0

Bvu(k)

)
(12)

and
v2(k) = Dvu(k) + v(k). (13)

The following assumptions are made for the above noise terms.

Assumption 2. The distribution of the initial state vector xa(0) is Gaussian.

Assumption 3. The sequence {v(k)} is assumed to be a white-noise sequence, and the covariance matrix of the
white noise sequence {v(k)} is Rδkj with R a positive and constant matrix.

Assumption 4. The sequences {v1(k)} and {v2(k)} are uncorrelated with the initial state vector xa(0). The
covariance matrices of {v1(k)} and {v2(k)} are denoted as Qaδkj and Raδkj, respectively. With the values of
σ2 and R, the values of Qa and Ra can be calculated according to (12) and (13).

Below Section 3.1 and Section 3.2 are used to demonstrate the idea of the proposed input recon-
struction approach. Section 3.1 illustrates how a limited-length input can be reconstructed, based on
which a recursive reconstruction approach of an finite-length input is derived.

3.1. Limited-Length Input Reconstruction

Based on the above analysis and assumptions, the Kalman filter for the model (8) can be imple-
mented [26]. Denote the conceptual time-varying transfer operator of the Kalman filter for the model
(8) as Kf(q−1, k), and then

x̂a(k) = Kf(q−1, k)y(k), (14)

where the notation “ˆ” denotes the estimate, and then

û(k) = Cr x̂a(k), (15)

where Cr =
(

Cu 0
)

, for k = 0, 1, . . . , N.
According to (9), the dimension of the state vector xa(k) is

na = n + 2 fmNTs + 1, (16)

where fm in Hz denotes the frequency corresponding to the largest frequency component number (i.e.,
nu) of the signal which is denoted as

um(k) = u(k)− vu(k). (17)

3.2. Recursive Input Reconstruction Algorithm

In Section 3.1, the Kaman filter for the model (8) can be successfully used for the reconstruction
of the input signal u(k) with length N, and it is clear that the drawbacks in existing indirect system
inversion approaches mentioned in Section 1 can be avoided, however, the Kalman filter is merely
effective in a finite-time horizon. Below a reconstruction approach of the input signal u(k) with
an infinite length is derived by involving another Kalman filter for the model (8), i.e., based on a
collaboration of two Kalman filters, the reconstruction problem of an infinite-length signal can be
solved.
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The specific mechanism of how to use the two Kalman filters alternatively to solve the reconstruc-
tion problem of an infinite-length signal can be illustrated by one timing diagram in Figure 2 and three
logic blocks in Figure 3:

(i) Timing Diagram
In Figure 2, the start and end time points of the two Kalman filters K1 and K2 are displayed. In
more detail, for K1, it starts from the step k = 0 and stops at the step k = N − 1, and then starts
again from k = N and stops at k = 2N − 1, and so forth. While K2 starts from k = c and stops at
k = N − 1 + c, and then starts again from k = N + c and stops at k = 2N − 1 + c, and so on. The
two Kalman filters have overlapped working periods (e.g., the shading part in Figure 2), with the
value c, the two Kalman filters K1 and K2 can be implemented alternatively by using the logic
blocks shown in Figure 3 such that both transient and finite-length problem can be solved.

(ii) Logic Block 1
The logic block 1 is used for initializing the prediction process in K1, i.e., at steps k1N, for
k1 = 0, 1, 2, . . ., the vector xa(k) and the matrix P(k) are forced to be 0na (i.e., an na-by-1 zero
vector) and Ina (an na-by-na identity matrix) selected from the initial value bank, respectively.

(iii) Logic Block 2
The logic block 2 is used for the initialization of K2, i.e., at steps k2N + c, for k2 = 0, 1, 2, . . ., the
vector xa(k) and the matrix P(k) are forced to be 0na and Ina selected from the initial value bank,
respectively.

(iv) Logic Block 3
The logic block 3 is used for reconstructing the input signal û(k). As seen in (15), the reconstructed
input signal û(k) can be calculated by using the estimate x̂a(k), based on which the specific idea
behind the logic block 3 is illustrated in (18):

û(k) =

Cr x̂(1)a (k), if k ∈ A1,

Cr x̂(2)a (k), if k ∈ A2,
(18)

where x̂(1)a (k) denotes the state vector xa(k) estimated by K1 while x̂(2)a (k) represents the state
vector xa(k) estimated by K2, the sets A1 and A2 are respectively represented as

A1 = [0, N − 1 − d] ∪ [k3N + c − d, (k3 + 1)N − 1 − d], (19)

for k3 = 1, 2, 3, . . ., and
A2 = [k4N − d, k4N + c − 1 − d], (20)

for k4 = 1, 2, 3, . . ., where d is a positive integer, the reason why d is involved is that in practice
the part of not interest in u(k) is usually unknown such that the signal model (1) is not accurately
enough to represent the signal u(k) with length N.

Figure 2. Timing diagram (c and N are positive integers).
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Figure 3. Input reconstruction (K1: the first Kalman filter; K2: the second Kalman filter; x̂−a (k): the a
priori state estimate; x̂a(k): the a posteriori state estimate; P−(k): the a priori error variance; P(k): the
a posteriori error variance; K(k): Kalman filter gain; The notation “ T ”: transpose).

Based on the above analysis, the algorithm of reconstructing the input signal u(k) with infinite
length can be demonstrated in Algorithm 1, in which K1(q−1, k) and K2(q−1, k) denote the conceptual
time-varying transfer operators of the Kalman filters K1 and K2, respectively, and the superscripts (1)
and (2) are used for distinguishing between K1 and K2.

Algorithm 1: Algorithm of reconstructing input signal

Initialization: x̂(1)a (0) = 0na , P(1)(0) = Ina , x̂(2)a (0) = 0na , P(2)(0) = Ina

1 û(0) = û(1)(0) = Cr x̂(1)a (0)
2 for k = 0 → ∞ do
3 if k = k1N, for k1 = 0, 1, 2, . . . then
4 x̂(1)a (k) = 0na , P(1)(k) = Ina

5 x̂(1)a (k + 1) = K1(q−1, k)y(k + 1)
6 else
7 x̂(1)a (k + 1) = K1(q−1, k)y(k + 1)

8 û(1)(k + 1) = Cr x̂(1)a (k + 1)
9 if k = k2N + c, for k2 = 0, 1, 2, . . . then

10 x̂(2)a (k) = 0na , P(2)(k) = Ina

11 x̂(2)a (k + 1) = K2(q−1, k)y(k + 1)
12 else
13 x̂(2)a (k + 1) = K2(q−1, k)y(k + 1)

14 û(2)(k + 1) = Cr x̂(2)a (k + 1)
15 if k + 1 ∈ A1 then
16 û(k + 1) = û(1)(k + 1)

17 if k + 1 ∈ A2 then
18 û(k + 1) = û(2)(k + 1)

4. Numerical Simulation and Analysis

In this section, the proposed input reconstruction approach is validated using two examples. In
the first example, a randomly generated system is used for validating the effectiveness of the proposed
approach. In the second example, a mass-spring-damper system is used to validate the effectiveness
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4.1. Input Reconstruction of a Randomly Generated System

Firstly, the system matrices for the model (7) are randomly generated:

A =


−0.4055 −0.5366 0.1323 0.2417
0.0904 −0.3823 0.5593 0.2120
−0.5795 −0.2297 −0.5002 0.1414
−0.1410 0.1588 −0.2798 −0.2501

, (21)

B =
(
−1.0164 2.9668 0.0826 0.0870

)T
, (22)

C =

(
−0.3544 0.7639 0.9837 1.4688
−1.3393 0.4579 0 0.1052

)
, (23)

and
D =

(
0 0

)T
. (24)

Secondly, choose a white noise sequence with the covariance function σ2
wδkj with

σ2
w = 1 × 10−2, (25)

and then pass it through a 7th-order Butterworth low-pass filter with a cutoff frequency of 300 Hz,
afterwards choose the filtered white noise as the input u(k). Additionally,

Thirdly, set σ2 = 1 × 10−2, and set the value of R to be(
1 × 10−6 0

0 1 × 10−6

)
.

Fourthly, choose the sampling period Ts as 1 × 10−4 seconds, and then based on the model (7),
the simulated output y(k) can be obtained.

Finally, with the simulated output y(k), based on using Algorithm 1, in which fm = 300 Hz,
N = 1000, c = 200, d = 50, and Ts = 1 × 10−4 seconds, the reconstructed input signal û(k) can be
obtained.

The input reconstruction results from the step 800 to the step 1400 based on using Algorithm 1 is
illustrated in Figure 4. As seen in Figure 4, by comparing the difference between u(k) and û(k), it can
be concluded that the proposed input reconstruction approach is effective, and it can be used for a
signal with infinite length.

800 900 1000 1100 1200 1300 1400

Step
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0

0.05
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m
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lit
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e

û(k)
u(k)

800 900 1000 1100 1200 1300 1400
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-0.01

0

0.01

A
m

p
lit

u
d
e

u(k)− û(k)

Figure 4. Reconstructed input.
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In Figure 5, it can be seen that without the logic block 3 in the proposed approach, merely using
K1 or K2 cannot reconstruct the input signal well, especially near the step 1000 and the step 1200.

800 900 1000 1100 1200 1300 1400

Step

-0.05

0

0.05

A
m

p
lit

u
d
e

û
(1)(k)

û
(2)(k)

u(k)

Figure 5. Input reconstruction results based on using one Kalman filter K1 or K2.

4.2. Virtual Input Force Sensing

Figure 6 displays a mass-spring-damper system which can be found in many mechanical systems.
One common example is the suspension of a car. In this example, the input force u is reconstructed
by using the displacement ds of the mass m, i.e., a virtual input force sensor is formulated using the
proposed input reconstruction approach and the data from the displacement sensor measuring the
value of ds.

Figure 6. Mass-spring-damper system (ks: the spring constant; b: the damping constant; m: the mass; d:
the displacement; u: the input force).

The following numerical values to the variables m, ks, and b in the mass-spring-damper system is
shown in Table 1.

Table 1. Values of the variables.

Parameter Value

m 1.0 kg
ks 1.0 N/m
b 0.2 Ns/m

According to the above values, the continuous-time transfer function G(s) between the input u
and the output ds can be obtained:

G(s) =
1

ms2 + bs + ks
=

1
s2 + 0.2s + 1

. (26)
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Transform the continuous-time transfer function G(s) into a discrete-time state-space model with
the sampling period Ts = 1 × 10−4 seconds, then the system matrices of the state-space model can be
obtained:

A =

(
−0.2 −1.0

1 0

)
, (27)

B =
(

1 0
)T

, (28)

C =
(

0 1
)

, (29)

and
D = 0. (30)

Given the input force

u(k) = 10 sin(2π f1kTs) + 5 sin(2π f2kTs), (31)

where the frequency f1 = 40 Hz and the frequency f2 = 60 Hz.
Set σ2 = 1 × 10−2, and set R = 1 × 10−6, and choose the sampling period Ts as 1 × 10−4 seconds,

and then based on the model (7), the simulated output ds(k) can be obtained. Finally, with the
simulated output ds(k), based on using Algorithm 1, in which fm = 300 Hz, N = 1000, c = 200, d = 50,
and Ts = 1 × 10−4 seconds, the virtual input force sensor output û(k) can be obtained.

The virtual input force sensing results from the step 800 to the step 1400 based on using Algorithm
1 is illustrated in Figure 7. As seen in Figure 7, by comparing the difference between u(k) and û(k), it
can be concluded that the proposed input reconstruction approach is effective in the application of
virtual sensing.

In Figure 8, it can be seen that without the logic block 3 in the proposed approach, merely using
K1 or K2 cannot reconstruct the input signal well, especially near the step 1000 (not obvious) and the
step 1200.
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Figure 7. Output of virtual input force sensor.
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Figure 8. Virtual input force sensing based on using one Kalman filter K1 or K2.

According to the applications of Algorithm 1 in the above examples, direct inversion of the model
(7) can be avoided, and only the detectability4 of the model (8) should be guaranteed, and in addition,
the proposed approach can avoid the drawbacks in existing indirect system inversion approaches
mentioned in Section 1.

5. Conclusions and Perspectives

In this paper, an alternative approach for reconstructing infinite-length signal is proposed, and
the proposed approach is prospective method for virtual sensing, sensor linearization and so on.
The validation results from two examples can illustrate the effectiveness of the proposed approach.
According to both theoretical derivation and numerical studies, it can be known that the proposed
approach can avoid all the drawbacks existing in current input reconstruction approaches. However,
because of the observability problem of the augmented model (8), the proposed approach can be only
used for reconstructing a single input or multiple inputs without spectrum overlapping. In the future,
the method will be extended to solve the multiple-input reconstruction problem and the problem of
input reconstruction of nonlinear systems. Moreover, the effects from the parameters fm, N, c, d, Qa,
and Ra, and the Kalman filter dimension problem will be explored.
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