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Abstract: This study presents a fit-for-purpose evaluation of commercially available portable sensor systems, 

measuring PM, NO2 and/or BC, through extensive lab- and field benchmarking tests. The main aim of the study 

is to identify sensor systems that can be used for mobile monitoring by citizens  to assess dynamic exposure 

in ambient air. After an initial literature study and market search resulting in 39 sensor systems, 10 sensor 

systems were ultimately purchased and benchmarked in laboratory and real-word conditions. We evaluated 

comparability to reference analyzers, sensor precision and sensitivity to temperature, humidity and O3. 

Moreover, we evaluated if accuracy can be improved by the lab and field calibration. Because the targeted 

application of the sensor systems under evaluation is mobile monitoring, we conducted a mobile field test in 

an urban environment to evaluate the GPS accuracy and potential impacts from vibrations on the resulting 

sensor signals. Results of the considered sensor systems indicate that out-of-the-box performance is relatively 

good for PM and BC, but maturity of the tested NO2 sensors is still low and additional efforts are needed in 

terms of signal noise and calibration. The horizontal accuracy of the build-in GPS was generally good achieving 

a <10m horizontal accuracy for all sensor systems. More accurate and dynamic exposure assessments in 

contemporary urban environments are crucial to study real-world exposure of individuals and exposome 

impacts on potential health endpoints. A greater availability of mobile monitoring systems capable of 

quantifying urban pollutant gradients will further boost this line of research. 

Keywords: air quality; sensors; exposure; assessment; citizens; validation 

 

1. Introduction 

Air quality has improved significantly over the past decades. Yet exposure to particulate matter 

and nitrogen dioxide in Europe still cause an estimated 253,000 and 52,000 premature deaths per year 

[1]. Moreover, continuous worldwide urbanization results in megacities with intrinsic hotspots, 

highlighting the importance of proper air pollution monitoring. Currently, the exposure of the 

population to air pollution is still determined based on the home address (=static exposure). 

However, research has shown that people are exposed to the highest air pollution peaks at times 

when they are mobile (e.g. during commutes). Studies using activity-based models or personal 

monitors demonstrated that the transport activity, although short in duration, can be responsible for 

quite a large part of integrated personal exposure to combustion-related pollutants [2-6]. Therefore, 

their exposure during transport must also be taken into account when calculating personal exposure 

to air pollution, i.e. dynamic exposure. Research based on an extensive dataset of 20,000 citizens 

previously showed that this dynamic exposure estimation is often (64% of the individuals) higher 

than the respective static residence-based exposure [7]. Therefore, a better approximation of citizens 

dynamic exposure to air pollution is needed through modelling and/or monitoring tools. To assess 

exposure in transport environments on a wider scale, mobile monitoring systems are needed that (i) 

can easily be used by study participants (e.g. citizens) and (ii) produce reliable data. 
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Recent advances in sensor and Internet of Things (IoT) technologies have resulted in a wide 

range of commercially available “lower-cost” sensor systems that allow for quantification of urban 

pollutants, e.g., particulate matter (PMx), nitrogen dioxide (NO2) and ozone (O3), at unprecedented 

scale [8]. Portable air quality sensors enable quantification of dynamic exposure, while raising 

awareness among citizens about their personal exposure driving behaviour change [9-13]. Moreover, 

the obtained mobile data can be used to construct urban exposure maps offering policy makers the 

right tools for evidence-based policy measures [8, 14-19]. As Helbig et al. [20] stated; wearable sensing 

has two aspects: firstly, the exposure of an individual is recorded, and secondly, individuals act as 

explorers of the urban area. While many stationary sensor systems have been evaluated and 

benchmarked in previous years [21, 22], mobile sensor systems have different requirements, e.g. 

power autonomy (battery), a high monitoring resolution and accurate positioning (GPS). Also, the 

sensor signal noise and between-sensor variability should be low enough to be able to measure the 

spatial concentration variability at a high temporal resolution (with multiple sensors). Today, many 

commercially available portable sensor systems are already on the market, but it is hard to determine 

they are fit-for-purpose. This is one of the first studies benchmarking commercially available portable 

sensor systems for mobile monitoring applications. The study includes the evaluation of the air 

quality sensor data quality performance in lab and field conditions, and during a mobile field test to 

evaluate GPS performance, impact of vibrations on the sensor signal and the overall potential to 

capture spatial variability in urban environments. 

2. Materials and Methods 

2.1. Sensor System Selection 

Based on an earlier literature study and market survey on air quality sensors [23], a new 

literature study with focus on portable air quality sensors (~90 publications), sensor benchmarking 

results from independent research institutes (AIRlab, AQ-SPEC, SamenMeten, EPA Air Sensor 

Toolbox) and sensor projects (BelAir [24], Snuffelfiets [25],…), a longlist of 39 sensor candidates was 

created. This longlist was narrowed down based on a set of predefined requirements (e.g. monitoring 

resolution, portability, localization, additional environmental variables like temperature and relative 

humidity), resulting in a shortlist of 12 portable sensor systems for which quotation requests were 

send out. Ultimately, 10 sensor systems were purchased (Table S1), of which 8/10 contained a PM2.5 

and PM10 sensor, and 3/10 sensor systems contained an additional NO2 sensor (SODAQ NO2, DST 

Observair and 2BTech PAM). All 10 sensor systems can be regarded as portable air quality sensor 

systems, with autonomy (battery), data storage and/or transmission and localization (GPS). 
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Figure 1. Considered sensor systems (10) with on the upper picture (from left to right): PAM (2BTech), 

GeoAir, Observair (DST), SODAQ Air (SODAQ), PMscan (TERA), Open Seneca (Open Seneca) and 

ATMOTube Pro (ATMO). Lower pictures: SODAQ NO2 (left), Habitatmap Airbeam (middle) and 

BCmeter (right). 

It should be noted that BCmeter can be considered as a research prototype for stationary 

measurements (wifi, power cable), and was only evaluated in the field co-location campaign. In order 

to obtain a portable BCmeter, additional hardware/software development will be needed. 

2.2. Benchmarking Protocol 

The purchased sensor systems were evaluated under controlled (laboratory) and real-life (field) 

conditions (Figure 2). Field benchmarking included a mobile test on a cargo bike and a 3-month co-

location campaign at a regulatory urban background (R801) air quality monitoring station in 

Antwerp, Belgium. 

 

Figure 2. Pictures of the laboratory PM exposure chamber (left), mobile field test with cargo bike 

(middle) and field co-location (right) campaign at an urban background monitoring station. 

2.2.1. Laboratory Test Protocol 

Laboratory tests were performed for both PM and NO2.Test levels and test conditions for NO2 

were based on the  CEN/TS 17660-1:2021. For PM we included a laboratory test to evaluate the 

potential of the sensor to measure the coarse fraction (PM2.5–10 = PM10- PM2.5) because it is known that 

some low-cost sensor calculate PM10 concentrations based on the measured concentrations of PM2.5) 

and sensors can have various response characteristics regarding size selectivity [26, 27]. For PM2.5 and 

PM10, we evaluated: 

• Lack of fit (linearity) at setpoints 0, 30, 40, 60, 130, 200 and 350 µg/m³ (PM10, dolomite dust). A 

Palas Particle dispenser (RBG 100) system connected to a fan-based dilution system and 

aluminium PM exposure chamber was used.  

• Sensitivity of PM sensor to the coarse (2.5-10µm) particle fraction. We dosed sequentially 7.750 

µm and 1.180 µm-sized monodisperse dust (silica nanospheres with density of 2 g/cm3) using 

an aerosolizer (from the Grimm 7.851 aerosol generator system connected to a fan-based dilution 

system and an aluminium PM exposure chamber with fans to have homogeneous PM 

LAB MOBILE FIELD 
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concentrations.. This testing protocol is currently considered to be included in the CEN/TS 

17660-2 (in preparation) on performance targets for PM sensors. 

Based on the lack of fit results, the comparability against the reference is evaluated from the 

resulting linearity (R²), accuracy (%), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Mean Bias Error (MBE) and Expanded Uncertainty (Uexp). As reference instrument, we used a 

Grimm 11-D with heated sampling inlet line (EDM 264, Grimm). 

The comparability between the sensors can be regarded as the observed variability between 

sensors of the same type and is calculated by the between-sensor-uncertainty (BSU): 

𝐵𝑆𝑈𝑠𝑒𝑛𝑠𝑜𝑟 = √
∑ ∑ (𝑠𝑒𝑛𝑠𝑜𝑟𝑖𝑗−𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖)

2𝑘
𝑗=1

𝑛
𝑖=1

(𝑛−1)
 (1) 

with n the number of sensors (3) and k the number of measurements.  

In addition, we calculated the minimal and maximal observed Pearson correlation (r) and MAE 

(µg/m³) between the sensors of the same brand in order to evaluate the intra-sensor comparability. 

For NO2, we evaluated: 

• Lack of fit (linearity) at setpoints of 0, 40, 100, 140 and 200 μg/m³. 

• Sensor sensitivity to relative humidity at 15, 50, 70 and 90% (±5%) during stable temperature 

conditions of 20 ± 1°C.  

• Sensor sensitivity to temperature at -5, 10, 20 and 30 °C (±3°C) during stable relative humidity 

conditions of 50 ± 5% 

• Sensor cross-sensitivity to ozone (120 µg/m³) at zero and 100 µg/m³  

• Sensor response time under rapidly changing NO2 concentrations (from 0 to 200 µg/m³). 

From the lack of fit tests, the comparability against the reference was evaluated from the 

resulting linearity (R²), accuracy (%), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Mean Bias Error (MBE) and Expanded Uncertainty (Uexp). 

In addition, we evaluated sensor stability (standard deviation at each setpoint) and intra-sensor 

comparability by calculating the between-sensor-uncertainty (BSU). As reference instrument, we 

applied a Thermo Scientific 42iQ-TL chemiluminescence monitor (Thermo Fisher, USA). 

2.2.2. Mobile Field Test 

The mobile field test aimed at testing the GPS accuracy of the sensor systems along a ~10 km 

trajectory within the varying urban landscape (street canyons, open parks, tunnels, …) of Antwerp, 

Belgium (Figure 3). GPS accuracy was evaluated by calculating the average horizontal distance (m) 

of the high-resolution mobile GPS measurements to a reference GPS track. The reference GPS track 

was determined by evaluating 3 different GPS platforms (TomTom Runner2, Garmin Edge 810 and 

Komoot smartphone application), and selecting the best performing one as reference GPS trajectory. 
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Figure 3. Mobile field trajectory of 10.4km in the city center of Antwerp, Belgium, cycled with the 

cargo bike (upper), with associated pictures (lower panel) showing the variety in urban landscape. 

2.2.3. Field Co-Location Campaign 

During the field co-location campaign, the considered sensor systems were exposed for a period 

of 3 months (7/9/2022-5/12/2022) to ambient pollutant concentrations in an actively-vented outdoor 

shelter, deployed on top (near the air inlets) of a regulatory urban background monitoring station 

(R801) in Antwerp, Belgium. The collected raw (RAW) and lab-calibrated (LAB CAL; linear 

calibration based on lack-of-fit) sensor data was subsequently evaluated for: 

• Hourly data coverage (%) 

• Timeseries plot: RAW & LAB CAL 

• Scatter plot: RAW & LAB CAL 

• Comparability between sensors: Between sensor uncertainty (BSU) 

• Comparability with reference (hourly): R², RMSE, MAE, MBE 

• Expanded uncertainty (non-parametric): Uexp (%) 

In addition we evaluated the sensitivity of the sensors (R², RMSE, MAE, MBE) towards the (real-

life) coarse particulate fraction (PM10-PM2.5) and the impact of a 2-week field co-location calibration 

(FIELD CAL; linear calibration for PM and multilinear for NO2) on the resulting sensor performance 

and compared the field calibration performance to the lab calibration performance. 

3. Results 

3.1. Laboratory Test 

3.1.1. PM 

Due to the varying monitoring resolutions of the sensor systems (2 sec - 5min; Supplementary 

S1), all data was temporally aggregated to a 1-minute resolution and merged with the reference 

(Grimm 11D) data. The SODAQ Air and NO2 apply a 5 minute resolution when stationary and change 

automatically to ~10 seconds when mobile, resulting in fewer datapoints in the laboratory test. The 

GeoAir experienced power supply issues during the lack-of-fit measurements (insufficient amperage 

from applied USB hubs), resulting in data loss for all sensors. Setpoint averages (µg/m³) were 

calculated from the most stable concentration periods (final 15 minutes of each 1-hour setpoint). From 

these setpoint averages, lack-of-fit curves were generated and regression coefficients (slope + 

intercept (y=a*x+b) and slope only (y=a*x)) and sensor accuracy (%) calculated. All results are shown 

per sensor system and subsequently presented in an overview table. 
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All sensor systems respond nicely to the increasing particle concentrations inside the PM 

exposure chamber, resulting in a generally good linearity between sensor and reference (R² = 0.96-1). 

Nevertheless, most of the sensor systems seemed to underestimate the actual PM2.5 and PM10 

concentrations, while overestimating the PM1 particle size fraction. Mean setpoint accuracy (mean of 

different setpoint accuracies) varied between 82-85% for PM1, 63-69% for PM2.5 and 28-31% for PM10 

(ATMOTUBE), 12-28% for PM1, 76-84% for PM2.5 and 45-51 for PM10 (TERA PM SCAN), 80-86% for 

PM1, 53-56% for PM2.5 and 22-23 for PM10 (OPEN SENECA), 31-94% for PM1, 48-95% for PM2.5 and 20-

43 for PM10 (SODAQ AIR), 60-77% for PM1, 35-70% for PM2.5 and 13-29 for PM10 (SODAQ NO2) and 

63% for PM1, 29% for PM2.5 and 13% for PM10 (2BTECH PAM). Calculated setpoint averages and 

derived lack-of-fit curves for PM1, PM2.5 and PM10 can be found in Supplementary S2 and S3. Average 

regression coefficients (slope and intercept) and R² statistics are provided for each sensor system and 

particle size fraction. 

From Figure 4, it can be observed that the between-sensor uncertainty (BSU) is larger for the 

SODAQ AIR (3.96 µg/m³) and NO2 (no simultaneous data), when compared to ATMOTUBE (1.52 

µg/m³), OPEN SENECA (1.21 µg/m³) and TERA PM (1.64 µg/m³). For the 2BTech PAM, this could 

not be evaluated as we had only one device available. 

  

  

  

Figure 4. PM2.5 concentrations generated during the lack-of-fit tests and measured concentrations by 

the different sensor systems (1-3; green-blue-red) and the reference monitor (Grimm; purple). 

After applying a linear lab calibration (based on lack-of-fit regression coefficients), all sensor 

systems fell within expanded uncertainty <50% for PM2.5, which is the data quality objective for 

indicative (Class 1) sensor systems (cfr. CEN/TS 17660-1 for gases). 

Recent research showed that particle sensors exhibit low sensitivity in the coarse particle size 

range (2.5-10µm) [28, 29]. Therefore, a test procedure was developed to evaluate sensor sensitivity to 

the coarse fraction and to evaluate if sensors really measure PM10 rather than extrapolating it from 

the PM2.5 signal. We expose the sensors to monodisperse dust (silica microspheres) of consecutively 

7.75 µm and 1.18 µm (fine) diameters. We finetuned the settings of the aerosolizer to reach 

representative (~100-150 µg/m³) PM10 concentrations by generating dust pulses every 30 seconds 
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during a 5 minute period. The idea is to simulate conditions with mainly fine (‘Fine test cond.’) and 

mainly coarse aerosol (‘Coarse test cond.’) respectively. Two representative 5-minute periods (1 

coarse test, 1 fine test) were subsequently selected and evaluated by calculating the dust composition 

(% coarse), PM10, PM2.5 and PMcoarse sensor/REF ratios and 2 relative change metrics (%):  

• Relative change (%) in fractional (coarse vs fine) sensor/REF ratio during respective fine and 

coarse test conditions 

𝑅𝑒𝑙𝑃𝑀𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙
(%) =

(
𝑃𝑀10−2.5 (𝑠𝑒𝑛,𝐶𝑂𝐴𝑅𝑆𝐸)

𝑃𝑀10−2.5 (𝑅𝐸𝐹,𝐶𝑂𝐴𝑅𝑆𝐸)
−

𝑃𝑀2.5 (𝑠𝑒𝑛,𝐹𝐼𝑁𝐸)

𝑃𝑀2.5 (𝑅𝐸𝐹,𝐹𝐼𝑁𝐸)
)

𝑃𝑀2.5 (𝑠𝑒𝑛,𝐹𝐼𝑁𝐸)

𝑃𝑀2.5 (𝑅𝐸𝐹,𝐹𝐼𝑁𝐸)

∗ 100 (2) 

• Relative change (%) in PM10 sensor/REF ratio between fine and coarse test conditions 

𝑅𝑒𝑙𝑃𝑀10
(%) =

(
𝑃𝑀10 (𝑠𝑒𝑛,𝐶𝑂𝐴𝑅𝑆𝐸)

𝑃𝑀10 (𝑅𝐸𝐹,𝐶𝑂𝐴𝑅𝑆𝐸)
−

𝑃𝑀10 (𝑠𝑒𝑛,𝐹𝐼𝑁𝐸)

𝑃𝑀10 (𝑅𝐸𝐹,𝐹𝐼𝑁𝐸)
)

𝑃𝑀10 (𝑠𝑒𝑛,𝐹𝐼𝑁𝐸)

𝑃𝑀10 (𝑅𝐸𝐹,𝐹𝐼𝑁𝐸)

∗ 100  (3) 

The sensor systems tend to visually pick up fine particle spikes but appeared far less responsive 

to the coarse fraction spikes (Figure 5). Note that in both fine and coarse generation spikes, PM2.5 is 

present. Similar responses are observed between the different sensor systems, which is not surprising 

as all sensors are ultimately based on three original equipment manufacturer (OEM) sensors, namely 

Sensirion SPS30, Plantower PMS and TERA next-PM. From the calculated change ratios in 

Supplementary S4, the sensor/REF ratio changed significantly between the considered particle size 

conditions (73-100%), with all sensors showing very low sensitivity towards the coarse particle size 

fraction (PMcoarse sensor/REF ratio between 0-0.11 in Supplementary S4). 

 

  

Figure 5. Coarse PM testing procedure with consecutive 5-minute generation periods of coarse (7.75 

µm) and fine (1.18 µm) PM peaks (upper panel; measured by Grimm REF monitor) and resulting 

ATMOTUBE and OPEN SENECA sensor response (µg/m³) in the lower panels. 

3.1.2. NO2 

For all sensors containing a NO2 sensor (3/10), lack-of-fit tests were conducted on three days 

(12/8, 14/8 and 15/8) at concentrations ramping between 0 and 200 µg/m³ (Figure 6). Due to the 

varying monitoring resolutions of the sensor systems (2 sec - 5min), all data was temporally 

FINE COARSE 
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aggregated to 1-minute resolution and merged with the reference data (Thermo NOx analyzer). 

Setpoint averages were calculated based on steady-state conditions (final 1.5-hour considering a 15-

minute buffer period before each setpoint change). From these setpoint averages, lack-of-fit plots 

were generated, regression coefficients (slope + intercept (y=a*x+b) and slope only (y=a*x)), sensor 

stability (µg/m³) and setpoint accuracy (%) calculated. The SODAQ NO2 showed significant noise 

and data connectivity issues, resulting in a low stability (5-80 µg/m³) and setpoint accuracy (-113-

254%). Moreover, sensor readings were inversely correlated (R²=0.03-0.18) to the actual NO2 

concentrations (Figure 6), with a poor between-sensor uncertainty (BSU) of 125 µg/m³. This out-of-

the-box performance can be considered as inadequate. Potential calibration is hindered by the high 

signal noise, while sensor boxes showed connectivity issues and high BSU. The 2BTech PAM (only 

one unit available) was positively correlated with the generated NO2 concentrations, with a mean 

setpoint accuracy of 72%, but exhibited significant noise and extreme peak values during the lack-of-

fit test resulting in low sensor stability of 27 µg/m³. The DST Observair (one unit available) is not pre-

calibrated by the supplier and relies on co-location calibration in the field. The uncalibrated sensor 

readings during the lack-of-fit test varied between -0.03 and 0.03 µg/m³ and showed a negative linear 

response to the increasing NO2 concentration steps. Compared to the SODAQ NO2 and PAM, the 

Observair exhibits much lower signal noise, resulting in better stability (<0.01 µg/m³) and better 

calibration potential. After calibration, the expanded uncertainty (Uexp) of the Observair (65%) 

outperforms the observed accuracies of the SODAQ NO2 (415-490%) and PAM (80%). Nevertheless, 

the considered NO2 sensors do not classify for the Class 1 uncertainty objective of <25% (CEN/TS 

17660-1). 

  

  

  

Figure 6. NO2 concentrations generated during the lack-of-fit tests and measured raw (left) and lab 

calibrated (right) concentrations by the SODAQ NO2 (1-3; upper), PAM (middle), Observair (lower) 

and the reference monitor (Thermo NOx analyzer). 
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The impact from a changing relative humidity (0-50-75-90%) at zero and span concentration 

resulted in similar responses (Supplementary S7), with initial peak responses with every setpoint 

change followed by a subsequent stabilization (transient effect), under different levels of noisiness 

(Observair<PAM<SODAQ NO2). Similar responses can be explained by the underlying OEM sensor 

(Alphasense NO2-B43F) which is similar for all NO2 sensor systems. Similar transient effects 

(Supplementary S8) were observed under varying temperatures (-5, 10, 20 and 30°C), both at zero 

and span concentration. 

To evaluate response time to rapidly changing NO2 concentrations, sensors were placed in glass 

tubes that allowed for rapid concentration changes between 0-200 µg/m³ (Supplementary S9). The 

smaller volume of the glass tubes (compared to the NO2 exposure chamber), only allowed evaluation 

of the Observair and PAM sensor as the SODAQ NO2 boxes didn’t fit in the glass tubes. 30-minute 

setpoints (0 and 200 µg/m³) were considered and lab-calibrated sensor data was compared to the 1-

minute data from the Thermo NOx analyzer. Averages and 90-percentiles (90% of max concentration) 

concentrations were determined for each 200 µg/m³ plateau, and the associated response time, i.e. 

time needed to reach 90% concentration was calculated for each sensor system (and reference 

analyzer). The resulting response times derived from the 3 consecutive 0-200 plateaus are provided 

in Supplementary S9 and varied between 1-2 minutes for the sensor systems and 3 minutes for the 

Thermo NOx reference analyzer. 

An overview of the observed quantitative performance metrics for each of the sensor systems 

during the laboratory testing is provided in Table 1. 

Table 1. Overview of out-of-the-box performance (accuracy, stability, MAE, R², Uexp and BSU) 

obtained for each sensor system and pollutant (PM and NO2) during the laboratory tests. 
 

SENSOR SYSTEM Accuracy (%) MAE R² Uexp BSU   
PM1 PM2.5 PM10 µg/m³ - % µg/m³ 

PM 

ATMOTUBE (3) 84 65 29 10.0 0.98 47 1.5 

OPEN SENECA (3) 83 54 22 12.6 0.99 55 1.2 

TERA (3) 18 79 47 5.2 1.00 25 1.6 

SODAQ AIR (3) 64 70 31 8.9 0.99 40 4.0 

SODAQ NO2 (3) 68 52 21 10.9 0.99 45 NA 

GeoAir (3) NA NA NA NA NA NA NA 

PAM (1) 63 29 13 17.3 0.96 79 NA 
 

SENSOR SYSTEM Accuracy Stability 
 

MAE R² Uexp BSU   
% µg/m³ 

 
µg/m³ - % µg/m³ 

NO2 

SODAQ NO2 (3) -166 51 
 

270.3 0.11 304 124.7 

PAM (1) 72 27 
 

49.5 0.13 110 NA 

Observair (1) 0 0 
 

79.0 0.98 112 NA 

3.2. Mobile Field Test 

All sensors were mounted on top (in the free airflow) of a cargo bike. Package sleeves were 

applied to damp vibrations of the cargo-bike whilst cycling. Besides the sensors, two mid-range 

instruments namely a Grimm 11D (PM; without heated inlet) and MA200 (BC) were placed inside 

the cargo bike with air inlets at the height of the sensors. Finally, the cargo bike was equipped with 3 

different GPS instruments (Garmin 810 Edge, TomTom Runner 2, Komoot smartphone application). 

The TomTom track showed the highest monitoring resolution (1 sec) and horizontal accuracy and 

was, therefore, selected as reference track. The exhibited PM2.5 concentration variability (measured by 

the Grimm) ranged between 4.8 and 133.3 µg/m³, while the BC (measured by the MA200) varied 

between 0.4 and 4.4 µg/m³ (Supplementary S10). While highest PM2.5 concentrations were observed 
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at a housing façade construction site, highest BC concentrations were obtained when cycling 

downwind of a busy highway (E313/E34). When plotting all sensor tracks on a map (Figure 7), the 

GPS accuracy performs visually better in open areas, compared to narrow and/or high street canyons. 

A higher height/width ratio seems to result in lower GPS accuracy. GPS accuracy deteriorates as well 

when moving through tunnels. 

 

Figure 7. Left: GPS tracks of the considered sensor systems (dots) and reference GPS track (blue line). 

Right: Application of horizontal accuracy (distance to reference GPS track) calculation. 

When calculating the average horizontal accuracy (m) as average distance to the reference track 

in QGIS (Figure 7), the horizontal accuracy was generally good achieving a <10m horizontal accuracy 

for all sensor systems (Supplementary 10). Highest horizontal accuracy (2.28 m) was obtained for the 

TERA PMscan, while the lowest horizontal accuracy (8.15 m) was observed for the GeoAir. 

With regard to the measured raw sensor signals (PM/NO2/BC), the mobile deployment (and 

related vibrations), did not seem to result in additional instrument noise or outliers when compared 

to stationary conditions. Moreover, similar hotspots were identified when comparing the sensor 

systems to the high-grade (MA200 and Grimm) monitors (Supplementary S12). 

3.3. Field Co-Location Campaign 

All sensor systems were deployed for 3 months (7/9/2022 – 5/12/2022) in an actively vented 

exposure shelter on top an urban background monitoring station (R801) in the city center of Antwerp 

(Figure 8). Sensor systems were evenly distributed across the three shelter levels. Different data 

storage and transmission protocols, including automatic cloud upload via GPRS/4G (SODAQ), 

internal SD-card storage (GeoAir), while some sensor systems relied on a smartphone application 

(TERA PMscan, ATMOTube) or a combination of these data transmission protocols (PAM, 

OpenSeneca, Airbeam, Observair). Some sensor systems were not designed for continuous, long-term 

monitoring. TERA PMscan relied on a smartphone application for operation, which resulted in forced 

automatic shutdowns by the smartphone software after some time (~1-2 days), and lack of continuous 

long-term data. The Observair relied on filter replacements for its BC measurement. As the filter 

saturated quickly, the instrument turns in error mode and did not collect any BC or NO2 data. The 

BCmeter also relies on filter replacements. A dedicated 1.5 week campaign (16/11-30/11) was 

therefore set up to evaluate BC (and NO2 from the Observair). The Airbeams arrived later and became 

operational on the 9th of November. Sensor data was offloaded (remotely via web dashboards and 

on-site via SD card readout) weekly to avoid dataloss and a logbook was created to keep track of that 

status and encountered issues. From R801, we collected NO2 (Thermo 42C; µg/m³), O3 (Teledyne 

API400E; µg/m³), PM1, PM2.5, PM10 (Palas FIDAS 200; µg/m³), BC (Thermo MAAP; µg/m³), relative 

humidity (%) and temperature (°C). The hourly data showed a good data availability with hourly 

(n=2132) data coverage of 96.7, 96.6 and 92.9% for, respectively, PM, BC and NO2. 
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Figure 8. Location of the exposure shelter on top of R801 (left), detail of the exposure shelter (middle) 

and positioning of the sensor systems inside the shelter (right). 

PM2.5 concentrations ranged between 1-51 µg/m³ (mean =10.85 µg/m³), while NO2 exhibited 2-

111 µg/m³ (mean = 26 µg/m³). Atmospheric temperature varied between 1 and 27°C (mean = 13°C), 

while relative humidity was within 42 and 100% (mean=83.5%). Temporal pollutant variability 

reflects typical urban pollution dynamics (Supplementary S11), with morning and evening rush hour 

peaks for NO2 and BC, slightly delayed PM peaks with a regional background character and O3 that 

is photochemically formed at low NO2 concentrations and high solar radiation conditions (inversely 

related to NO2). 

For each of the sensor systems, hourly data coverage, linearity (R²), accuracy, expanded 

uncertainty, impacts from lab and field calibration and sensor drift (sensor/REF ratio) over time was 

evaluated (Table 2). For PM sensor systems, the sensitivity towards the coarse particle fraction (PM10-

PM2.5) and impact from respectively lab- and field calibrations were additionally evaluated. PM field 

calibration was based on slope/intercept derivation during a training period (first 2 weeks: 7/9/2022-

21/9/2022) and evaluated based on the remaining 2.5 months of data (22/9/2022-5/12/2022). For NO2 

sensor systems, a multilinear field calibration model was trained with covariates for sensor response, 

temperature, RH and O3, following earlier sensor calibration studies [30-32]. Model training was 

based on 2 weeks of co-location data and the calibration performance was tested on the remaining 2 

months of test data. This multilinear field calibration outperformed the raw and lab-derived 

calibrations for all NO2 sensor systems. Lab-derived calibrations did not hold in field conditions, 

which is not surprising as field conditions are different in terms of PM composition and 

meteorological conditions (temperature, relative humidity). Compared to the observed PM2.5 

performance in Table 2, performance decreases for PM10 (R²=0.6-0.62, MAE=12.6 µg/m³) and the 

association is entirely lost (R²=0-0.01) when focusing on the coarse fraction (PMcoarse=PM10-PM2.5) 

confirming the lack of sensitivity in the coarse particle size fraction. For PM2.5, general good 

correlations (R² = 0.7-0.9), varying accuracies (MAE=3-4.7 µg/m³) and low between-sensor 

uncertainties (0.1-0.7 µg/m³) were observed. The accuracy worsened by applying the lab calibration 

but was optimized further for all sensor systems based on the field calibration. No distinct aging 

effect (gradual deviation in sensor/REF ratio) was observed over the 3-month co-location period. An 

overview of the observed quantitative performance metrics based on the hourly-averaged data for 

each of the sensor systems during the field co-location campaign is provided in Table 2. 

Table 2. Overview of quantitative performance metrics (accuracy, stability, MAE, R², Uexp and BSU) 

obtained for each sensor system and pollutant (PM and NO2) during the field-colocation campaign 

(hourly data). 
 

SENSOR SYSTEM Data coverage MAE R² Uexp BSU   
% µg/m³ - % µg/m³ 

PM2.5 ATMOTUBE (3) 76 4.3 0.88 48 0.6 
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OPEN SENECA (3) 100 3.7 0.90 35 0.3 

TERA (3) 17 4.4 0.87 64 0.1 

SODAQ AIR (3) 44 3.1 0.68 16 0.7 

SODAQ NO2 (3) 44 3.8 0.67 40 0.4 

AIRBEAM (3) 53 3.9 0.87 36 0.7 

GeoAir (3) 96 3.0 0.89 28 0.6 

PAM (1) 100 4.7 0.89 66 NA  
SENSOR SYSTEM Data coverage MAE R² Uexp 

 

  
% µg/m³ - % 

 

NO2 

SODAQ NO2_raw (3) 44 190.3 0.42 614 
 

SODAQ NO2_cal (1) 44 27.1 0.62 108 
 

SODAQ NO2_mlcal (1) 44 5.6 0.83 37 

PAM (3) 100 84.1 0.55 284 
 

PAM_cal (1) 100 349.0 0.55 1225 
 

PAM_calml (1) 100 44.2 0.75 44 
 

Observair_raw 78 28.4 0.38 111 
 

Observair_cal 78 28.8 0.38 95 
 

  Observair_mlcal 78 NA NA NA 
 

  
Data coverage MAE R² 

  

  
% µg/m³ - 

  

BC         Observair 78 0.3 0.82 
  

BCmeter 78 0.2 0.83 
  

Hourly PM2.5, NO2 and BC timeseries of the considered sensor systems and reference data are 

provided in Figure 9. 
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Figure 9. Hourly timeseries of PM2.5 , NO2 and BC concentrations measured by the respective sensor 

systems and the reference monitors at the R801 reference background monitoring station. 

4. Discussion 

During this lab and field benchmarking campaign, we collected a lot of quantitative and 

qualitative evidence on the fit-for-purpose of current commercially-available dynamic exposure 

sensor systems. An overview is provided of the observed sensor system performance (hourly 

coverage, accuracy, R², MAE, BSU, stability, Uexp) for the considered pollutants under laboratory 

(Table 1) and real-world (Table 2) conditions. 

For the considered PM sensor systems, out-of-the-box performance is already quite good and 

close to the Class 1 data quality objective (Uexp<50%). In addition, the sensors showed high precision, 

<0.4 µg/m³ in the lab and <0.6 µg/m³ in the field, which allows for multi-sensor (network) applications 

(e.g. [10, 24, 33]). Whether the obtained accuracy is sufficient to characterize PM gradients in urban 

environments (which are typically not that steep) will depend on city to city and should be further 

investigated. In our mobile field test, Grimm measurements showed PM2.5 concentrations along the 

10km trajectory ranging from 4.8 to 133 µg/m³. This exposure variability is, therefore, quantifiable by 

the considered sensor systems with MAE’s of 3-4.7 µg/m³. Highest accuracy was observed for PM1, 

followed by PM2.5 and PM10. The considered sensor systems do not reliably detect the coarse particle 

size fraction. TERA is the only sensor system that seems to pick up some coarse particles (R²=0.3), 

while all other sensors show R² of ~0. Accuracy of PM sensors can be further improved by linear 

slope/intercept calibration. However, we showed that lab calibrations do not hold in the field, as 

previously shown in other studies [8, 10, 30, 34]. A local field calibration (representative pollutant 

and meteorological environment) seems, therefore, crucial to obtain the most reliable sensor data. In 

general the assessed PM performance and observed sensitivities (drift/RH) are very similar between 

the benchmarked PM sensors, which can be explained by similar underlying sensor technology 

(Sensirion SPS30 + Plantower) and lack of applied factory-algorithms. Sensor systems showed 

elevated sensor/REF ratios with increasing relative humidity, as well documented in previous studies 

[30, 35-44]. 

Regarding NO2, out-of-the-box performance was unsatisfactory for direct application, as sensor 

systems suffered from noise (stability) and calibration (negative association) issues. Although 2BTech 

PAM showed the best raw performance, a higher but negative association (R²) and stability was 

observed for Observair. Following a linear laboratory calibration, best performance was, therefore, 

achieved for the Observair. Similar to the PM sensors, linear lab calibrations do not hold in the field. 

For NO2, a local and multilinear field calibration (incorporating covariates for temperature, relative 

humidity and O3 sensitivity) showed to yield acceptable sensor performance (R²=0.75-0.83, MAE=6-

44 µg/m³), as observed in former studies [8, 30, 31, 34, 45]. In this study, we were not able to evaluate 
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the precision of the considered sensor systems. We can, therefore, not conclude anything on network 

applications. 

Regarding BC, both considered sensor systems showed good field performance (R²=0.82-0.83, 

MAE=0.2-0.3 µg/m³), while we should mention that BCmeter can yet not be applied in mobile 

applications (wired power and wifi connectivity). The measurement principle of light attenuation on 

filterstrips has proven to be a robust methodology to measure black carbon in the past [12, 46-51] and 

can be minimized to portable and lower-cost instruments. Moreover, the spatial BC exposure 

variability, measured by the Observair in the mobile field test was in good agreement with the 

Aethlabs MA200 measurements (Supplementary S12). In general, all sensor systems showed a good 

horizontal accuracy (<10m) with no vibration impacts on the sensor readings for all pollutants during 

the mobile field test. 

5. Conclusions 

This study evaluated the fit-for-purpose of commercially available portable sensor systems for 

dynamic exposure assessments in urban environments. We evaluated 10 sensor systems, measuring 

PM, NO2 and/or BC, in both laboratory and real-world conditions. Besides quantitative performance 

assessments, qualitative experience on their portability, data transmission/storage and user 

friendliness were obtained throughout the experiments. Autonomous operation with internal GPS 

(no reliance on app connectivity) and data storage redundancy (SD storage besides cloud or app 

transmission) for example showed to be valuable assets in terms of data coverage. Results of the 

considered sensor systems indicate that out-of-the-box performance is relatively good for PM and 

BC, but maturity of the tested NO2 sensors is still low and additional effort is needed in terms of 

signal noise and calibration. Multivariate calibration under field conditions showed promising 

performance for real-world applications. Future directions for PM and BC should focus on 

applicability (pollutant gradients in urban environments), added-value and user-friendliness (day-

to-day use) of real-world applications, while for NO2 research-proven noise reduction and calibration 

procedures [8, 30, 31, 34, 52-54] should be implemented in commercial instruments to increase the 

level of maturity in the market. This work shows that commercially available portable sensor systems 

have reached a good maturity level for PM and BC, while more work is needed for NO2. More 

accurate and dynamic exposure assessments in contemporary urban environments are crucial to 

study real-world exposure of individuals and the impact on potential health endpoints [14, 55-61]. 

This research will be boosted by the greater availability of mobile monitoring systems capable of 

quantifying urban pollutant gradients. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org, Supplementary S1 Purchased portable sensor systems for the lab and field 

benchmarking study. *PT=prototype, Supplementary S2 Obtained setpoint averages (µg/m³) for each sensor (1-

3) and brand during the lack-of-fit testing for PM1, PM2.5 and PM10, Supplementary S3 Obtained lack-of-fit 

curves and associated linear functions for each sensor (ATMO1-3, TERA1-3, OPEN1-3, AIR1-3 and NO2_1-2; 

upper to lower) for the corresponding PM1, PM2.5 and PM10 particle size fractions (left to right). SODAQ NO2_3 

did not collect any data during the lack-of-fit test and is, therefore, not shown on the graph, Supplementary S4 

Coarse test results obtained on 14/7 (AtmoTube, Open Seneca, GeoAir and SODAQ AIR) and 2/9 (TERA, PAM, 

SODAQ NO2) with observed coarse composition (% coarse), PM10, PM2.5 and PMcoarse sensor/REF ratios, 

fine/coarse change ratio (%; between highlighted columns) and PM10 change ratio (%). *faulty results due to 

peak mismatch, Supplementary S5 Obtained setpoint averages for the considered NO2 sensor systems, 

Supplementary S6 Obtained lack-of-fit curves and associated linear functions for each sensor system; SODAQ 

NO2 (1-3), PAM and Observair, Supplementary S7 Lab-calibrated NO2 sensor response to varying relative 

humidity steps (0-90-75-50-0%) under zero (upper) and span (lower) concentrations, Supplementary S8 Lab-

calibrated NO2 sensor response to varying temperature steps (-5, 10, 20 and 30°C) under zero (upper) and span 

(lower) concentrations, Supplementary S9 Response test setup, NO2 average (AVG), 90-percentile (90%) 

concentration and associated response time (t_90), calculated for the Observair and PAM sensor systems and 

Thermo NOx analyzer, Supplementary S10 Average horizontal accuracy (m) and number of datapoints (n) of 

the considered sensor systems during the mobile field test, Supplementary S11 Temporal pollutant variability 

of PM, BC, NO2 and O3 at R801 during the field co-location campaign. Shadings denote 95% confidence intervals, 
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Supplementary S12 Black carbon (µg/m³) concentration maps generated from the mobile measurements 

conducted by the Aethlabs MA200 and Observair during the mobile field test in Antwerp, Belgium. 
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