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Abstract:Non-Euclidean data, such as social networks, and citation relationships between documents, has
node information and structural information. Graph Convolutional Network(GCN) can automatically learn
node features and association information between nodes. The core ideology of the graph convolutional
network is to aggregate node information by using edge information, thereby generating a new node feature.
In the process of updating node features, there are two core influencing factors. One is the number of
neighboring nodes of the central node, the other is the contribution of the neighboring nodes to the central
node. Due to the previous GCN methods not simultaneously considering the numbers and different
contributions of neighboring nodes to the central node, we design the Adaptive Attention Mechanism(AAM).
To further enhance the representational capability of the model, we utilize Multi-Head Graph
Convolution(MHGC). Finally, we adopt cross-entropy(CE) loss function to describe the difference between the
predicted results of node categories and the ground truth (GT). Combined with backpropagation, this
ultimately achieves accurate node classification. Based on AAM, MHGC and CE, we contrive the novel Graph
Adaptive Attention Network (GAAN). Experiments show that the classification accuracy has achieved
outstanding performances on Cora, Citeseer and Pubmed datasets.

Keywords: Non-Euclidean; GCN; Adaptive Attention Mechanism; Multi-Head Graph Convolution;
Cross Entropy

1.Introduction

Many data in real life have irregular spatial structures, known as non-Euclidean data, such as
social networks, recommendation systems, citation relationships between documents, transportation
planning, natural language processing, etc. This type of data has both node information and
structural information, which traditional deep learning networks like CNN, RNN, Transformer, etc
cannot well represent. Graph Convolutional Network (GCN) [1], shown in Figure 1, is a class of deep
learning models used for processing graph data, and they have made significant progress in graph
data in recent years. In the real world, many complex systems can be modeled as graph structures,
such as social networks, recommendation systems, automatic modulation classification (AMC) of
underwater acoustic communication signals[2], etc. The nodes and edges of these graph data
represent entities and their relationships, which is of great significance for understanding
information transmission, node classification, graph classification, and other tasks in graph
structures. However, compared with traditional regularized data such as images and text, graph data
processing is more complex. Traditional Convolutional Neural Networks(CNN)[3-4] and Recurrent
Neural Networks(RNN)[5-6] cannot be directly applied to graph structures because the number of
nodes and connections in the graph may be dynamic. Therefore, researchers have begun exploring
new graph neural network models to effectively process graph data. Graph Convolutional Networks
(GCN) were proposed in this context, making an important breakthrough in graph data. The main
idea of GCN is to use the neighbor information of nodes to update their representations, similar to
traditional convolution operations, but on graph structures. By weighted averaging of neighboring
nodes, GCN achieves information transmission and node feature updates, allowing the model to
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better capture the local and global structures in the graph. More broadly, Graph Convolutional
Networks (GCN) are a special case of Graph Neural Networks (GNN).
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Figure 1. The structure of GCN.

The previous graph convolution methods have not fully considered the number and
importance of neighboring nodes. To solve the above problems, we propose the novel
GAAN (Graph Adaptive Attention Network), and our main contributions are in the
following two areas:

1. To generate different weights for each neighbor node of the central node, we design the novel
adaptive attention mechanism(AAM).

2. Based on AAM, we utilize Multi-head Graph Convolution(MHGC) to model and represent
features better.

3. We adopt cross-entropy loss function to model the bias between the predicted values and the
ground truth, which greatly improves the classification accuracy.

2. Related Work

Graph Convolutional Networks (GCNs) have emerged as a powerful tool for deep learning on
graph-structured data, demonstrating impressive performance across various domains such as social
network analysis, bioinformatics, and recommendation systems. GCN methods can be broadly
categorized into two types based on their convolution approach: spectral-based methods and spatial-
based methods. In this paper we synthesizes key literature on these two approaches, discussing their
principles, advantages/disadvantages, and applications.

2.1 Spectral-based Methods

Spectral-based methods are rooted in spectral graph theory and graph signal processing,
leveraging the Laplacian spectrum of graphs for convolution operations. The foundation for this
approach can be traced back to Bruna et al.[7], who introduced Spectral Networks. They utilized the
Fourier transform to perform convolutions on graphs, marking the initial foray into spectral methods.
Defferrard et al.[8] advanced this concept with ChebNet, a method that uses Chebyshev polynomials
to approximate the spectral convolution, significantly enhancing computational efficiency. This
method addressed the scalability issue of the original spectral networks by localizing the convolution
operation. Kipf and Welling[1] made a seminal contribution with their Semi-Supervised Graph
Convolutional Networks (GCN), simplifying the spectral convolution process with a first-order
approximation. This innovation allowed GCNs to operate efficiently on large-scale graph data and
established a benchmark in the field. Their work demonstrated the practical applicability of spectral
methods in semi-supervised learning tasks.
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Hammond et al.[9] extended the theoretical foundations of spectral methods by exploring
wavelet transforms on graphs. This work enriched the theoretical landscape and provided new tools
for signal processing on graphs. Henaff et al.[10] further showcased the potential of spectral methods
in handling complex graph structures by applying deep convolutional networks to graph data.

Levie et al.[11] introduced CayleyNets, utilizing Cayley polynomials to increase the flexibility
and expressive power of spectral convolutions. Their work highlighted the adaptability of spectral
methods to various graph structures and provided a robust framework for further developments.
Shuman et al.[12] offered a comprehensive overview of signal processing on graphs, systematically
explaining the theoretical underpinnings of spectral methods.

Bianchi et al.[13] proposed ARMA-GNN, which employs Autoregressive Moving Average
(ARMA) filters to improve the performance of spectral convolutions. This method demonstrated the
potential of integrating classical signal processing techniques with deep learning on graphs.
Defferrard et al.[14] explored the application of deep networks on toric graphs, illustrating the
adaptability of spectral methods to specialized graph structures. Finally, Chung and Hu[15] provided
the mathematical foundation for spectral methods with their work on spectral graph theory.

2.2. Spatial-based Methods

Spatial-based methods define convolutions directly on the graph nodes and their
neighborhoods, circumventing the computational complexity associated with spectral
transformations. Hamilton et al.[16] designed GraphSAGE, a seminal spatial-based method that uses
sampling and aggregation of neighbor node features for efficient node representation learning on
large-scale graph data. This approach highlighted the practicality of spatial methods in real-world
applications where scalability is crucial.

Velickovi¢ et al.[17] made significant strides with the Graph Attention Network (GAT),
incorporating attention mechanisms to assign different weights to neighbor nodes based on their
importance. This innovation enhanced the expressive power of spatial methods, enabling more
nuanced and effective learning on graphs.

Monti et al.[18] demonstrated the application of spatial methods to the graph matrix completion
problem with their Geometric Matrix Completion method. This work showcased the versatility of
spatial methods in addressing various graph-related tasks. Monti et al.[19] further proposed the
Mixture Model Network (MoNet),contriving a general framework for defining convolutional
operations on graphs using a mixture model paradigm. This method provided a flexible and
powerful tool for graph convolution, accommodating a wide range of graph structures.

Wu et al.[20] designed the Simplified Graph Convolutional Network (SGC), a method that
reduces the complexity of traditional GCNs by removing the non-linear activation functions between
layers. This simplification not only improved computational efficiency but also retained competitive
performance in various tasks, emphasizing the potential of streamlined spatial methods.

Xu et al.[21] addressed the challenge of capturing higher-order dependencies in graphs with
their Jumping Knowledge Network (JK-Net). By allowing the network to adaptively select and
combine different neighborhood ranges, JK-Net enhanced the capability of spatial methods to learn
from complex graph structures.

Graph Isomorphism Network (GIN)[22] tackled the expressiveness of spatial methods, ensuring
that the network can distinguish different graph structures effectively. This method set a new
standard for the expressiveness of spatial-based GCNs by drawing on insights from the Weisfeiler-
Lehman graph isomorphism test.

Liao et al.[23] presented LanczosNet, which leverages the Lanczos algorithm to improve the
efficiency and effectiveness of spatial convolutions. This method demonstrated the potential of
integrating numerical optimization techniques with graph neural networks to achieve superior
performance.

The development of the Spatial-Temporal Graph Convolutional Network (ST-GCN)[24]
extended spatial methods to dynamic graphs, capturing both spatial and temporal dependencies.
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This expansion opened new avenues for applying GCNs to time-evolving graph data, such as in
traffic prediction and action recognition.

Finally, Zhang and Chen[25] introduced the Diffusion Convolutional Neural Network (DCNN),
which models the diffusion process on graphs to perform convolutions. This approach provided a
novel perspective on spatial methods, emphasizing the importance of modeling the underlying
processes governing graph data.

Both spectral-based and spatial-based methods have significantly advanced the field of graph
convolutional networks, each offering unique advantages and applications. Spectral methods excel
in leveraging mathematical foundations from graph theory and signal processing, providing a robust
theoretical framework and powerful tools for graph convolution. Spatial methods, on the other hand,
offer practical scalability and flexibility, making them suitable for a wide range of real-world
applications. This paper aims to solve practical social network issues, so the research is based on
spatial methods. To address the differences in the numbers and contributions of neighboring nodes
of central nodes, in this paper we designed the novel Graph Adaptive Attention Network (GAAN).

3. Methodology

3.1. Overall

The overall structure of Graph Adaptive Attention Network (GAAN) is illustrated in Figure 2.
The process starts with a graph where each node represents an entity and edges denote relationships
between them. In the encoding stage, the input graph's information is transformed into features for
each node. The input layer processes these encoded features. Within the graph layer and hidden
layer, the network uses adaptive attention mechanism(AAM) to assign varying weights aij to the
neighbors of a central node hi. These weights signify the importance of each neighboring node hj in
contributing to the central node's updated features. The updated features are computed through an
attention-based weighted average of neighboring node features. Finally, the output layers aggregate
the refined node features to perform node classification, as illustrated in the output graph with
colored nodes.

Input layers Output layers

Hidden
layers

Encoding

Figure 2. The structure of GAAN.

3.2. Graph Layers with AAM

The specific computational process can be represented by Equation 1 to Equation 5.

o N (D

hl-j = concat(Whl-, Whj), i,jEN
where h; and i_{j represent the ith and jth nodes in the graph, respectively. W is the shared weight
matrix to uniform the node features. h;; fuses the features of the ith and jth nodes. Based on h;;, we
can calculate the basic AAM between the ith and jth nodes with the following Equation 2.

o = a* hgj 2>
Y A/ Di * D fi
where D; and D; represent the degree of ith and jth nodes, respectively. a is the weight vector to

reshape h;;. e;; is the weight coefficient between the ith and jth nodes. Then, we adopt the softmax
function to normalize e;;, as shown specifically in Equation 3.
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exp (LeakyReLU (ey)) (3)
en; exp (LeakyReLU (ey))

a;; = softmaxj(eij) = 5

Based on the normalized weight coefficients between nodes obtained from Equations 1 to 3, we
can perform the graph convolution layer computation, as shown in Equation 4.

JEN;
Building on Equation 4, we utilize Multi-head Graph Convolution(MHGC), which involves
performing the computation of Equation 4 with MHGC and then averaging these results to obtain
the node features of the subsequent layer. The computation process is shown in Equation 5.

1w . (5)

Based on the aforementioned formula, we have completed the normalized weight coefficients
and inter-layer computation processes for GAAN. We have designed a single hidden layer, thus
constructing the GAAN with a total of two layers.

3.3. Cross Entropy Loss

In the node classification task, our goal is to correctly categorize each node into predefined
categories. Suppose our model outputs the predicted probability that node v; belongs to each
category as J; and the true category label as v;, where §; € R® and y; € R, C is the number of
categories and N is the number of nodes. The cross-entropy loss function is defined as Equation 6.

L= XL i og(9ie) ©
where N is total number of nodes. € is the number of categories. y; represents true category
distribution of node v;. J; is predicted category distribution.

The derivation process of the cross-entropy loss function is as follows. At the final output layer
of the network, the feature representation h; of each node v; will pass through a fully connected
layer and the softmax function will be applied to generate the predicted probability distribution. The

model output will be the predicted probability distribution of the node Y

7.

7. Itis described in Equation

o exp(hi - W + b.)

Vie =5 )
cr=1 €xp(h; - Wer + ber)

where W, and b, are the weight and bias of category, respectively. h; is the feature representation

of node v;

The cross entropy loss measures the difference between the true category distribution and the

predicted probability distribution. For each node V., the loss is defined as Equation 8.
Li ==Y 1Viclog(Fic) )

In order to measure the categorization performance over the whole graph, the average loss over
all nodes needs to be calculated as Equation 6.

Specific process could be described as the following four steps.

(1) Encoding features: encode the node features of the input graph to get the initial feature
representation of the nodes.

(2) Attention mechanism: in the hidden layer, use the attention mechanism to weight the average
of neighboring nodes to get the updated node feature representation h;.

(3) Fully Connected Layer: In the output layer, the updated node feature representation is
transformed into a fully connected transformation and the softmax function is applied to get the
predicted probability ;.


https://doi.org/10.20944/preprints202406.0939.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 June 2024 d0i:10.20944/preprints202406.0939.v1

(4)Calculate the loss: use the cross-entropy loss function to calculate the difference between the
true category distribution y; and the predicted probability distribution J;, and average to get the
overall loss L.

Through the above process, we are able to effectively classify the nodes in the graph and
optimize the network parameters through back propagation to achieve accurate classification of
nodes.

4. Experiments

4.1. Datasets

Cora, Citeseer, and Pubmed are widely used citation network datasets in graph-based machine
learning research. In this paper, we use the Cora, Citeseer and Pubmed datasets, the specific statistics
of which are shown in Table 1. Cora consists of 2,708 machine learning publications categorized into
7 classes, with each paper cited by or citing other papers. Each node represents a publication, and
edges denote citation relationships. Nodes have 1,433 binary word attributes. Citeseer includes 3,327
research papers grouped into 6 categories. Similar to Cora, nodes signify publications, and edges
indicate citations. Each node has a 3,703-dimensional binary word vector representing the presence
or absence of specific words. Pubmed contains 19,717 scientific publications from the PubMed
database, classified into 3 diabetes-related categories. The nodes represent papers, connected by
citation edges. Each node is described by a TF-IDF weighted word vector from a 500-word dictionary.

Table 1. Summary of the datasets used in our experiments.

Dataset Nodes Edges Features per node Classes
Cora 2708 5429 1433 7

Citeseer 3312 4723 3703 7

Pubmed 19717 44338 500 3

4.2. Ablation Experiments
As shown in Table 2, we conduct ablation experiments on Cora dataset. AAM and MHGC
respectively increased by 1% and 1.2%. Our GAAN has achieved an excellent performance of 85.6%.

Table 2. Ablation experimental results on Cora. ‘n” and ‘n_hidden’ represent the number of graph
convolution heads and the dimensionality of node feature vectors in hidden layers, respectively.

n_hidden
AAM MHGC(n=8) Accuracy(%)
64 96 128

x x v x x 83.9
Groupl x x x ol x 83.5

x x x x v 83

x ol v x x 84.6
Group2 x l x V x 85.1

x v x x ol 84.6

v x v x x 84.9
Group3 V x x V x 84.3

N x x x \ 84.6
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y v
Group4 V v
y y

84.6
85.4

85.6

4.3. Comparison with Other Methods

The Table 3 presents the classification accuracy (%) of various methods on three datasets: Cora,
Citeseer, and Pubmed. The methods compared include MLP, SemiEmb, DeepWalk, ICA, Planetoid,
Chebyshev, GCN, MoNet, and GAT. GAAN (no MHGC) achieves an accuracy of 84.9% on Cora,
74.3% on Citeseer, and 79.5% on Pubmed. GAAN (with MHGC) further improves the performance,
achieving the highest accuracy of 85.6% on Cora, 75.5% on Citeseer, and 80.5% on Pubmed, indicating
the effectiveness of integrating MHGC. GAT also shows strong results with 83.7% on Cora, 73.2% on
Citeseer, and 79.3% on Pubmed. According to Table 3, we can see that GAAN gets better performance

than other methods.

Table 3. Compared experimental results on Cora, Citeseer, and Pubmed.

Method Cora Citeseer Pubmed
MLP[26] 55.1 46.5 714
SemiEmb[27] 59 59.6 71.7
DeepWalk[28] 67.2 43.2 65.3
ICA[29] 75.1 69.1 73.9
Planetoid[30] 75.7 64.7 77.2
Chebyshev[8] 81.2 69.8 744

GCN[1] 81.5 70.3 79

MoNet[19] 82.2 _ 79.1
GAT[17] 83.7 73.2 79.3
GAAN(no MHGC) 84.9 74.3 79.5
GAAN(with MHGC) 85.6 75.5 80.5

5. Conclusion and Future Work

We have proposed AAM and MHGC to construct GCNA, which solves the differences between
neighbor nodes to the central node. Experimental results show that our method is superior in

accuracy.

Over-smoothing occurs when multi-layers are stacked, leading to the features of all nodes being
almost the same. However, many situations are necessary to capture the features of distant neighbors.
Therefore, stacking multiple layers of GCN is inevitable. The strategy of stacking multi-layers,

designed to prevent over-smoothing, is urgent.
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