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Abstract: This study presents a fit-for-purpose evaluation of commercially available portable sensor systems,
measuring PM, NO:z and/or BC, through extensive lab- and field benchmarking tests. The main aim of the study
is to identify sensor systems that can be used for mobile monitoring by citizens to assess dynamic exposure
in ambient air. After an initial literature study and market search resulting in 39 sensor systems, 10 sensor
systems were ultimately purchased and benchmarked in laboratory and real-word conditions. We evaluated
comparability to reference analyzers, sensor precision and sensitivity to temperature, humidity and Os.
Moreover, we evaluated if accuracy can be improved by the lab and field calibration. Because the targeted
application of the sensor systems under evaluation is mobile monitoring, we conducted a mobile field test in
an urban environment to evaluate the GPS accuracy and potential impacts from vibrations on the resulting
sensor signals. Results of the considered sensor systems indicate that out-of-the-box performance is relatively
good for PM and BC, but maturity of the tested NO: sensors is still low and additional efforts are needed in
terms of signal noise and calibration. The horizontal accuracy of the build-in GPS was generally good achieving
a <10m horizontal accuracy for all sensor systems. More accurate and dynamic exposure assessments in
contemporary urban environments are crucial to study real-world exposure of individuals and exposome
impacts on potential health endpoints. A greater availability of mobile monitoring systems capable of
quantifying urban pollutant gradients will further boost this line of research.
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1. Introduction

Air quality has improved significantly over the past decades. Yet exposure to particulate matter
and nitrogen dioxide in Europe still cause an estimated 253,000 and 52,000 premature deaths per year
[1]. Moreover, continuous worldwide urbanization results in megacities with intrinsic hotspots,
highlighting the importance of proper air pollution monitoring. Currently, the exposure of the
population to air pollution is still determined based on the home address (=static exposure).
However, research has shown that people are exposed to the highest air pollution peaks at times
when they are mobile (e.g. during commutes). Studies using activity-based models or personal
monitors demonstrated that the transport activity, although short in duration, can be responsible for
quite a large part of integrated personal exposure to combustion-related pollutants [2-6]. Therefore,
their exposure during transport must also be taken into account when calculating personal exposure
to air pollution, i.e. dynamic exposure. Research based on an extensive dataset of 20,000 citizens
previously showed that this dynamic exposure estimation is often (64% of the individuals) higher
than the respective static residence-based exposure [7]. Therefore, a better approximation of citizens
dynamic exposure to air pollution is needed through modelling and/or monitoring tools. To assess
exposure in transport environments on a wider scale, mobile monitoring systems are needed that (i)
can easily be used by study participants (e.g. citizens) and (ii) produce reliable data.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Recent advances in sensor and Internet of Things (IoT) technologies have resulted in a wide
range of commercially available “lower-cost” sensor systems that allow for quantification of urban
pollutants, e.g., particulate matter (PMx), nitrogen dioxide (NO2) and ozone (Os), at unprecedented
scale [8]. Portable air quality sensors enable quantification of dynamic exposure, while raising
awareness among citizens about their personal exposure driving behaviour change [9-13]. Moreover,
the obtained mobile data can be used to construct urban exposure maps offering policy makers the
right tools for evidence-based policy measures [8, 14-19]. As Helbig et al. [20] stated; wearable sensing
has two aspects: firstly, the exposure of an individual is recorded, and secondly, individuals act as
explorers of the urban area. While many stationary sensor systems have been evaluated and
benchmarked in previous years [21, 22], mobile sensor systems have different requirements, e.g.
power autonomy (battery), a high monitoring resolution and accurate positioning (GPS). Also, the
sensor signal noise and between-sensor variability should be low enough to be able to measure the
spatial concentration variability at a high temporal resolution (with multiple sensors). Today, many
commercially available portable sensor systems are already on the market, but it is hard to determine
they are fit-for-purpose. This is one of the first studies benchmarking commercially available portable
sensor systems for mobile monitoring applications. The study includes the evaluation of the air
quality sensor data quality performance in lab and field conditions, and during a mobile field test to
evaluate GPS performance, impact of vibrations on the sensor signal and the overall potential to
capture spatial variability in urban environments.

2. Materials and Methods

2.1. Sensor System Selection

Based on an earlier literature study and market survey on air quality sensors [23], a new
literature study with focus on portable air quality sensors (~90 publications), sensor benchmarking
results from independent research institutes (AIRlab, AQ-SPEC, SamenMeten, EPA Air Sensor
Toolbox) and sensor projects (BelAir [24], Snuffelfiets [25],...), a longlist of 39 sensor candidates was
created. This longlist was narrowed down based on a set of predefined requirements (e.g. monitoring
resolution, portability, localization, additional environmental variables like temperature and relative
humidity), resulting in a shortlist of 12 portable sensor systems for which quotation requests were
send out. Ultimately, 10 sensor systems were purchased (Table S1), of which 8/10 contained a PM2s
and PMio sensor, and 3/10 sensor systems contained an additional NO: sensor (SODAQ NOz, DST
Observair and 2BTech PAM). All 10 sensor systems can be regarded as portable air quality sensor
systems, with autonomy (battery), data storage and/or transmission and localization (GPS).
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Figure 1. Considered sensor systems (10) with on the upper picture (from left to right): PAM (2BTech),
GeoAir, Observair (DST), SODAQ Air (SODAQ), PMscan (TERA), Open Seneca (Open Seneca) and
ATMOTube Pro (ATMO). Lower pictures: SODAQ NO2 (left), Habitatmap Airbeam (middle) and
BCmeter (right).

It should be noted that BCmeter can be considered as a research prototype for stationary
measurements (wifi, power cable), and was only evaluated in the field co-location campaign. In order
to obtain a portable BCmeter, additional hardware/software development will be needed.

2.2. Benchmarking Protocol

The purchased sensor systems were evaluated under controlled (laboratory) and real-life (field)
conditions (Figure 2). Field benchmarking included a mobile test on a cargo bike and a 3-month co-
location campaign at a regulatory urban background (R801) air quality monitoring station in
Antwerp, Belgium.

Figure 2. Pictures of the laboratory PM exposure chamber (left), mobile field test with cargo bike
(middle) and field co-location (right) campaign at an urban background monitoring station.

2.2.1. Laboratory Test Protocol

Laboratory tests were performed for both PM and NO:.Test levels and test conditions for NO:
were based on the CEN/TS 17660-1:2021. For PM we included a laboratory test to evaluate the
potential of the sensor to measure the coarse fraction (PMz2s-10 = PMio- PM25) because it is known that
some low-cost sensor calculate PMio concentrations based on the measured concentrations of PM25)
and sensors can have various response characteristics regarding size selectivity [26, 27]. For PM2s and
PMio, we evaluated:

e Lack of fit (linearity) at setpoints 0, 30, 40, 60, 130, 200 and 350 pg/m? (PMio, dolomite dust). A
Palas Particle dispenser (RBG 100) system connected to a fan-based dilution system and
aluminium PM exposure chamber was used.

e  Sensitivity of PM sensor to the coarse (2.5-10pm) particle fraction. We dosed sequentially 7.750
pum and 1.180 pum-sized monodisperse dust (silica nanospheres with density of 2 g/cm3) using
an aerosolizer (from the Grimm 7.851 aerosol generator system connected to a fan-based dilution
system and an aluminium PM exposure chamber with fans to have homogeneous PM


https://doi.org/10.20944/preprints202406.1513.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2024 d0i:10.20944/preprints202406.1513.v1

4

concentrations.. This testing protocol is currently considered to be included in the CEN/TS
17660-2 (in preparation) on performance targets for PM sensors.

Based on the lack of fit results, the comparability against the reference is evaluated from the
resulting linearity (R?), accuracy (%), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Bias Error (MBE) and Expanded Uncertainty (Uexp). As reference instrument, we used a
Grimm 11-D with heated sampling inlet line (EDM 264, Grimm).

The comparability between the sensors can be regarded as the observed variability between
sensors of the same type and is calculated by the between-sensor-uncertainty (BSU):

ynovk (sensor--—average-)z
BSUgensor :\/ == (n_ll; l (1)

with n the number of sensors (3) and k the number of measurements.
In addition, we calculated the minimal and maximal observed Pearson correlation (r) and MAE
(ng/m®) between the sensors of the same brand in order to evaluate the intra-sensor comparability.
For NO», we evaluated:

e Lack of fit (linearity) at setpoints of 0, 40, 100, 140 and 200 pg/m?3.
e  Sensor sensitivity to relative humidity at 15, 50, 70 and 90% (+5%) during stable temperature
conditions of 20 + 1°C.

e  Sensor sensitivity to temperature at -5, 10, 20 and 30 °C (+3°C) during stable relative humidity
conditions of 50 + 5%

e  Sensor cross-sensitivity to ozone (120 ug/m?) at zero and 100 pg/m?
e Sensor response time under rapidly changing NO: concentrations (from 0 to 200 pg/m?).

From the lack of fit tests, the comparability against the reference was evaluated from the
resulting linearity (R?), accuracy (%), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Bias Error (MBE) and Expanded Uncertainty (Uexp).

In addition, we evaluated sensor stability (standard deviation at each setpoint) and intra-sensor
comparability by calculating the between-sensor-uncertainty (BSU). As reference instrument, we
applied a Thermo Scientific 42iQ-TL chemiluminescence monitor (Thermo Fisher, USA).

2.2.2. Mobile Field Test

The mobile field test aimed at testing the GPS accuracy of the sensor systems along a ~10 km
trajectory within the varying urban landscape (street canyons, open parks, tunnels, ...) of Antwerp,
Belgium (Figure 3). GPS accuracy was evaluated by calculating the average horizontal distance (m)
of the high-resolution mobile GPS measurements to a reference GPS track. The reference GPS track
was determined by evaluating 3 different GPS platforms (TomTom Runner2, Garmin Edge 810 and
Komoot smartphone application), and selecting the best performing one as reference GPS trajectory.
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Figure 3. Mobile field trajectory of 10.4km in the city center of Antwerp, Belgium, cycled with the
cargo bike (upper), with associated pictures (lower panel) showing the variety in urban landscape.

2.2.3. Field Co-Location Campaign

During the field co-location campaign, the considered sensor systems were exposed for a period
of 3 months (7/9/2022-5/12/2022) to ambient pollutant concentrations in an actively-vented outdoor
shelter, deployed on top (near the air inlets) of a regulatory urban background monitoring station
(R801) in Antwerp, Belgium. The collected raw (RAW) and lab-calibrated (LAB CAL; linear
calibration based on lack-of-fit) sensor data was subsequently evaluated for:

¢  Hourly data coverage (%)

e  Timeseries plot: RAW & LAB CAL

e  Scatter plot: RAW & LAB CAL

e  Comparability between sensors: Between sensor uncertainty (BSU)
e  Comparability with reference (hourly): R?, RMSE, MAE, MBE

e  Expanded uncertainty (non-parametric): Uexp (%)

In addition we evaluated the sensitivity of the sensors (R?2, RMSE, MAE, MBE) towards the (real-
life) coarse particulate fraction (PM10-PM25) and the impact of a 2-week field co-location calibration
(FIELD CAL; linear calibration for PM and multilinear for NO:) on the resulting sensor performance
and compared the field calibration performance to the lab calibration performance.

3. Results
3.1. Laboratory Test

3.1.1.PM

Due to the varying monitoring resolutions of the sensor systems (2 sec - 5min; Supplementary
S1), all data was temporally aggregated to a 1-minute resolution and merged with the reference
(Grimm 11D) data. The SODAQ Air and NO:z apply a 5 minute resolution when stationary and change
automatically to ~10 seconds when mobile, resulting in fewer datapoints in the laboratory test. The
GeoAir experienced power supply issues during the lack-of-fit measurements (insufficient amperage
from applied USB hubs), resulting in data loss for all sensors. Setpoint averages (pg/m®) were
calculated from the most stable concentration periods (final 15 minutes of each 1-hour setpoint). From
these setpoint averages, lack-of-fit curves were generated and regression coefficients (slope +
intercept (y=a*x+b) and slope only (y=a*x)) and sensor accuracy (%) calculated. All results are shown
per sensor system and subsequently presented in an overview table.
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All sensor systems respond nicely to the increasing particle concentrations inside the PM
exposure chamber, resulting in a generally good linearity between sensor and reference (R? = 0.96-1).
Nevertheless, most of the sensor systems seemed to underestimate the actual PM2s and PMio
concentrations, while overestimating the PM1 particle size fraction. Mean setpoint accuracy (mean of
different setpoint accuracies) varied between 82-85% for PMi, 63-69% for PM2s and 28-31% for PMuio
(ATMOTUBE), 12-28% for PM1, 76-84% for PMzsand 45-51 for PMio (TERA PM SCAN), 80-86% for
PM1, 53-56% for PMzsand 22-23 for PMio (OPEN SENECA), 31-94% for PM, 48-95% for PM2sand 20-
43 for PMio (SODAQ AIR), 60-77% for PMi, 35-70% for PM2s and 13-29 for PM1 (SODAQ NO:) and
63% for PMi, 29% for PMzs and 13% for PM1 (2BTECH PAM). Calculated setpoint averages and
derived lack-of-fit curves for PM1, PM2sand PMio can be found in Supplementary S2 and S3. Average
regression coefficients (slope and intercept) and R? statistics are provided for each sensor system and
particle size fraction.

From Figure 4, it can be observed that the between-sensor uncertainty (BSU) is larger for the
SODAQ AIR (3.96 ug/m®) and NO: (no simultaneous data), when compared to ATMOTUBE (1.52
pg/m?3), OPEN SENECA (1.21 pg/m3) and TERA PM (1.64 ug/m?). For the 2BTech PAM, this could
not be evaluated as we had only one device available.

Concenrateniygm

Figure 4. PM2s5 concentrations generated during the lack-of-fit tests and measured concentrations by
the different sensor systems (1-3; green-blue-red) and the reference monitor (Grimm; purple).

After applying a linear lab calibration (based on lack-of-fit regression coefficients), all sensor
systems fell within expanded uncertainty <50% for PMas, which is the data quality objective for
indicative (Class 1) sensor systems (cfr. CEN/TS 17660-1 for gases).

Recent research showed that particle sensors exhibit low sensitivity in the coarse particle size
range (2.5-10um) [28, 29]. Therefore, a test procedure was developed to evaluate sensor sensitivity to
the coarse fraction and to evaluate if sensors really measure PMuo rather than extrapolating it from
the PM:s signal. We expose the sensors to monodisperse dust (silica microspheres) of consecutively
775 ym and 1.18 um (fine) diameters. We finetuned the settings of the aerosolizer to reach
representative (~100-150 pg/m3) PMio concentrations by generating dust pulses every 30 seconds


https://doi.org/10.20944/preprints202406.1513.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 June 2024 d0i:10.20944/preprints202406.1513.v1

during a 5 minute period. The idea is to simulate conditions with mainly fine (‘Fine test cond.”) and
mainly coarse aerosol (‘Coarse test cond.”) respectively. Two representative 5-minute periods (1
coarse test, 1 fine test) were subsequently selected and evaluated by calculating the dust composition
(% coarse), PMio, PM2sand PMcoarse sensor/REF ratios and 2 relative change metrics (%):

¢ Relative change (%) in fractional (coarse vs fine) sensor/REF ratio during respective fine and
coarse test conditions

( PM10_3.5 (sen,COARSE) PM25 (sen,FINE)
PM10—2.5 (REF,COARSE) PM32 5 (REF,FINE)
PM3 5 (sen,FINE)
PM3 5 (REF,FINE)

¢ Relative change (%) in PM1o sensor/REF ratio between fine and coarse test conditions

) x100  (2)

0, —
RelPMfractional ( /0) -

(PM 10 (sen,COARSE) PM19 (sen,FINE)

PM10 (REF,COARSE) PM10 (REF FINE)

0, = - - *

RelPMm (%) PM1¢ (sen,FINE) 100 €)
PM10 (REF,FINE)

The sensor systems tend to visually pick up fine particle spikes but appeared far less responsive
to the coarse fraction spikes (Figure 5). Note that in both fine and coarse generation spikes, PMas s
present. Similar responses are observed between the different sensor systems, which is not surprising
as all sensors are ultimately based on three original equipment manufacturer (OEM) sensors, namely
Sensirion SPS30, Plantower PMS and TERA next-PM. From the calculated change ratios in
Supplementary 54, the sensor/REF ratio changed significantly between the considered particle size
conditions (73-100%), with all sensors showing very low sensitivity towards the coarse particle size
fraction (PMcoarse sensor/REF ratio between 0-0.11 in Supplementary S4).
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Figure 5. Coarse PM testing procedure with consecutive 5-minute generation periods of coarse (7.75
pum) and fine (1.18 um) PM peaks (upper panel; measured by Grimm REF monitor) and resulting
ATMOTUBE and OPEN SENECA sensor response (ug/m?) in the lower panels.

3.1.2. NOz

For all sensors containing a NO2 sensor (3/10), lack-of-fit tests were conducted on three days
(12/8, 14/8 and 15/8) at concentrations ramping between 0 and 200 pg/m? (Figure 6). Due to the
varying monitoring resolutions of the sensor systems (2 sec - 5min), all data was temporally
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aggregated to 1-minute resolution and merged with the reference data (Thermo NOx analyzer).
Setpoint averages were calculated based on steady-state conditions (final 1.5-hour considering a 15-
minute buffer period before each setpoint change). From these setpoint averages, lack-of-fit plots
were generated, regression coefficients (slope + intercept (y=a*x+b) and slope only (y=a*x)), sensor
stability (pg/m?3) and setpoint accuracy (%) calculated. The SODAQ NO2 showed significant noise
and data connectivity issues, resulting in a low stability (5-80 pg/m?®) and setpoint accuracy (-113-
254%). Moreover, sensor readings were inversely correlated (R?=0.03-0.18) to the actual NO:
concentrations (Figure 6), with a poor between-sensor uncertainty (BSU) of 125 pg/m?. This out-of-
the-box performance can be considered as inadequate. Potential calibration is hindered by the high
signal noise, while sensor boxes showed connectivity issues and high BSU. The 2BTech PAM (only
one unit available) was positively correlated with the generated NO2 concentrations, with a mean
setpoint accuracy of 72%, but exhibited significant noise and extreme peak values during the lack-of-
fit test resulting in low sensor stability of 27 pg/m?3. The DST Observair (one unit available) is not pre-
calibrated by the supplier and relies on co-location calibration in the field. The uncalibrated sensor
readings during the lack-of-fit test varied between -0.03 and 0.03 pg/m?® and showed a negative linear
response to the increasing NO: concentration steps. Compared to the SODAQ NO2 and PAM, the
Observair exhibits much lower signal noise, resulting in better stability (<0.01 pg/m?®) and better
calibration potential. After calibration, the expanded uncertainty (Uexp) of the Observair (65%)
outperforms the observed accuracies of the SODAQ NO2 (415-490%) and PAM (80%). Nevertheless,
the considered NO:2 sensors do not classify for the Class 1 uncertainty objective of <25% (CEN/TS
17660-1).

Concentraton(ug/m’)

Date
SODAQ NO, 1 SODAQ NO; 2 S0DAQ NO, 3 Thermo

Concentration{ug/m’)

Aug 140000 Aug 140800 Aug 141200 Aug 14 1800 Aug 150000 Aug 150800 Aug 151200 Aug 15 18.00
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Figure 6. NO: concentrations generated during the lack-of-fit tests and measured raw (left) and lab
calibrated (right) concentrations by the SODAQ NO2 (1-3; upper), PAM (middle), Observair (lower)
and the reference monitor (Thermo NOx analyzer).
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The impact from a changing relative humidity (0-50-75-90%) at zero and span concentration
resulted in similar responses (Supplementary S7), with initial peak responses with every setpoint
change followed by a subsequent stabilization (transient effect), under different levels of noisiness
(Observair<PAM<SODAQ NO). Similar responses can be explained by the underlying OEM sensor
(Alphasense NO2-B43F) which is similar for all NO: sensor systems. Similar transient effects
(Supplementary S8) were observed under varying temperatures (-5, 10, 20 and 30°C), both at zero
and span concentration.

To evaluate response time to rapidly changing NO: concentrations, sensors were placed in glass
tubes that allowed for rapid concentration changes between 0-200 pg/m? (Supplementary S9). The
smaller volume of the glass tubes (compared to the NO2 exposure chamber), only allowed evaluation
of the Observair and PAM sensor as the SODAQ NO: boxes didn't fit in the glass tubes. 30-minute
setpoints (0 and 200 pug/m?3) were considered and lab-calibrated sensor data was compared to the 1-
minute data from the Thermo NOx analyzer. Averages and 90-percentiles (90% of max concentration)
concentrations were determined for each 200 pug/m? plateau, and the associated response time, i.e.
time needed to reach 90% concentration was calculated for each sensor system (and reference
analyzer). The resulting response times derived from the 3 consecutive 0-200 plateaus are provided
in Supplementary S9 and varied between 1-2 minutes for the sensor systems and 3 minutes for the
Thermo NOx reference analyzer.

An overview of the observed quantitative performance metrics for each of the sensor systems
during the laboratory testing is provided in Table 1.

Table 1. Overview of out-of-the-box performance (accuracy, stability, MAE, R?, Uexp and BSU)
obtained for each sensor system and pollutant (PM and NO2) during the laboratory tests.

SENSOR SYSTEM Accuracy (%) MAE Rz  Uexp BSU
PM: PM:s PMwo  pg/m? - % pug/m?3
ATMOTUBE (3) 84 65 29 10.0 0.98 47 1.5
OPEN SENECA (3) 83 54 22 12.6 0.99 55 1.2
TERA (3) 18 79 47 52 1.00 25 1.6
PM | SODAQ AIR (3) 64 70 31 8.9 0.99 40 4.0
SODAQ NO2 (3) 68 52 21 10.9 0.99 45 NA
GeoAir (3) NA NA NA NA NA NA NA
PAM (1) 63 29 13 17.3 0.96 79 NA
SENSOR SYSTEM = Accuracy Stability MAE R? Uexp BSU
%o ug/m? pg/m* - % pg/m’
SODAQ NO2 (3) -166 51 270.3 0.11 304 124.7
NO: PAM(1) 72 27 49.5 0.13 110 NA
Observair (1) 0 0 79.0 0.98 112 NA

3.2. Mobile Field Test

All sensors were mounted on top (in the free airflow) of a cargo bike. Package sleeves were
applied to damp vibrations of the cargo-bike whilst cycling. Besides the sensors, two mid-range
instruments namely a Grimm 11D (PM; without heated inlet) and MA200 (BC) were placed inside
the cargo bike with air inlets at the height of the sensors. Finally, the cargo bike was equipped with 3
different GPS instruments (Garmin 810 Edge, TomTom Runner 2, Komoot smartphone application).
The TomTom track showed the highest monitoring resolution (1 sec) and horizontal accuracy and
was, therefore, selected as reference track. The exhibited PM2s concentration variability (measured by
the Grimm) ranged between 4.8 and 133.3 ug/m? while the BC (measured by the MA200) varied
between 0.4 and 4.4 ug/m? (Supplementary S10). While highest PM25 concentrations were observed
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at a housing facade construction site, highest BC concentrations were obtained when cycling
downwind of a busy highway (E313/E34). When plotting all sensor tracks on a map (Figure 7), the
GPS accuracy performs visually better in open areas, compared to narrow and/or high street canyons.
A higher height/width ratio seems to result in lower GPS accuracy. GPS accuracy deteriorates as well
when moving through tunnels.

\
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© NO2_sel >
© PAM _sel ‘
©® TERA sel
© OPEN_sel
% = ® Observair_sel
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(L @ ATMO sel a
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Figure 7. Left: GPS tracks of the considered sensor systems (dots) and reference GPS track (blue line).
Right: Application of horizontal accuracy (distance to reference GPS track) calculation.

When calculating the average horizontal accuracy (m) as average distance to the reference track
in QGIS (Figure 7), the horizontal accuracy was generally good achieving a <10m horizontal accuracy
for all sensor systems (Supplementary 10). Highest horizontal accuracy (2.28 m) was obtained for the
TERA PMscan, while the lowest horizontal accuracy (8.15 m) was observed for the GeoAir.

With regard to the measured raw sensor signals (PM/NO2/BC), the mobile deployment (and
related vibrations), did not seem to result in additional instrument noise or outliers when compared
to stationary conditions. Moreover, similar hotspots were identified when comparing the sensor
systems to the high-grade (MA200 and Grimm) monitors (Supplementary 512).

3.3. Field Co-Location Campaign

All sensor systems were deployed for 3 months (7/9/2022 — 5/12/2022) in an actively vented
exposure shelter on top an urban background monitoring station (R801) in the city center of Antwerp
(Figure 8). Sensor systems were evenly distributed across the three shelter levels. Different data
storage and transmission protocols, including automatic cloud upload via GPRS/4G (SODAQ),
internal SD-card storage (GeoAir), while some sensor systems relied on a smartphone application
(TERA PMscan, ATMOTube) or a combination of these data transmission protocols (PAM,
OpenSeneca, Airbeam, Observair). Some sensor systems were not designed for continuous, long-term
monitoring. TERA PMscan relied on a smartphone application for operation, which resulted in forced
automatic shutdowns by the smartphone software after some time (~1-2 days), and lack of continuous
long-term data. The Observair relied on filter replacements for its BC measurement. As the filter
saturated quickly, the instrument turns in error mode and did not collect any BC or NO2 data. The
BCmeter also relies on filter replacements. A dedicated 1.5 week campaign (16/11-30/11) was
therefore set up to evaluate BC (and NO: from the Observair). The Airbeams arrived later and became
operational on the 9t of November. Sensor data was offloaded (remotely via web dashboards and
on-site via SD card readout) weekly to avoid dataloss and a logbook was created to keep track of that
status and encountered issues. From R801, we collected NO: (Thermo 42C; pug/m?), Os (Teledyne
API400E; pg/m3), PM1, PM2s, PMio (Palas FIDAS 200; ug/m?®), BC (Thermo MAAP; ug/m?), relative
humidity (%) and temperature (°C). The hourly data showed a good data availability with hourly
(n=2132) data coverage of 96.7, 96.6 and 92.9% for, respectively, PM, BC and NO.-.
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Figure 8. Location of the exposure shelter on top of R801 (left), detail of the exposure shelter (middle)
and positioning of the sensor systems inside the shelter (right).

PM:s concentrations ranged between 1-51 pg/m?® (mean =10.85 ug/m?), while NO: exhibited 2-
111 pg/m?® (mean = 26 pg/m?®). Atmospheric temperature varied between 1 and 27°C (mean = 13°C),
while relative humidity was within 42 and 100% (mean=83.5%). Temporal pollutant variability
reflects typical urban pollution dynamics (Supplementary S11), with morning and evening rush hour
peaks for NO:2 and BC, slightly delayed PM peaks with a regional background character and Os that
is photochemically formed at low NO: concentrations and high solar radiation conditions (inversely
related to NOz).

For each of the sensor systems, hourly data coverage, linearity (R?), accuracy, expanded
uncertainty, impacts from lab and field calibration and sensor drift (sensor/REF ratio) over time was
evaluated (Table 2). For PM sensor systems, the sensitivity towards the coarse particle fraction (PMuo-
PM25) and impact from respectively lab- and field calibrations were additionally evaluated. PM field
calibration was based on slope/intercept derivation during a training period (first 2 weeks: 7/9/2022-
21/9/2022) and evaluated based on the remaining 2.5 months of data (22/9/2022-5/12/2022). For NO:
sensor systems, a multilinear field calibration model was trained with covariates for sensor response,
temperature, RH and Os, following earlier sensor calibration studies [30-32]. Model training was
based on 2 weeks of co-location data and the calibration performance was tested on the remaining 2
months of test data. This multilinear field calibration outperformed the raw and lab-derived
calibrations for all NO:z sensor systems. Lab-derived calibrations did not hold in field conditions,
which is not surprising as field conditions are different in terms of PM composition and
meteorological conditions (temperature, relative humidity). Compared to the observed PMa2s
performance in Table 2, performance decreases for PMio (R?=0.6-0.62, MAE=12.6 ug/m?®) and the
association is entirely lost (R?=0-0.01) when focusing on the coarse fraction (PM-coarse=PM10-PM25)
confirming the lack of sensitivity in the coarse particle size fraction. For PM2s, general good
correlations (R? = 0.7-0.9), varying accuracies (MAE=3-4.7 pug/m®) and low between-sensor
uncertainties (0.1-0.7 ug/m3) were observed. The accuracy worsened by applying the lab calibration
but was optimized further for all sensor systems based on the field calibration. No distinct aging
effect (gradual deviation in sensor/REF ratio) was observed over the 3-month co-location period. An
overview of the observed quantitative performance metrics based on the hourly-averaged data for
each of the sensor systems during the field co-location campaign is provided in Table 2.

Table 2. Overview of quantitative performance metrics (accuracy, stability, MAE, R?, Uexp and BSU)
obtained for each sensor system and pollutant (PM and NO:) during the field-colocation campaign
(hourly data).

SENSOR SYSTEM Data coverage MAE R? Uexp BSU
% pg/m? - % pg/m?
PM2s ATMOTUBE (3) 76 4.3 0.88 48 0.6
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OPEN SENECA (3) 100 3.7 0.90 35 0.3
TERA (3) 17 44 0.87 64 0.1
SODAQ AIR (3) 44 3.1 0.68 16 0.7
SODAQ NO2 (3) 44 3.8 0.67 40 0.4
AIRBEAM (3) 53 3.9 0.87 36 0.7
GeoAir (3) 96 3.0 0.89 28 0.6
PAM (1) 100 4.7 0.89 66 NA
SENSOR SYSTEM Data coverage MAE R? Uexp
0/0 pg/m3 - 0/0
SODAQ NO2_raw (3) 44 190.3 0.42 614
SODAQ NO2_cal (1) 44 27.1 0.62 108
SODAQ NO2_mlcal (1) 44 5.6 0.83 37
NO: PAM (3) 100 84.1 0.55 284
PAM_cal (1) 100 349.0 0.55 1225
PAM_calml (1) 100 44.2 0.75 44
Observair_raw 78 28.4 0.38 111
Observair_cal 78 28.8 0.38 95
Observair_mlcal 78 NA NA NA
Data coverage MAE R?
% ug/m?3 -
BC Observair 78 0.3 0.82
BCmeter 78 0.2 0.83

Hourly PM2s, NO2 and BC timeseries of the considered sensor systems and reference data are
provided in Figure 9.
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Figure 9. Hourly timeseries of PM25, NO2 and BC concentrations measured by the respective sensor
systems and the reference monitors at the R801 reference background monitoring station.

4. Discussion

During this lab and field benchmarking campaign, we collected a lot of quantitative and
qualitative evidence on the fit-for-purpose of current commercially-available dynamic exposure
sensor systems. An overview is provided of the observed sensor system performance (hourly
coverage, accuracy, R?2, MAE, BSU, stability, Uexp) for the considered pollutants under laboratory
(Table 1) and real-world (Table 2) conditions.

For the considered PM sensor systems, out-of-the-box performance is already quite good and
close to the Class 1 data quality objective (Uexp<50%). In addition, the sensors showed high precision,
<0.4 pug/m? in the lab and <0.6 pg/m3 in the field, which allows for multi-sensor (network) applications
(e.g. [10, 24, 33]). Whether the obtained accuracy is sufficient to characterize PM gradients in urban
environments (which are typically not that steep) will depend on city to city and should be further
investigated. In our mobile field test, Grimm measurements showed PM:s concentrations along the
10km trajectory ranging from 4.8 to 133 ug/m3. This exposure variability is, therefore, quantifiable by
the considered sensor systems with MAE’s of 3-4.7 ug/m?. Highest accuracy was observed for PM;,
followed by PM2sand PMio. The considered sensor systems do not reliably detect the coarse particle
size fraction. TERA is the only sensor system that seems to pick up some coarse particles (R?>=0.3),
while all other sensors show R? of ~0. Accuracy of PM sensors can be further improved by linear
slope/intercept calibration. However, we showed that lab calibrations do not hold in the field, as
previously shown in other studies [8, 10, 30, 34]. A local field calibration (representative pollutant
and meteorological environment) seems, therefore, crucial to obtain the most reliable sensor data. In
general the assessed PM performance and observed sensitivities (drift/RH) are very similar between
the benchmarked PM sensors, which can be explained by similar underlying sensor technology
(Sensirion SPS30 + Plantower) and lack of applied factory-algorithms. Sensor systems showed
elevated sensor/REF ratios with increasing relative humidity, as well documented in previous studies
[30, 35-44].

Regarding NO, out-of-the-box performance was unsatisfactory for direct application, as sensor
systems suffered from noise (stability) and calibration (negative association) issues. Although 2BTech
PAM showed the best raw performance, a higher but negative association (R?) and stability was
observed for Observair. Following a linear laboratory calibration, best performance was, therefore,
achieved for the Observair. Similar to the PM sensors, linear lab calibrations do not hold in the field.
For NO, a local and multilinear field calibration (incorporating covariates for temperature, relative
humidity and Os sensitivity) showed to yield acceptable sensor performance (R?=0.75-0.83, MAE=6-
44 ug/m?), as observed in former studies [8, 30, 31, 34, 45]. In this study, we were not able to evaluate
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the precision of the considered sensor systems. We can, therefore, not conclude anything on network
applications.

Regarding BC, both considered sensor systems showed good field performance (R?=0.82-0.83,
MAE=0.2-0.3 pug/m?®), while we should mention that BCmeter can yet not be applied in mobile
applications (wired power and wifi connectivity). The measurement principle of light attenuation on
filterstrips has proven to be a robust methodology to measure black carbon in the past [12, 46-51] and
can be minimized to portable and lower-cost instruments. Moreover, the spatial BC exposure
variability, measured by the Observair in the mobile field test was in good agreement with the
Aethlabs MA200 measurements (Supplementary S12). In general, all sensor systems showed a good
horizontal accuracy (<10m) with no vibration impacts on the sensor readings for all pollutants during
the mobile field test.

5. Conclusions

This study evaluated the fit-for-purpose of commercially available portable sensor systems for
dynamic exposure assessments in urban environments. We evaluated 10 sensor systems, measuring
PM, NO2 and/or BC, in both laboratory and real-world conditions. Besides quantitative performance
assessments, qualitative experience on their portability, data transmission/storage and user
friendliness were obtained throughout the experiments. Autonomous operation with internal GPS
(no reliance on app connectivity) and data storage redundancy (SD storage besides cloud or app
transmission) for example showed to be valuable assets in terms of data coverage. Results of the
considered sensor systems indicate that out-of-the-box performance is relatively good for PM and
BC, but maturity of the tested NO:2 sensors is still low and additional effort is needed in terms of
signal noise and calibration. Multivariate calibration under field conditions showed promising
performance for real-world applications. Future directions for PM and BC should focus on
applicability (pollutant gradients in urban environments), added-value and user-friendliness (day-
to-day use) of real-world applications, while for NO: research-proven noise reduction and calibration
procedures [8, 30, 31, 34, 52-54] should be implemented in commercial instruments to increase the
level of maturity in the market. This work shows that commercially available portable sensor systems
have reached a good maturity level for PM and BC, while more work is needed for NO2. More
accurate and dynamic exposure assessments in contemporary urban environments are crucial to
study real-world exposure of individuals and the impact on potential health endpoints [14, 55-61].
This research will be boosted by the greater availability of mobile monitoring systems capable of
quantifying urban pollutant gradients.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Supplementary S1 Purchased portable sensor systems for the lab and field
benchmarking study. *PT=prototype, Supplementary S2 Obtained setpoint averages (ug/m?) for each sensor (1-
3) and brand during the lack-of-fit testing for PM1, PM2.5 and PM10, Supplementary S3 Obtained lack-of-fit
curves and associated linear functions for each sensor (ATMO1-3, TERA1-3, OPEN1-3, AIR1-3 and NO2_1-2;
upper to lower) for the corresponding PM1, PM2.5 and PM10 particle size fractions (left to right). SODAQ NO2_3
did not collect any data during the lack-of-fit test and is, therefore, not shown on the graph, Supplementary S4
Coarse test results obtained on 14/7 (AtmoTube, Open Seneca, GeoAir and SODAQ AIR) and 2/9 (TERA, PAM,
SODAQ NO2) with observed coarse composition (% coarse), PM10, PM2.5 and PMcoarse sensor/REF ratios,
fine/coarse change ratio (%; between highlighted columns) and PM10 change ratio (%). *faulty results due to
peak mismatch, Supplementary S5 Obtained setpoint averages for the considered NO2 sensor systems,
Supplementary S6 Obtained lack-of-fit curves and associated linear functions for each sensor system; SODAQ
NO2 (1-3), PAM and Observair, Supplementary S7 Lab-calibrated NO2 sensor response to varying relative
humidity steps (0-90-75-50-0%) under zero (upper) and span (lower) concentrations, Supplementary S8 Lab-
calibrated NO2 sensor response to varying temperature steps (-5, 10, 20 and 30°C) under zero (upper) and span
(lower) concentrations, Supplementary S9 Response test setup, NO2 average (AVG), 90-percentile (90%)
concentration and associated response time (t_90), calculated for the Observair and PAM sensor systems and
Thermo NOx analyzer, Supplementary S10 Average horizontal accuracy (m) and number of datapoints (n) of
the considered sensor systems during the mobile field test, Supplementary S11 Temporal pollutant variability
of PM, BC, NO2 and Os at R801 during the field co-location campaign. Shadings denote 95% confidence intervals,
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Supplementary S12 Black carbon (ug/m3) concentration maps generated from the mobile measurements
conducted by the Aethlabs MA200 and Observair during the mobile field test in Antwerp, Belgium.
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