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Abstract:Non-Euclidean data, such as social networks, and citation relationships between documents, has 
node information and structural information. Graph Convolutional Network(GCN) can automatically learn 
node features and association information between nodes. The core ideology of the graph convolutional 
network is to aggregate node information by using edge information, thereby generating a new node feature. 
In the process of updating node features, there are two core influencing factors. One is the number of 
neighboring nodes of the central node, the other is the contribution of the neighboring nodes to the central 
node. Due to the previous GCN methods not simultaneously considering the numbers and different 
contributions of neighboring nodes to the central node, we design the Adaptive Attention Mechanism(AAM). 
To further enhance the representational capability of the model, we utilize Multi-Head Graph 
Convolution(MHGC). Finally, we adopt cross-entropy(CE) loss function to describe the difference between the 
predicted results of node categories and the ground truth (GT). Combined with backpropagation, this 
ultimately achieves accurate node classification. Based on AAM, MHGC and CE, we contrive the novel Graph 
Adaptive Attention Network (GAAN). Experiments show that the classification accuracy has achieved 
outstanding performances on Cora, Citeseer and Pubmed  datasets. 

Keywords: Non-Euclidean; GCN; Adaptive Attention Mechanism; Multi-Head Graph Convolution; 
Cross Entropy 

 

1.Introduction 

Many data in real life have irregular spatial structures, known as non-Euclidean data, such as 
social networks, recommendation systems, citation relationships between documents, transportation 
planning, natural language processing, etc. This type of data has both node information and 
structural information, which traditional deep learning networks like CNN, RNN, Transformer, etc 
cannot well represent. Graph Convolutional Network (GCN) [1], shown in Figure 1, is a class of deep 
learning models used for processing graph data, and they have made significant progress in graph 
data in recent years. In the real world, many complex systems can be modeled as graph structures, 
such as social networks, recommendation systems, automatic modulation classification (AMC) of 
underwater acoustic communication signals[2], etc. The nodes and edges of these graph data 
represent entities and their relationships, which is of great significance for understanding 
information transmission, node classification, graph classification, and other tasks in graph 
structures. However, compared with traditional regularized data such as images and text, graph data 
processing is more complex. Traditional Convolutional Neural Networks(CNN)[3-4] and Recurrent 
Neural Networks(RNN)[5-6] cannot be directly applied to graph structures because the number of 
nodes and connections in the graph may be dynamic. Therefore, researchers have begun exploring 
new graph neural network models to effectively process graph data. Graph Convolutional Networks 
(GCN) were proposed in this context, making an important breakthrough in graph data. The main 
idea of GCN is to use the neighbor information of nodes to update their representations, similar to 
traditional convolution operations, but on graph structures. By weighted averaging of neighboring 
nodes, GCN achieves information transmission and node feature updates, allowing the model to 
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better capture the local and global structures in the graph. More broadly, Graph Convolutional 
Networks (GCN) are a special case of Graph Neural Networks (GNN).  
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Figure 1. The structure  of GCN. 

The previous graph convolution methods have not fully considered the number and 
importance of neighboring nodes. To solve the above problems, we propose the novel 
GAAN (Graph Adaptive Attention Network), and our main contributions are in the 
following two areas: 

1. To generate different weights for each neighbor node of the central node, we design the novel 
adaptive attention mechanism(AAM). 

2. Based on AAM, we utilize Multi-head Graph Convolution(MHGC) to model and represent 
features better. 

3. We adopt cross-entropy loss function  to model the bias between the predicted values and the 
ground truth, which greatly improves the classification accuracy. 

2. Related Work 

Graph Convolutional Networks (GCNs) have emerged as a powerful tool for deep learning on 
graph-structured data, demonstrating impressive performance across various domains such as social 
network analysis, bioinformatics, and recommendation systems. GCN methods can be broadly 
categorized into two types based on their convolution approach: spectral-based methods and spatial-
based methods. In this paper we synthesizes key literature on these two approaches, discussing their 
principles, advantages/disadvantages, and applications. 

 2.1 Spectral-based Methods 

Spectral-based methods are rooted in spectral graph theory and graph signal processing, 
leveraging the Laplacian spectrum of graphs for convolution operations. The foundation for this 
approach can be traced back to Bruna et al.[7], who introduced Spectral Networks. They utilized the 
Fourier transform to perform convolutions on graphs, marking the initial foray into spectral methods. 
Defferrard et al.[8] advanced this concept with ChebNet, a method that uses Chebyshev polynomials 
to approximate the spectral convolution, significantly enhancing computational efficiency. This 
method addressed the scalability issue of the original spectral networks by localizing the convolution 
operation. Kipf and Welling[1] made a seminal contribution with their Semi-Supervised Graph 
Convolutional Networks (GCN), simplifying the spectral convolution process with a first-order 
approximation. This innovation allowed GCNs to operate efficiently on large-scale graph data and 
established a benchmark in the field. Their work demonstrated the practical applicability of spectral 
methods in semi-supervised learning tasks. 
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Hammond et al.[9] extended the theoretical foundations of spectral methods by exploring 
wavelet transforms on graphs. This work enriched the theoretical landscape and provided new tools 
for signal processing on graphs. Henaff et al.[10] further showcased the potential of spectral methods 
in handling complex graph structures by applying deep convolutional networks to graph data. 

Levie et al.[11] introduced CayleyNets, utilizing Cayley polynomials to increase the flexibility 
and expressive power of spectral convolutions. Their work highlighted the adaptability of spectral 
methods to various graph structures and provided a robust framework for further developments. 
Shuman et al.[12] offered a comprehensive overview of signal processing on graphs, systematically 
explaining the theoretical underpinnings of spectral methods. 

Bianchi et al.[13] proposed ARMA-GNN, which employs Autoregressive Moving Average 
(ARMA) filters to improve the performance of spectral convolutions. This method demonstrated the 
potential of integrating classical signal processing techniques with deep learning on graphs. 
Defferrard et al.[14] explored the application of deep networks on toric graphs, illustrating the 
adaptability of spectral methods to specialized graph structures. Finally, Chung and Hu[15] provided 
the mathematical foundation for spectral methods with their work on spectral graph theory.  

2.2. Spatial-based Methods 

Spatial-based methods define convolutions directly on the graph nodes and their 
neighborhoods, circumventing the computational complexity associated with spectral 
transformations. Hamilton et al.[16] designed GraphSAGE, a seminal spatial-based method that uses 
sampling and aggregation of neighbor node features for efficient node representation learning on 
large-scale graph data. This approach highlighted the practicality of spatial methods in real-world 
applications where scalability is crucial. 

Veličković et al.[17] made significant strides with the Graph Attention Network (GAT), 
incorporating attention mechanisms to assign different weights to neighbor nodes based on their 
importance. This innovation enhanced the expressive power of spatial methods, enabling more 
nuanced and effective learning on graphs. 

Monti et al.[18] demonstrated the application of spatial methods to the graph matrix completion 
problem with their Geometric Matrix Completion method. This work showcased the versatility of 
spatial methods in addressing various graph-related tasks. Monti et al.[19] further proposed the 
Mixture Model Network (MoNet),contriving a general framework for defining convolutional 
operations on graphs using a mixture model paradigm. This method provided a flexible and 
powerful tool for graph convolution, accommodating a wide range of graph structures. 

Wu et al.[20] designed the Simplified Graph Convolutional Network (SGC), a method that 
reduces the complexity of traditional GCNs by removing the non-linear activation functions between 
layers. This simplification not only improved computational efficiency but also retained competitive 
performance in various tasks, emphasizing the potential of streamlined spatial methods. 

Xu et al.[21] addressed the challenge of capturing higher-order dependencies in graphs with 
their Jumping Knowledge Network (JK-Net). By allowing the network to adaptively select and 
combine different neighborhood ranges, JK-Net enhanced the capability of spatial methods to learn 
from complex graph structures. 

Graph Isomorphism Network (GIN)[22] tackled the expressiveness of spatial methods, ensuring 
that the network can distinguish different graph structures effectively. This method set a new 
standard for the expressiveness of spatial-based GCNs by drawing on insights from the Weisfeiler-
Lehman graph isomorphism test. 

Liao et al.[23] presented LanczosNet, which leverages the Lanczos algorithm to improve the 
efficiency and effectiveness of spatial convolutions. This method demonstrated the potential of 
integrating numerical optimization techniques with graph neural networks to achieve superior 
performance. 

The development of the Spatial-Temporal Graph Convolutional Network (ST-GCN)[24] 
extended spatial methods to dynamic graphs, capturing both spatial and temporal dependencies. 
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This expansion opened new avenues for applying GCNs to time-evolving graph data, such as in 
traffic prediction and action recognition. 

Finally, Zhang and Chen[25] introduced the Diffusion Convolutional Neural Network (DCNN), 
which models the diffusion process on graphs to perform convolutions. This approach provided a 
novel perspective on spatial methods, emphasizing the importance of modeling the underlying 
processes governing graph data. 

Both spectral-based and spatial-based methods have significantly advanced the field of graph 
convolutional networks, each offering unique advantages and applications. Spectral methods excel 
in leveraging mathematical foundations from graph theory and signal processing, providing a robust 
theoretical framework and powerful tools for graph convolution. Spatial methods, on the other hand, 
offer practical scalability and flexibility, making them suitable for a wide range of real-world 
applications. This paper aims to solve practical social network issues, so the research is based on 
spatial methods. To address the differences in the numbers and contributions of neighboring nodes 
of central nodes, in this paper we designed the novel Graph Adaptive Attention Network (GAAN). 

3. Methodology 

3.1. Overall 

The overall structure of Graph Adaptive Attention Network (GAAN) is illustrated in Figure 2. 
The process starts with a graph where each node represents an entity and edges denote relationships 
between them. In the encoding stage, the input graph's information is transformed into features for 
each node. The input layer processes these encoded features. Within the graph layer and hidden 
layer, the network uses adaptive attention mechanism(AAM) to assign varying weights αij to the 
neighbors of a central node hi. These weights signify the importance of each neighboring node hj in 
contributing to the central node's updated features. The updated features are computed through an 
attention-based weighted average of neighboring node features. Finally, the output layers aggregate 
the refined node features to perform node classification, as illustrated in the output graph with 
colored nodes.  
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Figure 2. The structure  of GAAN. 

3.2. Graph Layers with AAM 

The specific computational process can be represented by Equation 1 to Equation 5. ℎ௜௝ = 𝑐𝑜𝑛𝑐𝑎𝑡൫𝑾ℎሬ⃗ ௜ ,𝑾ℎሬ⃗ ௝൯, 𝑖, 𝑗 ∈  𝑁 （1） 

where ℎሬ⃗ ௜ and ℎሬ⃗ ௝ represent the ith and jth nodes in the graph, respectively. 𝑾 is the shared weight 
matrix to uniform the node features. ℎ௜௝ fuses the features of the ith and jth nodes. Based on ℎ௜௝, we 
can calculate the basic AAM between the ith and jth nodes with the following Equation 2. 𝑒௜௝ = 𝑎 ∗ ℎ௜௝ඥ𝐷௜ ∗ 𝐷௝ （2） 

where 𝐷௜  and 𝐷௝ represent the degree of ith and jth nodes, respectively. 𝑎 is the weight vector to 
reshape ℎ௜௝. 𝑒௜௝ is the weight coefficient between the ith and jth nodes. Then, we adopt the softmax 
function to normalize 𝑒௜௝, as shown specifically in Equation 3.  
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𝛼௜௝ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥௝൫𝑒௜௝൯ = exp (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑒௜௞ሻ)∑ 𝑒𝑥𝑝௞ఢ௛೔ (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑒௜௞)) （3） 

Based on the normalized weight coefficients between nodes obtained from Equations 1 to 3, we 
can perform the graph convolution layer computation, as shown in Equation 4. ℎሬ⃗ ௜ᇱ = 𝜎(෍ 𝛼௜௝௝ఢ𝒩೔ 𝑾ℎሬ⃗ ௝) （4） 

Building on Equation 4, we utilize Multi-head Graph Convolution(MHGC), which involves 
performing the computation of Equation 4 with MHGC and then averaging these results to obtain 
the node features of the subsequent layer. The computation process is shown in Equation 5.  

ℎሬ⃗ ௜ᇱ = 𝜎(1𝐾෍ ෍ 𝛼௜௝௞௝ఢ𝒩೔
௄
௞ୀଵ 𝑾௞ℎሬ⃗ ௝) 

（5） 

Based on the aforementioned formula, we have completed the normalized weight coefficients 
and inter-layer computation processes for GAAN. We have designed a single hidden layer, thus 
constructing the GAAN with a total of two layers.  

3.3. Cross Entropy Loss  

In the node classification task, our goal is to correctly categorize each node into predefined 
categories. Suppose our model outputs the predicted probability that node 𝑣௜  belongs to each 
category as 𝑦ො௜  and the true category label as 𝑣௜ , where 𝑦ො௜ ∈ ℝ஼  and 𝑦௜ ∈ ℝ஼ , 𝐶 is the number of 
categories and 𝑁 is the number of nodes. The cross-entropy loss function is defined as Equation 6. 

 ℒ = − 1𝑁∑௜ୀଵே ∑௜ୀଵ஼ 𝑦௜,௖ 𝑙𝑜𝑔(𝑦ො௜,௖) (6) 

where 𝑁  is total number of nodes. 𝐶  is the number of categories. 𝑦௜  represents true category 
distribution of node 𝑣௜. 𝑦ො௜ is predicted category distribution. 

The derivation process of the cross-entropy loss function is as follows. At the final output layer 
of the network, the feature representation ℎ௜ of each node 𝑣௜ will pass through a fully connected 
layer and the softmax function will be applied to generate the predicted probability distribution. The 

model output will be the predicted probability distribution of the node ˆiy . It is described in Equation 
7. 

 𝑦ො௜,௖ = 𝑒𝑥𝑝(ℎ௜ ⋅ 𝑊௖ + 𝑏௖)∑௖ᇲୀଵ஼ 𝑒𝑥𝑝(ℎ௜ ⋅ 𝑊௖ᇲ + 𝑏௖ᇲ) (7) 

where 𝑊௖ and 𝑏௖ are the weight and bias of category, respectively. ℎ௜ is the feature representation 
of node 𝑣௜ 

The cross entropy loss measures the difference between the true category distribution and the 
predicted probability distribution. For each node iv , the loss is defined as Equation 8. 

 ℒ௜ = −∑௖ୀଵ஼ 𝑦௜,௖ 𝑙𝑜𝑔(𝑦ො௜,௖) (8) 
In order to measure the categorization performance over the whole graph, the average loss over 

all nodes needs to be calculated as Equation 6. 
Specific process could be described as the following four steps. 
(1) Encoding features: encode the node features of the input graph to get the initial feature 

representation of the nodes. 
(2) Attention mechanism: in the hidden layer, use the attention mechanism to weight the average 

of neighboring nodes to get the updated node feature representation ℎ௜ᇱ. 
(3) Fully Connected Layer: In the output layer, the updated node feature representation is 

transformed into a fully connected transformation and the softmax function is applied to get the 
predicted probability 𝑦ො௜. 
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(4)Calculate the loss: use the cross-entropy loss function to calculate the difference between the 
true category distribution 𝑦௜ and the predicted probability distribution 𝑦ො௜, and average to get the 
overall loss ℒ. 

Through the above process, we are able to effectively classify the nodes in the graph and 
optimize the network parameters through back propagation to achieve accurate classification of 
nodes. 

4. Experiments  

4.1. Datasets 

Cora, Citeseer, and Pubmed are widely used citation network datasets in graph-based machine 
learning research. In this paper, we use the Cora, Citeseer and Pubmed datasets, the specific statistics 
of which are shown in Table 1. Cora consists of 2,708 machine learning publications categorized into 
7 classes, with each paper cited by or citing other papers. Each node represents a publication, and 
edges denote citation relationships. Nodes have 1,433 binary word attributes. Citeseer includes 3,327 
research papers grouped into 6 categories. Similar to Cora, nodes signify publications, and edges 
indicate citations. Each node has a 3,703-dimensional binary word vector representing the presence 
or absence of specific words. Pubmed contains 19,717 scientific publications from the PubMed 
database, classified into 3 diabetes-related categories. The nodes represent papers, connected by 
citation edges. Each node is described by a TF-IDF weighted word vector from a 500-word dictionary. 

Table 1. Summary of the datasets used in our experiments. 

Dataset Nodes Edges Features per node Classes 
Cora 2708 5429 1433 7 

Citeseer 3312 4723 3703 7 
Pubmed 19717 44338 500 3 

4.2. Ablation Experiments 

As shown in Table 2, we conduct ablation experiments on Cora dataset. AAM and MHGC 
respectively increased by 1% and 1.2%. Our GAAN has achieved an excellent performance of 85.6%. 

Table 2. Ablation experimental results on Cora. ‘n’ and ‘n_hidden’ represent the number of graph 
convolution heads and the dimensionality of node feature vectors in hidden layers, respectively. 

 AAM MHGC(n=8)
n_hidden 

Accuracy(%)
64 96 128 

Group1 

× × √ × × 83.9 

× × × √ × 83.5 

× × × × √ 83 

Group2 

× √ √ × × 84.6 

× √ × √ × 85.1 

× √ × × √ 84.6 

Group3 

√ × √ × × 84.9 

√ × × √ × 84.3 

√ × × × √ 84.6 
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Group4 

√ √ √ × × 84.6 

√ √ × √ × 85.4 

√ √ × × √ 85.6 

4.3. Comparison with Other Methods 

The Table 3 presents the classification accuracy (%) of various methods on three datasets: Cora, 
Citeseer, and Pubmed. The methods compared include MLP, SemiEmb, DeepWalk, ICA, Planetoid, 
Chebyshev, GCN, MoNet, and GAT. GAAN (no MHGC) achieves an accuracy of 84.9% on Cora, 
74.3% on Citeseer, and 79.5% on Pubmed. GAAN (with MHGC) further improves the performance, 
achieving the highest accuracy of 85.6% on Cora, 75.5% on Citeseer, and 80.5% on Pubmed, indicating 
the effectiveness of integrating MHGC. GAT also shows strong results with 83.7% on Cora, 73.2% on 
Citeseer, and 79.3% on Pubmed. According to Table 3, we can see that GAAN gets better performance 
than other methods. 

Table 3. Compared experimental results on Cora, Citeseer, and Pubmed. 

Method Cora Citeseer Pubmed 

MLP[26] 55.1 46.5 71.4 

SemiEmb[27] 59 59.6 71.7 

DeepWalk[28] 67.2 43.2 65.3 

ICA[29] 75.1 69.1 73.9 

Planetoid[30] 75.7 64.7 77.2 

Chebyshev[8] 81.2 69.8 74.4 

GCN[1] 81.5 70.3 79 

MoNet[19] 82.2 _ 79.1 

GAT[17] 83.7 73.2 79.3 

GAAN(no MHGC) 84.9 74.3 79.5 

GAAN(with MHGC) 85.6 75.5 80.5 

5. Conclusion and Future Work 

We have proposed AAM and MHGC to construct GCNA, which solves the differences between 
neighbor nodes to the central node. Experimental results show that our method is superior in 
accuracy.  

Over-smoothing occurs when multi-layers are stacked, leading to the features of all nodes being 
almost the same. However, many situations are necessary to capture the features of distant neighbors. 
Therefore, stacking multiple layers of GCN is inevitable. The strategy of stacking multi-layers, 
designed to prevent over-smoothing, is urgent. 
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