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Abstract: Earthquake forecasting is arguably one of the most challenging tasks in Earth sciences owing
to the high complexity of the earthquake process. Over the past 40 years, there has been a plethora of
work on finding credible, consistent and accurate earthquake precursors. This paper is a cumulative
survey on earthquake precursor research, arranged into two broad categories: electromagnetic
prccursord radon precursors. In the first category, methods related to measuring electromagnetic
radiation in a wide frequency range, i.e. from a few Hz to several M Hz, are presented. Precursors
based on optical and radar imaging acquired by space borne sensors armm considered, in the
broad sense, as electromagnetic. In the second category, concentration measurements of radon
gas found in soil and air, or even in ground water after being dissolved, form the basis of radon
activity precursors. Well-established mathematical techniques for analysing data derived from
electromagnetic radiation and radon concentration measurements are also described with an emphasis
on fractal methods. Finally, physical models of earthquake generation and propagation aiming at
interpreting the foundation of the aforementioned seismic precursors, are investigated

Keywords: fractal; power-law; complexity; deterministic-fractal music

1. Introduction

Earthquakes, volcanic eruptions and tsunamis are all inevitable disastrous phenom-
ena. Not only that they are unavoidable but the incredible difficulty in forecasting them
renders these disasters even more hazardous and catastrophic. Finding an accurate seismic
precursor is one of the greatest challenges for the scientific community worldwide. Seismic
forecasting research dates back to more than fifty years. There is evidence that pre-seismic
electromagnetic radiation or radon concentration observations can be utilised for forecast-
ing, taking into account specific measurable features of the associated earthquake process.
More specifically, if such an observation takes place near the geological rupture, some
measurable precursory activity prior to the seismif[#flent can be expected.

Reducing the uncertainty in the estimation of the occurrence time and location or
even the size of a forthcoming massive seismic event is the main goal Eparthquake
forecasting [1]. Seismic forecasting usually falls into four categories [2]: long-term (10
years); intermediate-term (1 year); short-term (10~ to 10-2 years); and immediatemm
(103 vears or less). Hayakawa and Hobara [3] classify earthquake forecasting into three
categories: long-term (time-scale of 10 to 100 years); intermediate-term (time-scale of
1 to 10 years) and short-term. The separation into several stages is determined by the
features of the processes that generate a massive earthquake and the needs for earthquake
preparedness-which include a range of safety procedures for each level of forecast [1]. The
reader should note, that there is no rarely any direct correlation between abnormalities
in the measurements and earthquake occurrences,especially in short-term forecasting
[4,5]. In seismic-prone countries, short-term earthquake pre-warning in a time window
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of weeks, days, or hours is deemed as nm important, although being significantly more
difficult than the long-term forecasting. The science of short-term earthquake forecasting
is the study of short-term precursory activity occurring through systematic observations
of physical quantities taking place near and before earthquake occurrences and can be
further supported by serendipitous findings in observations not purposed for earthquake
monitoring but are nonetheless acquired near [Ej8 earthquake location [6]. Abnormalities in
electromagnetic fields, anomalous variations of radon concentration in soil, groundwater,
surface water and atmosphere, erratic gas emissions, uneven surface distortions caused
by pressure differentials, irregular adjustments to ionospheric parameters, ionospheric
perturbations, anomalies detected in satellite devices and other remote sensory devices and
excess Total Electron Content (TEC) are among these physical quantities [6].

Obserf@lons of pre-seismic electromagnetic disturbances (of the Radio Frequency-RF
range) are one of the most promising tools for short-term earthquake forecasting. The
related subject is termed seismo-electromagnetism [7]. As it has been show§Eby many stud-
ies [see e.g. the reviews 3,6,8-11, and the references therein] pre-seismic eammagnetic
emissions occur in a wide frequency range from frequencies well below 10 Hz (Ultra Low
Frequencies-ULF), between some kHz range up to several MEF] (altogether characterised
hereafter as High Frequencies-HF) and between 100 MHz up to 300 MHz (Very High
Frequencies-VHF). The research originated back in the 1970s where the first successful
seismic forecast was reported for an earthquake of magnitude 2.6 occurring on August
3, 1973, near Blue Mountain Lake, New York [12]. Following this, the M=7.4 Heicheng
China earthquake of February 4, 1975 was correctly anticipated by seismologists, boosting
the prospect that credible earthquake forecasting may be feasible. This forecast led to
the issuance of a warning within a period of 24 hours before the primary shock, perhaps
avoiding more casualties than the 1328 deaths that the event resulted in. A major setback to
the earthquake forecast endeavour was the 1976 M=7.8 Tangshan earthquake, which struck
18 months later and was not anticipated. The number of deaths caused by this earthquake
reached the hundreds of thousands [6,8]. Seismologists's research has recently been focused
on short-term forecast rather than long-term forecast [13]. The pre-seismic electromagnetic
observations and abnormality recordings have been @#Bumented by several study teams
throughout the globe as precursors of earthquakes. The EM variations are recorded by
ground stations, remote sensory devices [14,15] and satellites [14,16].

Radon precursors of pre-seismic activity are also intriguing. Due to its importance,
research on radon monitoring has become a rapidly growing topic in the search for pre-
monitory signs before to earthquakes [5,6,8,17,17-25]. This is due to thet‘ that radon
may travel great distances from thi st rocks where it is created [26] and can be detected
at very low levels [27]. Anomalous Tadon concentration variations in soil gas, groundwater
and atmospheremay be observed prior to earthquakes [6,17,19,24,28,29]. Before earth-
quakes, anomalous radon fluctuations are addressed in soil gas,m.mdwater, atmosphere,
and thermal spas [6,17,19,24,28,29]. The time-series features, such as the range, length,
and number of radon anomalies, as well as the precursory time and epicentral distance,
vary greatly [6,17,30,31]. However, the amounts of radon emissions are influenced by
seasonal variations, rainfall and barometric pressure alterations [6,8,21,23,26,30,31] and for
this reason, radon time-series are usually screened for atmospheric parameter influences
[6,17,21-23]. The majority of the associations between radon and earthquakes are based on
events of small and intermediate magnitudes. Large magnitudes earthquakes associations
with radon observations also exist [5,32-36].

Ionospheric studies, satellite measurements and remote sensing devices have gained
significant re@# international interest in earthquake precursory investigations, after the
realisation of the Lithosphere-Atmosphere-lonosphere (Blpling (LAIC) [37]. Due to the
widespread availability of GPS data, many studies report GPS-based total electron content
(TEC) data of ton(}sphere, providing valuable information and convincing evidence
[38—42]. Other researchers have studied the lower ionosphere extensively in relation to
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earthquakes by using different techniques to identify the precursory characteristics of
earthquakes, as well as, the perturbation on the upper and lower regions [43-47]

Despite the massive scientific efforts, the causes of earthquake generation remain
unknown. One important element is our inadequate understanding of the fracturing mech-
anisms of the crust [4,6,8,18-22,48-56]. Given that the fracture of heterogeneous materials is
still not adequately described, despite a significant recent effort at the laboratory, theoretical,
and numerical level [4], it is clear why the explanation of the genesis of earthquakes is still
limited [4,6,18-22,48-56]. That explains why the related research is very significant, while
the questions are far from being solved. Moreover, each earthquake is unique and has a
wide distribution. Thus, not only is the understanding of the complex related processes
mandatory, but is also sedulous to identify credible earthquake precursors and meticulous
work is needed for that [4]. This is complicated further when considering that the successful
selection of an earthquake precursor might probably need an acceptable physical model to
explain its existence [6]. Eftaxias et al. [4] stated that before the final catastrophe, several
geological, geochemical, hydrological, and environmental parameters generate different
features and scales that are associated and describe the earthquake'ss precursory processes.

2. Electromagnetic precursors
2.1. ULF emissions

In 1964, seismogenic electromagnetic emissions with frequencies lower than 10 Hz
were first seen [57]. It has been found that variations in ground electric potential, ULF
electromagnetic waves in [ff# atmosphere, and other known phenomena occur prior to
earthquakes [8-10,58-62]. Monitoring of ULF emissions directly recorded from the litho-
sphere is one of the several widelyffffled seismo-electromagnetic methods. This is because
ULF (f=0.01 Hz - 10 Hz) has great skin depth, low attenuation, less contami.na and less
penetration through the magnetosphere and ionosphere [63] and as a result, ULF waves
can travel up to an observation point close to the Earth’s surface with little attenuation
[3]. Although most ULF precursors are electric, nowadays researchers study also magnetic
ULF precursors [6,89]. It is noteworthy, nevertheless, that some contentious claims on
ULF-range signals associated with earthquakes have also been reported|[9].

The VAN method (from Varotsos, Alexopoulos, Nomicos), for ULF emissions has a
long history of more than forty years [10,61,62]. The method introduced the concept of
Seismic Electric Signals (SES). SES are ULF disturbances of frequencies f< 1 Hz. The most
significant physical properties of SES i s selectivity [8-10]. That reflects th@Fict that the SES
choose preferable paths and, consequently, a ULF station is sensitive to SES from certain
seis reas only, namely from some specific focal areas. The map showing these potential
areas 15 called selectivity map of a station and has to be determined in order that the station
produces useful data. Due to selectivity, SES can be detected even from hundred kilometres
away of the epicentre. By installing proper dipoles in a cross of 50 m, 100 m, 200 m and,
preferably also, 1000 m, magnetotelluric variations are discriminated from anthropogenic
disturbances. The VAN method has successfully predicted events within a precursory
window of some days or weeks both in Greece [61,62] and Japan [3,10]. Nowadays the SES
ULF signals (as other signals as well) are incorporated in the modern method of Natural
Time (see section 5) which incr¢fEPs the successful forecasting of several earthquakes [e.g.
64, and references therein]. The discussion on the VAN method has divided the scientific
comiZnity in those supporting it [10] it and rejecting it [6].

The 1988 Spitak M=6.9 earthquakﬂﬁﬁ], the 1993 Guam M=8.0 earthquake [59], the
1996 Hetian M=7.1 event [66], and the ﬂ7 Kagoshima M=6.5 earthquake [67] were all
successfully predicted using ULF. Using the cumulative (daily sum) of the local energy of
the earthquakes weighted@y the squared distance from the measurement station method,
ﬂqjch was suggested by Hattori et al. [68] and Hattori et al. [69], Han et al. [70] reported
an increased probability of ULF magnetic anomalies 1-2 weeks before medium and strong
shallow earthquakes, confirming previous findings published by Hattori et al. [69] and em-
phasizing that the perturbations are better associated with stronger and closer earthquakes.
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From data gathered from 17 stations in Japafffftistically significant diurnal geomagnetic
anomalies were found twfffghonths before the M;,=9.0 2011 Tohoku earthquake. Com-
parable estimations were published by Han et al. [71] and Xu et al. [72]. Prior to the
catastrophic earthquakes that occurred in September 2015 at Coquimbo, Chile, September
2017 at Chiapas, Mexico, and September 2020 at Vrancea, Romania, ground-based stations
urded pre-seismic ULF anomalous geomagnetic disturbances [64,73-79]. Pre-seismic
perturbations in the spectral density ratio between the horizontal and verffighl ULF com-
ponents are reported by Hirano and Hattori [80] i Ouyang et al. [81]. ULF magnetic
field emissions at are continuously measured in Agra station in India with tiffzhelp of
3-component search coil magnetometers with promising forecasting results[63]. Two large
earthquakes of magnitudes M=7.4 andM=6.8 occurred in Pakistan have been successfully
predicted within 16 days with fractal methods (see section 5). ULF geomagnetic data from
the Panagjurishte and Surlari stations in Roififhia have been successfully utilised for the
forecast of a My,=6.4 earthquake occurred at the coastal zone of Albania on 26 November
2019 [79].

2.2. HF emissions

In the range between a few kHz to several MHz, a number of HF emission disruptions
have been reported prior to earthquakes. [4,23,34,35,82-87]. As stated by Hayakawa and
Hobara [3], the two methods used to detect the seismic precursors are the direct measure-
ment of the electromagnetic emissions radiated from the hypocentre of earthquakes in
the lithosphere, or the indirect detection of propagation anomalous disturbances in the
atmosphere and ionosphere caused by transmitter signals already in place. The identifi-
cation of HF electromagnetic disturbances can aid in determining the source of seismic
activity. According to Eftaxias et al. [4,82], the vafjus frequencies of the HF electromag-
netic precursors, in conjunctioffgfith the detected time lag between events and impending
earthquakes, indicate distinct stages and mechanisms of the earthquake preparation pro-
cesses. It is also believed that events at different scafffffBnd features will occur prior to an
earthquake,as it is an abrupt mechanical breakdown in the heterogeneous earth's crust and
thus, the multiplexed operations that occur may be the initial source of numerous electro-
magnetic precursors of the widespread earth 's crust collapse [4,82,86]. These are transient
phenomena and a way to examine them is by analysing the observed prfismic time
series, however, including sequences of discrete, brief time periods.The goal is to itify a
clear shift in dynamical properties as the catastrophic event approaches near. In order to
develop a quantitative identification of electromagnetic precursors, several mathematical
concepts are utilised (see section ??, so as to set the criteria, to isolate detected anomalous
electromagnetic emissions versus the noisy abnormal statistical patterns [84-86,88-91].

Several publications [e.g. 4,34,82,83,86, and references therein] suggest that the high
persisteiffif and organisation in a launched electromagnetic anomaly points to the devel-
opment of a positive feedback mechanism regulating the sudden fracto-electromagnetic
process that occurs during earthquake preparation. There is increasing evidence that
a feedback mechanism similar to this might be a sign of the earthquake fracture pro-
cess Naturally,there is no study that can establish the high precursory value of a particular
abnormality on its own There is still much to be done to comprehensively address the HF
electromagnetic precursors. That is also valid for the ULF precursors also. Separating two
events that happened at different times, like an earthquake and its potential HF electro-
magnetic precursor, is a challenging task. It is still to be determined if alternative methods
may provide more data that would enable one to acknowledge the seismogenic source
of the detected HF electromagnetic abnormalities and connect them to a pivotal phase of
earthquake production.

Apart from percistency the strong anti-persistent properties of an electromagnetic
time-series, as well as, the change between persistency and antipersistency are also evidence
of an underlying non-linear feedback of the system initiating the crack-opening process
and leads the system out of equilibrium [34,35,92, and references therein]. The reader
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should n@hat according to Eftaxias et al.[4], the anti-persistent behaviour is comparable
to that of systems that experience a continuous phase transition at equilibrium. Stationary-
like features possibly observed in anti-persistent sections of pre-seismic electromagnetic
e series, might be attributed also to the heterogeneous part of the fracturing media.
According to Contoyiannis et al. [88], Kapiris et al. [84,85] and Eftaxias etal. [89,90], the
precursory electromagnetic antipersistent anomalies are associated to a continuous thermal
phase transition with strong critical characteristics. Although finding an anomaly in HF
pre-seismic series is necessary for the anticipation of a forthcoming event, it is far from
considering it as a prerequisite for the occurrence of an event [492]. In actuality, there
is no evidence connecting the discovery of several electromagnetic abnormalities with
noticeably strong, crucial behaviour to the occurrence of significant earthquakes. Notably,
it is important to rule out any potential relationship of these anomalies with magnetic
storms, artificial electromagnetic sources, or, solar flares [4], with the note that the latter
may trigger seismicity and have impact to the earthquake preparation zone [93]. In relation,
Anagnostopoulos et al. [94] consider that the sun is an agent provoking seismic activity
through coronal holes driven by high speed solar wind streams.

2.2.1. VHF emissions

VHF have been also employed in the search of electromagnetic earthquake precursors.
According to Pullinets [95], one of the two authors of the LAIC model [37], in actuality, the
LAIC is a complex system made up of subsystem interactions and a synergy of several
processes, one of which is the VHF electromagnetic emission frequency band, which further
functions by altering the characteristics of the atmosphere and ionosphere. Although some
scientists dispute with the precursory usability of VHF emissions [e.g. 8, and references
therein], the scientific interest is stimulated in the recent years on this subject. For example,
Snrmn etal. [96] report a a full-fledged theoretical physical model, accurdingmwhjch,
the over-horizon propagation of pulsed VHE radiation, can be explained. as also, tHgfirigin
of such seismic related phenomena in link to the generation in the troposphere, the thermal
effects and associated IR emissions, as well as, the modification of plasma distribution in
the D, E and F layers of the ionosphere. Quzunov et al. [97] report atmospheric variations
in the intensity of broadband wireless signal propagation correlated with pre-earthquake
processes. Since 2012, these authors have continued to conduct ground observations
in Bulgaria in the VHF band between 1.8 GHz and 3.5 GHz, discovering phenomena
related to a natural amplification of the signal's strength days or hours before the seismic
occurrences, even distant from the observation zones, such as the M=5.6 earthquake of
May 22, 2012, in Bulgaria, M=5.1 earthquake of August 12, 2018, in Albania, the M=4.1
earthquake of August 2, 2018, in Southern Bulgaria and the M= 5.5 earthquake of October
28, 2018, in Romania. A VHF early warning system is utilised among other systems in
Mexico ]. Moriya et al. [99], on the basis of a designed a data-collection system, report
several ancm.lcms VHE-band radio-wave propagation prior to earthquakes, with most
significant, the Tokachi-oki earthquake (M;= 8.0, Mj, M; a magnitude defined by the Japan
Meteorological Agency) on 2003 September 26 and the southern Rumoi sub-prefecture
earthquake (M;= 6.1) on 2004 December 14. Devi et al. [100] states that the VHF emissions
indicate unusual atmosigric parameters brought on by earthquake precursor processes,
which may allow for the reception of VHF communications at distances more than 1,000 km.
According to the authors, the lower VHF TV transmissions of less than 70 MHz are linked
to modifications in the tropospheric environment and the ionospheric mode of propagation.
Regarding VHF or higher frequencies that are pertinent to observations in radio astronomy.
Ac@iding to Erickson [101], anthropogenic electromagnetic emissions are primarily caused
by mobile communications, car ignition systems, industrial equipment, and radio and
television broadcasting stations. Eftaxias et al. [102] reff&gt VHF disturbances prior to
earthquakes in Greece showing that the related features are possibly correlated with the
fault model characteristics of the associated earthquake and and the degree of geotectonic
heterogeneity within the focal zone.
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2.3. Remote sensing mzaatellite techniques

The application of space-borne remote sensing has grown in popularity and effec-
tiveness within Ee field of natural disasters [103]. Improved quality data with repeated
spatio-temporal coverage covering large areas in rough geomorphological and geological
conditions can be obtained throuf} the development of geospatial technologies and ad-
vanced data processing [104-106]. The post-disaster visualisation of remote sensing images
helps in knowledge production, emergency intervention thinking and decision-making
during the earthquakes [107]. In fact, the seismo-electromagnetic research has entered a
new phase with the development of the remote sensing tools. This is because they make it
possible to monitor a number of locations throughout the globe, including various seismic
occurrences taking place in tectonic systems with differing geomagnetic conditions. That is
essential to the related research. For the remote sensing data to yield reliable findings, a
worldwide coverage with sufficient spatial and temporal resolution is needed [5].

The remote sensing of the co-seismic effects of earthquakes is of importance as well. Co-
seismic effects occur as around 100 m-long earth cracks, which are followed by landslides,
lateral spreading and changes to urban and suburban areas. For instance, landslides
and substantial lateral spreading were noted following the earthquakes in Kashmir in
2005 and Mirpur in 2019 [108,109]. Human casualties from earthquakes are brought
on by landslides, which also significantly alter agriculture and the food supply chain.
These overall structural, stratigraphic and hydrogeological seismically-generated side-
effel are significant features in remote sensing and satellite studies. As another example,
the Landsat satellite imagery has been used to study the dynamic relationship between
observed sefEnicity and lineament density[110]. Ground-based remote sensing techniques
are efficient non-destructive geophysical methodgjthat provide high-resolution subsurface
images to detect several co-seismic features. Remote sensing data from a number of
satellites and sensors are also useful tools f#§such hazard co-seismic mapping.

The Synthetic Aperture Radar (SAR) fJnote sensing techniques are among the best
candidates for mapping co-seismic changes Interferometric SAR (InSAR) is one of the most
powerful remote sensing techniques of the SAR family, that has been used to detect several
surface fpformations over large areas with high accuracy [111]. InSAR-based remote
sensing methods allow low-speed surface deformations to be detected over vast areas with
centimeter to millimeter precision [112]. The permanent Scatterers InSAfghethod is also
accepted as a robust technique for mapping co-seismic deformation and in-field conditions,
as well as, movements of urban infrastructures [113,114]. Spaa—bume remote sensing
techniques are less effective towards this directions because they cannot provide complete
information on the near-surface features produced as a consequence of an earthquake with
the potential ] damage the built environment.

Like the non-destructive near-surface geophysical remote sensing methods, the ground
penetrating radar (GPR) method has been applied to shallow subsurface sgpmic investiga-
tions due to its high-resolution, time and cost-effective nature [115-117]. GPR has gained
popularity in studies related to the detectiof}pf faults and fracture networks [118], slope
instabilities [117] and landslides [119]. The GPR is one of the reliably accurate mapping
tools to study a single site and imaging of a localised subsurface deformation but difficult
to perform such surveys over an extensive earthquake Karst depressions-landslide affected
area to detect the near-surface target features. Among the aforementioned geohazards, few
studies focusing on co-seismic liquefaction and related ground failure have been conducted
using field GPR measurements [120,121].

2.3.1@(3

Total Electron Content, or TEC, is the electron density of a 1 m? cylinder that is
vertically stacked from a ground point to the ionosphere [122,123]. One TECU is the TEC
measurement unit and equals 106 electrons per square meter vertically arranged up to
the ionosphere. By definition, TEC is associated with the LAIC model. GPS receivers and
ionosondes are used to continuously monitor TEC at various locations across the world
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[123]. The corresponding data is accessible through a number of repositories and URLs
[123-127] via the lonosphere Exchange (IONEX) data file structure [128].

To investigate seismically generated TEC fluctuations in the ionosphere, researchers
have used a varinf schemes and approaches [39,123,129-134]. There has been much
discussion about anomalous variations in the ionospheric F peak electron density N, >
(plasma frequency f,F>), which are recorded by ionosondes and TEC, which, in tumn, are
fElermined by ground-based GPS receivers and appear prior to earthquakes [39]. Based on
184 M =5.0 earthquakes which occurred in Taiwan over a 6-year period between 1994 and
19EE)Liu et al. [39] conducted a statistical investig§fith that showed anomalous decreases
in the ionospheric Ny, [; iffE}e afternoon within 1-5 days prior to the earthquakes and
pronoufEd reductions in the ionospheric GPS TEC in the afternoon and late afternoon
periods within 5 days prior to 20 M =6.0 earthquakes in Taiwan.

According to Liu et al. J], while pre-earthquake ionospheric anomalies may oc-
cur almost at any local time, TEC over a possible epicentre region typically decrfgfes or
increases significantly in the afternoon and,or, evening periods, one to six days prior to
the occurrence of amrthquake. According to these authors, during the period of earth-
quake preparation, the generated seismoelectric fields may permeate the ionosphere and
perturb TEC alterations within it, hence modifying ms‘eismu—electmmagnetic environ-
ments surroifigjing the epicentre. A few days prior to the May 12, 2008 M,,=7.9¢ffenchuan
earthquake, Zhao et al. [135], Liu etal. [39], and Pulinets and Ouzounov [37] report that
ionospheric GPS TEC enhancement and, or, reduction anomalies simultaneously appear
above the epicentre and its magnetic conjugate point.

Increased ionosphere observations from space and on Earth clearly show that there is
Efoupling mechanism between lithosphere-based seismic activity and ionosphere-based
deviations or disturbances in electron corfffhtrations, particularly prior to major earth-
quakes [122,123,125]. The measurements include variability in the critical frequency of
the | layer, foF> and TEC [125,136]. Compared to costly and sparsef, > observations
using earth- or space-based ionosondes, TEC measurements are more readily acrecl
with the use of global GPS TEC [125]. The efficiency of the impact of earthquakes on the
ionosphere is growing with earthquake magnitude and depth representing relative density
TEC anomalies within area of 1000 km raff3s around the earthquake's hypocentre [126].
Gulaeva and Arikan [126] suggest that the positive TEC storm anomalies are twice as much
as those of non-storm values and that this observation supports dominant post-earthquake
TEC enhancement with ionosphere peak decreasing during 12 h for daytime but growing
by night-time during 6 h after the earthquake and followed by gradual recovery afterwards.

According to Sorokin et al. [96], there are two possible causes of the TEC ionospheric
anomalies: variations brought on by acoustic gravity waves and variations created by
electric fields. Variations in the density of TEC are caused by a variety of natural events,
including dust storms, thunderstorms, solar radiation, volcanic activity, radioactive gases,
and thunderstorms [137-139]. For instance, TEC increased during the 2014-2015 high solar
radiation cycle, which was brought on by high-energy solar particles interacting with the
earth's ionosphere resulted in TEC shifting [122]. Therefore all these parameters should be
taken into account when studying TEC ionospheric variations.

3. Radon precursors

3.1. w)n properties

Radon (mRn) is a natural radioactive noble gas. It is produced when radium (2 Ra)
decays. According to Nazaroff and Nero [26] t‘h are thirty-nine known isotopes of
radon, ranging from ' Rn t@E) Rn. Radon has a half-life of 3.823 days §lif)is the most
stable isotope. Z0Rn, or else, thoron, has a half-life of 54.5 seconds, 22 Rn. Due to its short
half-ife, thoron decays rapidly and because of this it is often detected at low concentrations.
That depends however on the concentration of its parent nuffiEls (7*Ra), especially in
comparison to that of 226Ra. Radonis primarily responsible for the radioactivity present in
the atmosphere at sea level [140].
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Radon emissions mostly originate from soil [26]. About 10% of the radon that is
diluted in soil gets released into the atmosphere [140]. In addition to soil, radon may be
found in surface and underground waters, as well as fragmented rock [140,141]. While all
radon atoms produced are diluted in fluids, only a portion of radon emerges from porous
media and fractured rock, enters the volume of the pores and dissolves within the pore's
fluid [141]. Once there, either convection or molecular diffusion advection can cause a
macroscopic transport [26]. Interconnected pores and water aquifers allow this movement
to appear [141]. Radon dissolves into the water present in the pores of soil and rock and is
carried away by it [26]. The migration of radon in soil and fragmented rock is implemented
by all fluids present there, enclosed air included [17,26]. The most crucial elements for these
processes are the pressure differentials, the temperature gradients, and the permeability of
soil [6].

Radon is a significant radiological risk factor since it contributes significantly to the
effective dosffFjuivalent and makes up over half of the population’s exposure to natural
sources and the leading natural cause of lung cancer [142-144]. Due to this, radon is a
subject of extensive research worldwide [142-151]. In addititm) the above health risks,
radon offers several beneficial uses in a variety of applications. In meteorology, the amount
of uranium is calculated from the changes of radon's emission irfgggil and the obtained
information, is then utilized to monitor air masses. When asseffjhg how accurate chemical
transport models are in estimating greenhouse gas emissions, radon can be a helpful tracer
for understanding how the atmosphere functions [152].

Radon is also among the various hydrological, geochemical, geological and environ-
mental species that have been employed in hydrological studies and for faults identification
[153-155]. The shift in concentrations of CO; [156,157] near faults and the anomalous vari-
ations in groundwater levels [158], have been employed as well because the corresponding
concentration variations, reflect the water-rock interactions [159] and the pathways gener-
ated by active faults [156]. Due to these properties, several hydro-geological species that
have been utilised as tracers of pre-seismic activity [6,8]. Especially radon has been studied
as well for co-seismic effects and tidal strain [160]. Radon's half-life in association with its
inert nature, provides it with the ability to travel long distances without significant loss [27].
Because of this, radon has been extensively used to study tectonic activity [6,8,17,161,162].
Under this perspective, radon is the best among the various hydro-geological species for
earthquake forecast.

Radon combines hydrological, geological and environmental properties. Hydrologi-
cally, it dilutes to water [26] molecules and water aquifers. It is present in surface and, most
importantly, underground waters [140,141]. Geologically, it is easily transferred within
soil and rock reaching areas away [5]. Environmentally, it is naturally emitted and present
in aspects of the environment, i.e., atmosphere, earth, water. It is naturally radioactive
and easily detected. All these combination properties have made radon one of the best
precursors of seismic activity and the one with the longest history in earthquake related
studies [8,17,86,161,162].

3.2. Pre-seismic radon anomalies

Abnormal radon changes before earthquakes have been found in groundwater, soil
gas, atmosphere, and thermal spas [e.g. 6,8,17,29,52,148,161,161,161-163,163,164,164-166,
166,167,167-174] and, recently, betw§EBJradon TEC (please see section 2.3.1) [132-134,175].
There are considerable variations in the relationships betwfflh magnitude, precursory time
and epicentral distance in connection with the range and number of radon anomalies and
other features of the associated time series [e.g 6,8,17,30,31]. For instance, the epicentral
distances of earthquakes identified with the aid of radon, vary frnm]{) km to 100 km,
whereas the recorded precursory durations spanffim three months to a few days before
the earthquake's occurrence. Comparable ranges have also been published by Cicerone et
al. [6], Ghosh et al. [17], Petraki etal. [162], Contietal. [8] and Huang et al. [161]. Several
precursory signals have been obtained with passive techniques (no electricity needed),
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which offer rough time-series estimations, since these methods integrate the radon con-
centrations over extended periods of time (of at least >1-4 weeks), necessitated for the
measurement. This roughness poses significant bias to the precursory estimations. Nowa-
days, radon precursory signals are monitored with active techniques (require electricity).
The active techniques are implemented with portable monitors which allow for high rates
of radon monitoring (typically between 1 min~'and 1 hour™). As a consequence, these
techniques offer detailed signals of radon and fine estimations [e.g. 5,6,58,17,161,162]. It is
crucial to mention that additional factors influence the estimates of radon and earthquakes.
For instance, seasonal fluctuations, geological and geophysical conditions, rainfall, and
changes in barometric pressure all have an impact on radon concentrations levels [6,21-
23,26,30,31,140,161]. Because of this, the associated time series data are typically shown
alongside thffrecursory signals of radon. Most of the correlations between radon and
earthquakes are based on small-to intermediate-sized magnitudes. This further limits the
calculations since, as of right now, it appears that neither for mild earthquakes nor even
for powerful earthquakes is there a universal model that can be used as a hallmark of a
particular impending seismic event [4,82,83,176, and references therein].

3.2.1. Soil

The release of radon from soil is important for research on earthquake forecasting.
Because of this, one of the key elements in forecasting strong earthquakes, is the monitoring
of radon emanations and this is done by various research groups [5,19,24,25,27,31,36,48,
51,52,52,54,148,163,164,164-168,168-175,177-182]. The stability of the emission response of
radon to seismic occurrences at the monitoring station, determines how successful these
investigations are. Radon concentration in soil depends on a number of parameters and
is, hence, varies between different natural environments. The objectives of the detection
of radon pre-earthquake precursors, are guided by the certain prospects of each region
[49,50,162,183]. Traditionally, because of well investigated relationships between radon
and environmental parameters, the deviations are believerau be indicative of changes
brought by tectonic force during the earthquake preparation. In general, twice the standard
deviation or more from the average soil radon concentration at a site of ffervation, is
though to reflect appreciable anomalies. The radon anomalies are attributed to earthquake-
related stress-strain changes underneath the earth's crust, but this has been a subject of
significant argumentation [5,8].

Two approaches have been taken to the study of soil radon as an earthquakffrecursor:
one involves doing simulation experiments in the lab and the other, involves monitoring
the concentration of radon in soil gas at a specific place, over an extended period of time,
in comparisf to unusual emission changes in respect to seismic occurrences. In order to
understand the gas dynamics undgfying the ascent of radon from deep below the earth's
crust to the surface, a number of in-situ and laboratory experiments, as well as, models
have been suggested [6,8,17,162].

Based on observations and conclusions drawn from all of the aforementioned {§prld-
wide studies, it has been determined that some radon gas, which originates from {Efjdecay
of radium in rocks inside the crust, stays in the crustal matrix, while the remainder migrates
away @Epugh interconnected pores and aquifers using diffusion, fluid flow, and alpha
recoil. Changes in[Ef} strain field are caused by the accumulation of tectonic stress before
to an earthquake. According to Fleischer and Mogro-Campéf} [184], the deformation of
rock mass under stress creates new channels that allow gasses from deep earth to ascend to
the surface.

3.2.2. Groundwater

Although the idea that radon anomalies in ground water may be connected to earth-
quakes was initially put up in 1927, the Great Tashkent earthquake of 1966 produced the
firstindication of an abnormally high radon concentration in groundwater [185]. Subse-
quently, a number of groups employed the concentration of radon in groundwater to study
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earthquakes [20,28,30,163,186-201]. Groundwater radon concentrations frequently increase
before earthquakes [e.g. 36,179,180,194,202]. A few times, before an earthquake, the amount
of radon in groundwater's has decreased [20,187,188,194]. Significant earthquakes may be
related to groundwater radon's peculiar behaviour as it offers information about subsurface
dynamics [180], particularly in areas where high-stress buildup occurs in the crust [203].
The processes driving seismic activity can be better understood by examining the links
between seismicity and geochemical signal variability [180].

The route that groundwater follows underground, or the kinds of rocks and soil it
encounters, determines the amount of radon that is present in the groundwater [204] or
ERapes from it [205]. The measurement of the underground water baseline is crucial
because radon gas permeates the water from these rocks and soils and alters the amount
of radon in these waters. Baseline radon concentrations in groundwater vary greatly.
According to Kandari et al. [206], radon concentrations in 15 water samples from the
Dehradun region, which is close to an active fault, range from 1.70 BqL™! to 7.57 BgL 1. In
southern Catalonia, 15 hot springs had groundwater radon levels ranging, fr@ 1.4 BqL ™!
to 105 BgL~! [207]. Using an AlphaGUARD system, Spanish researchers measured 28
groundwatdffamples collected from northeastern Gran Canaria (Canary Islands, Spain).
They found that the highest and lowest levels of dissolved radon concentration were 76.9
BgL~! and 0.3 BgL~!, respectively [208]. Range values are provided globally [142-144,209].
Signffintly more radon is found in groundwater in thermal spas [140,210-212].

The seasonal fluctuation in groundwater radon conceffjations may be attributed to
temperature, precipitation, and other climatic conditions, but its anomalies may also be
linked to shifts in tectonic stress [200,213]. While it is now well accepted that radon anoma-
lies may be associated with earthquakes, anomalies are typically exceedingly hard to locate
since variations in radon concentration frequently exhibit the features of nonlinear dynamic
fluctuations. Thus, the development of efficient identification techniques is necessary. To
some extent, the conventional statistical techniques are erroneous and subjective. A few
data mining techniques, such artificial neural networks and machine learning, have had
some success recently [164,200,201,213].

3.2.3. Atmosphere

The primary source of atmospheric radon concentration is the exhalation from the
earth and with a lesser extent the escape from surface and subsurface water [26]. Numerous
processes are involved and meteorological elements have a significant impact on them [144].
Therefore, detecting anomalies in air radon in relation to earthquakes, is significantly more
challenging than detecting them in groundwater or soil radon. g—:;r studies computed
anomalies in atmospheric radon concentrations by establishing eshold level for the
anomalies based on a normal variation periofffind removing the seasonal component
anticipated from a sinusoidal model [167,214]. The res of these conventional methods
depend on how the seasonal component is determined because the assessment is based on
departures from the assumed sinusoidal model and the selected normal period of average
fluctuations [215].

Japan is the primary source of studies on earthquake forecasting using atmospheric
radon. Iwatata et al. [[fiJ] reported that anomalies in the atmospheric radon concentra-
ticffihave been linked to the moment releases of large earthquakes based on ten years
of continuous observation of the concenfffiflon over north-eastern Japan and Hokkaido.
Yasuoka and Shinogi [216], reported théf[ifvo months before to the main shock of the 1995
Kobe earthquake (M,,=6.9; January 17, 1995, N34.6°, E135.0°), an increase in atmospheric
radon concentration was noticed at Kobe Pharmaceutical University. mtu et al. [217]
reported anomalous atmospheric radon concentrations associated with a shallow inland
earthquake (Mj =5.5, depth=7 k@ July 2011, N 34.0°, E 135.2°) in nuaern Wakayama.
Yasuoka et al. [29] reported that the residual values for each day could be fitted very EE)
to a log-periodic oscillation model by applying the exponential smoothing method to the
fluctuations of the residual values. The authors stated that the residual values stopped
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increasing on December 31, 1994, and, they concluded that this corresponded to the critical
point of best fit model. These authors contended that rather than main stresses causing the
Kobe earthquake directly, local stresses are responsible for the unusual 22 R fluctuation
as well. Using the irreversible thermodynamic model, Kawada et al. [218] proposed that
the preseismic radon shift was caused by a little change in crustal strain. Furthermore, a
quantitative study by Omori et al. [215], revealed that the unusually high radon concen-
tration (about 10 Bgm—3) before the Kobe earthquake increased air conductivity and was
sufficient to produce an ionospheric disturbances. Yasuoka et al. [219] claimed that further
mechanically-induced precursors were seen prior to the Kobe earthquake. Igarashi et al.
[190], for instance, described such precursory variations in groundwater radon concen-
tratimﬂ;unugai and Wakita [220] documented further pre-seismic variations in Cm
strain, groundwater discharge rate, and chloride ion content in groundwater. Because of the
mechanical behaviour of the crus@fese pre-seismic fluctuations should be related to one
another [29,190,218]. The fact that the temporal change in atmospheric radon concentration
has not been compared with that in other preseismic events was noted by Igarashi et al.
[190]. The linkage between preseismic ﬂucmatit:@ the subsurface, atmosphere, and
ionosphere could have been substantially verified if radon activity was clearly linked to
the earthquake preparation process [190]. Additionally, current research supports the link
between atmospheric radon and the Kobe earthquake [217,221].

4. Models
4.1. Electromagnetic precursors models
4.1.1. Models for the ULF precursors

Three are the main models that have been proposed for the interpretation of the
magnetic component of the pre-seismic ULF disturbances:

1. Magneto-hydrod ynamic model [222]. According to this model , an electrically con-
ducting fluid floyg§g through a magnetic field causes an additional induced field to
be created. If B is the magnetic field, the Maxwell's equationfZidicate that the induced
magnetic field B; can be given by the equation B; = R, - B, where R,, is the magnetic
Reynolds number, comparable to the hydrodynamic Reynolds number, the latter
determining the relative significance of the convective and diffusive components.

2. Piezomagnetic model [223]. This model states that an applied stress causes ferromag-
netic rocks to shift in magnetisation, which in turn, induces a secondary magnetic
field.

3. Electrokinetic model [224]. This model suggests that electric currents flowing in the
earth due to electrified interfaces present at solid-liquid boundaries, induce magnetic
fields.

Varotsos et al. [225] established a theory about the current produced by charged
distortions and currents induced by§flzo-electric effects. The electrokinetic theory serves
as the foundation for this theory. In water-saturated media with fluid-filled channels,
electrokinetic currents cmbe found [226,227]. In order to model the parameters of these
electrokinetic currents, Surkov et al. [228] assumed that an earthquake hypocentre is
surrounded by water-saturatefffforous rocks with fluid-filled pore channels where cations
from the fluid are adsorlffby the walls of pores and cracks in the solid material. According
to this author, the fluid moving along the channel, carries anions, and, as a consequence,
produces an extrinsic electric current between the fluid and the surrounding walls.

When an earthquake is prepared, the seismic hypocentre within the earth's crust,
is surrounded by cracks and fractured material, where new fractures are continuously
produced forming the, so called, fracture zone. The fracture zone can range in size from
a few hundred metres to several kilometres. Feder [229] postulated that there is a fractal
structure present in the pore's space within the fracture zone. Newly developed cracks are
sealed off as soon as they arise under reduced pressure, as a result of the pressure release
that ifffused by cracking. This, in turn, allows water from the uncracked outside zone, to
enter as soon as a network of linked channels, or, fractal clusters is formed. This can be
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seen, alternatively, as a grid of new cracks that are closed as the water sinks from the nearby
EBtions of greater pressure. According to Surkov et al. [228] during the cluster formation
the porosity and permeability of rocks decrease from the centre of the fracture zone towards
the perimeter. An interior area manages to surpass the percolation threshold and due to
this, the permeability outside the fracture zone tends to zero. In actuality, there is a limited
permeability since crustal rocks have a large variety of inter-connectible small cracks.
Furthermore, the rock's conductivity together with the surface and bulk conductivities
of the tiny fluid-filled cracks contribute to a non-ffp conductivity of the surrounding
space. However, according to Surkov et al. [228], the conductivity beyond the fracture
zone is minimal. This indicates that, because of the recently formed fluid-filled cracks, the
conductivity's value is more closely tied to the conductivity of the percolation threshold. It
is important to note that only the percolation hypothesis can adequately explain the range
of fracture diameters. ﬂ(uv et al. [228] limited the study by using a basic percolation
hypothesis that ignored the crackffjannel size distribution. The correlation length { wHER
&=1|p— pe| ¥ with p being the probability that a channel can conduct the fluid, p. is the
critical probability in the percolation threshold and v=0.88.

The three main ULF models have described successfully major earthquakes identified
with ULF data: The My=9.0 earthquake at Tohoku, Japan; The M;,=8.3 earthquake at
Coquimbo, Chile; The M;,=8.1 earthquake at Chiapas, Mexico and the Vrancea seismicity,
at Romania [29,49,168,187,190,191,216,219,221,230].

4.1.2. Models for the HF precursors

The behaviuu a stressed rock is comparable to that of an electromagnetically
strained rock [176]. The crE] propagation is the basic process responsible for the material’s
failure [83]. The release of photons, electrons, ions, and neutral particles is observed
when fracture, deformation, wearing, and peeling cause new surface characteristics to
appear in various materials [4,82,83,89,91]. The total of these emi:ssimms referred to as
fracto-emissions [83]. The Eiﬁcanf charge separation brought on by the rupture of
the inffEjatomic ionic bonds is the source of the electric charge between the micro-crack
faces. An electric dipole or a more intricate system is created by thefEpctric charges on the
surfaces of freshly developed micro-cracks. It has been shown that a dynamical instability
controlling the oscillations in the velocity and shape of a crack on the fracture surface
controls the crack’s mobility [83].

According to experimental data, micro-fracturing events repeat and get more irritating
until a multi-crack state occurs, indicating that local branching is the instability mechanism
atwork. It's important to note that laboratory research has identified strong fracto-emissions
during unstable cracEropagation [22,23,34,83,231]. Because of the intense wall vibrations
of the cracks during the micro-branching instability stage, the cracked material functions
as an efficient emitter As a result, opening EJcracks in a material can be seen as a
potential precursor of general fracture because electromagnetic emissions occur in a wide
frequency range from kHz to MHz when the material is stretched. These electromagnetic
precursor are detected in-field during measurement and at laboratories under controlled
conditions[4,34,82,89,90,176]. Owing to the previously indicated viewpoint, the main
technique for forecasting earthquakes is to record the electromagnetic emissions from
potential micro-fractures in the focal region prior to the final break-up [4].

As stated in byfflveral papers [e.g 82,85,91,176, and references therein], a "symmetry
breaking" is linkedfEjJa thermal second-order phase transition. For non-equilibrium irre-
msible processes, the evolution of the "symmetry breaking” with time has been reported
in order to obtain an understanding of the catastrophic nature of the fracture events. The
investigation revealed that the system's balance is progressively lost. This allowed for
the estimation of the duration beyond which the process responsible for the pre-seismic
electromagnetic emissions could continue as a non-equilibrium instability.

The analysis has indicated three key periods (i) the crucial epoch, that also known as
the critical window, in which the short-range correlations transit to long-range ones (ii)
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59
the "symmetry breaking" epoch; and (5 the integration of the "symmetry breaking." It
is widely acknowledged that a notable rise in localisation and directionality occurs at the
terminal phase of the earthquake preparedness procedure. Therefore, it's critical to identify
distinctive epochs in the precursory electromagnetic activity progression and to connect
these to the corresponding final phases of the earthquake preparation process.

Tracing "symmetry-breaking” could indicate that the focal area's heterogeneous com-
ponent, which encircles the fault plane's strong asperities'backbone, has reached the point
of microfracture propagation completion. At this point, the rupture has become blocked at
the boundary of the strong asperities'backbone. Asperities are already under "siege” [83].

4.2, !hdon precursors models

Scholz etal. [232] presented the Dilatancy-Diffusion model, which connects anomalous
radon changes to the mechanical crack development rate in the volume of a dilatancy, so as
to simulate the underlying dynamics of radon prior to earthquakes. This model states that
the first medium is a porous, fractured, submerged rock. Favourably placed fractures open
when tectonic forces grow because the cracks expand and disengage close {ffhe pores. As
a result, the preparation zone's overall pore pressure decreases, allowing water from the
surroyffing medium to enter the zone. Radon emission may fluctuate suddenly as a result
of the pore pressure returning and the number of cracks growing.

The crack-avalanche model [177,233] states that the growing of tectonic stress forms a
[Ef)-tured focal rock zone. This zone gradually changes in volume and form over time. The
slow crack propagation, which is controlled by stress corrosion in the rock matrix saturated
by groundwater, may be linked to the unusual behaviour of radon concentration, according
to the hypothesis of stress corrosion [234].

The LAIC mm:l [37,95] describes also radon's stress accumulation in the ground.
This is attributed to the relative narm'nent of tectonic blocks, which, in turn, lead to the
formation of micro-cracks, cracks, and fractures. Radon gas released from micro-fractures
combines with water and travels via variougfjedia to the earth. Water and carrier gases
are often responsible for the transportation of radon from the Earth's deep strata to the
surface [235].

Nikolopoulos et al. [5,21,32,35,236], Petraki et al. [22,23], Alam et al.ﬁ,’l 79,180,202]
and Petraki [§6] proposed the asperity model [83] (please see section 4.1.2) to explain radon
emanation during preparation of earthquakes. Pre-seismic radon anomalies are attributed
to variations mractiunal Brownian (fBm) profile movements. In the views described in
section 4.1.2, the focal area consists of a backbone of strong and large asperities that sustain
the system and a strongly heterogeneous medium which surrounds it. The fracture of the
heterogeneous system in the focal area obstructs the backbone of asperities. As the fracture
begins critical persistent, strong anti-persistent and interchanged persistent, antipersistent
radon anomalies occur. This has been associated with several earthquakes in Greece and
Chinf)

Other aspects have been expressed by other investigators. For example, Talwani et al.
[237] reported that the anomalous behaviour of radon gas could be because of the opening
of pore's spaces during rock fracturing as a result of seismic events. Explosion tests have
been performed to identify the relationship between th/lynamic loading effect and the
observed concentrations of radon [18]. The experimental results revealed that the increase
in radon values is a coiflequence of seismic waves applied to the rock. According to other
investigators [238-240] crustal activities have been identified as one of the reasons for radon
emission.

5. Analysis methods

Several investigations on earthquake forecast have been based on visual observations
[6,11,162]. Despite providing some indications, the visual observations are not enough to
support the pre-seismic nature of the derived signals [e.g. 5,86, and references therein]. Due
to this, the analysis nowadays rely on the physical background of the related earthquake
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processes. The analysis'mainstream comprises the fractal methods [4,34-36,55,60,84,85,
89,90,102,148,156,179,231,236,241-257], methods based on the theory of information and
entropy [82,88,91,176], symbolic dynamics [21,23,86,258-262] and natural time methods
[64,263-267]. Within the above framework, several metrics have been utilised as adequate
for the related analysis. These metrics comprise exponents from the spectreffwer law [e.g.
34,84,256], Detrended Fluctuation Analysis (DFA) [e.g. 4,236], Rescaled-Range AlBysis
(R/S) [e.g. 268], Multifractal Detrended Fluctuation Analysis (MFDFA) [e.g. 36,55], fractal
dimensions from Katz@evcik's and Higuchi's methods [34,148], Hurst exponents and
entropy values from (i) entropy per letter; (ii) conditional entropy; (iii) entropy of the source;
(iv) t-entropy; (v) Tsallis entropy; (vi) perturbation entropy; (vii) normalised Tsallis entropy
and parameters for critical phenomena [e.g. 4,82].

Spectral power-law analysigiind Hurst exponent analysis have been utilised in all ULF,
HF and radon precursors. DFA, fractal dimensions from the Katz's, Sevcik's and Higuchi's
methods and R/S analysis have bfEEJused with success both for HF and radon precursors.
Symbolic dynamics with entropy per letter, Tsallis entropy and normalised Tsallis entropy
have been also employed for both HF and radon precursors but to a lesser degree. Natural
time has been employed mainly in ULF signals. The remaining techniques and metrics
have been used mainly for HF precursors. Multifractal Detrended Fluctuation Analysis
(MFDFA) has been employed in all types of precursors [55,180,242,257,269-271] but will
not presented here due to its complicated interpretation [272].

Due to their importance in both electromagnetic and radon precursors, the important
properties of fractal behaviour, long-memory and Hurst exponent analysis are given in the
following sub-sections, firstly. DFA is presented thereafter ff8ause it is a robust method
that has been used in both LE, HF and radon precursors. The fractal dimension calculations
through the Katz's, Sevcik's and Higuchi's methods are given next because they have been
utilised both in HF electromagnetic and radon precursors and, finally, the R/S analysis
because it is the main direct method to calculate Hurst exponents and has been employed
both in HF electromagnetic and radon precursors.

5.1. Important properties: fractal behaviour, long-memory and Hurst exponents
5.1.1. Fractal behaviour

Many physical systems[ nature display fractal behaviour, which is reflected when
these systems are stretched, translated, or rotated in space. Based on their mathematical
characteristics, these systems are classified as either self-simE} or self-affine. These systems
are fractals because each component of the system is a large-scale imitation or representation
of the system as a whole due to the self-affinity and self-similarity that define all system
components. This characteristic allows for the investigation of fractal systems through
part-by-part analysis. System fractals can exhibit self-similarity or self-affinity. While
self-affine systems behave almost in this way, self-similar systems have exact inter-parts
representations.

The system's complexity [273], which indicates whethere system is driven by linear
mechanisms and order [274,275], is also connected with the scaling and fractal behaviour.
The correlations are strong because a system’s complex behavior may be predicted by its
fractal behaviour and vice versa.

5.1.2. Long-memory

The long-memory [273,276,277] of a system can show if the system has long-range
interactions or is random. In specific it may reveal if a geo-system has strong persistent
and antipersistent behavioufre if the long-range interactions are rather loose. If system
exhibits long-memory, then the past, present and future states of the system are linked
together in a manner that the presence of the system is not only derived from its past
(Markovian behaviour) but defines also a'umre (non-Markovian behaviour) [82,176].
This behaviour is characteristically seen when the fracture of the earth's crust yield to
the inevitable general breakdown during the unstoppable approaching of an ensuing
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earthquake [4,83,89,90]. Precisely there the past determines the presence and also the
inevitable future breakdown of the system.

5.1.3. Hurst exponent

Because it may depict enduring connections in space or time, the Hurst exponent (H)
provides a straightforward technique for assessing a system's long memory [278,279]. Time-
evolving fractal events may be identified withle Hurst exponent and the corresponding
time series'roughness can be evaluated [280]. Important details about the time series are
re\!ealechy the Hurst exponent's value [242,278,279,281,282]:

(1) The series has positive long-range autocorrelation if 0.5 < H < 1. A series’high
value is followed by another high value and vice versa. High Hurst exponents
suggest persistent interactions that are anticipated to remain until the series'remote
future;

(ii) Low values of the time series follow high values if 0 < H <n.5, and vice versa. In
the future of the time serf£8, there is a persistent transition between low and high
values for low H values (anti-persistency);

(iii) If H = 0.5 the time series completely uncorrelated, i.e., the related processes are
random.

5.2. Significant analysis methods for electromagnetic and radon precursors
5.2.1. Power-law analysis

In the event that a temporal fractal is present in the time series, the power spectral
density, S(f), will exhibit a power-law behaviour:

S(fy=a-fF M

In equatiofffl), # represents the spectral density amplification, f denotes a transform's
frequency and f is the power-law exponent, which measures the strength of the power-
law associations. This transform can be then'avelet transform [84] or the FFT of the
signal [256,257]. Given its perceived benefits, the wavelet transform based on the Morlet
base f'lll'lea'l are most frequently employed [5,34,82,84,176,231,236,246]. In particular, f
represents the central frequency of the Morlet wavelet.

Equation (1)'s logarithmic transformation yields:

logS(f) =loga+p-log f (2)

Given that equation (1) is a straight line, § and a may be found by using the least
squares approach to fit the associated data.

The technique has been utilised mostly in sliding windows of various lengths moved
one EPhple forwards. Independent windows are also utilised as well, under the restriction
that the square of the Spearman’s (r?) coefficient in each window should have r? >0.95, for
the power-law fit to be acceptable.

1
5.2.2. DFA

The original tim@}signal is first integrated in order to apply DFA. Thil, within
a window of size #, the integrated signal's fluctuations, F(n), are founfl} The linear
log(F(mn)) — log(n) transformation is then fitted using least@luares to get the integrated
time series'scaling exponent (self-similarity parameter), a. Depending on the dynamics
of the system, the log(F(n)) — log(n) line may show one crossover at a scale n where the
slope displays an abrupt shift, two crossovers at two distinct scales 1y, 1, [86], or nothing
at all.

The following process may be used to construct the DFA of a one-dimensional temporal
signal y;,(i = 1,...., N) [34,86,283]:
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(vi)

(vii)

First, the original time series is integrated:

k
y(k) = (y(i) — () (3)
i=1

In equation (3), the symbols <...> represent the total average value of the time
series, whereas k represents the different time scales.
Next, the integrated time series y(k) is divided into equal length bins, n, that do
not overlap.
The trend in the bin is subsequently expressed by the function y(k), which is then
fitted. Simple linear trends offfblynomials of order 2 or higher order may be used.
The n@tion y, (k) indicates the i coordinate of this linear function in each box n.
Next, edfh box of length # is detrended in the integrated time series y (k) by sub-
tracting the local linear trend, y,, (k). In this way, and for every bin, the detrended
time series v (k) is calculated as follows:

y;}(k) = (k) — yu(k) (4)

Next, for each bin of size 1, the root-mean-square (rms) of the integrated and
detrended time series’ fluctuations is calculated as

|1 N 2
F =.,.|= ky —y"(k 5
0=\ § & (0 - 550) ®)

where, F(11) are the rms fluctuations of the detrended time series i/} (k).

The technique steps (i)—(v) are repeated for different sizes (1) of the scale boxes.
This indicates tffFprecise kind of relationship that exists between F(n) and #.
An exponential relationship exists between F(n) and 1 if the time series contains
long-term associations.

F(n)~n" (6)

1

The DFA scaling exponent & of equation (6) assesses the strength of the time series’
long-term relationships.

Equation (4ff§ logarithmic translation yields a linear relationship between logF (1)
andlog(n). A strong linear relationship implies that the accompanyinfluctuations
have a long memory since they are long-lasting. This study uses the square of the
Spearman's (+?) to assess the linear fit's accuracy. According to Nikolopoulos etal,
[34,231,236,283], good linear fits are considered as having r2 > 0.95 or higher.

As with sub-section 5.2.1, DFA has also been utilised in sliding windows of various
lengths moved one sample forwards.

5.2.3. Fractal dimension analysis with Katz's method

The transpose array [s1,sz,sN}T of the series s;,i = 1,2, ..., N, is first determined in
accordance with Katz's method, where s; = (#;, ;) and y; are the measured series values at
the time a;’rances t; [284,285]. This process yields the fractal dimension, D.

The two subsequent points of the time series (s; and s;, 1) are represented by the value
pairs (t;, ;) and (t;1+1, ¥it1), for which the Euclidean distance is:

dist(s;,5i11) = \/(ﬁz - tr‘il) + (yiz - yf'zﬂ) @
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The distances in equation (7) add up in a curve whose total length is:

i=N
= diSt(Sf',Sf'+l} (8)

[
_

This curve will stretch in the planar to d, if it does not cross itself, where d is :

d = max(dist(s;,5;11)),i=2,3,..,.N 9)
1
By combining equations (7), (8) and (9), the Katz fractal dimension, D, becomes

log(n)
= 10
log(n) + log(d/L) (10)

where n = L /@ and 7 is the average value of the distances of the points.

5.24. Fractal dimension analysis with Higuchi's rrand
To determine a time series'fractal dimension, D

L y(2),y(3), ., y(N
y(1),¥(2),¥(3),- y(N) (11)

recorded at i = 1,2...N intervals, the following is the construction of a new sequence, y¥,
[247,248,286]:

Vo) g+ ), o+ 20, .yl | S| 12)

The length of the cnve associated to the time series is given by [286]:

1 [iiﬂ} . . N-1
L (k) = ¥ Y y(m+ik) —y(m+ (i —1)k) W (13)
=1 =

In both equations m and k are integers that specify the time interval between the series’
samples and are connected by the formula m = 1,2..k, where [...] is the Gauss notation,
namely, the bigger integer part of the included value.

By inserting the normalisation factor

N-1
; (14)
N—m
7]
The lengths of equation (14) show an average value, (L(k)}, that displays a power law of
the following form:
(L(k)) k™D (15)

The Higuchi' s fractal dimension, D, is finally calculated by the slope of the linear
regression of logarithmic transformation of (L(k)) versus k where k = 1,2, ..., k. [t must
be noted tiEit the time intervals are k =1, .., koo for kyoy < 4,1,k =1,2,3,4, for k.. = 4
and k = Ef'*l)”],j =11,12,13._, for k > 4 (k. > 4). Again [..] is the Gauss notation
[285].

5.2.5. Fractal dimension aalysis with Sevcik's method

Using the approach of Sevcik [287], the fractal dimension of a time series is estimated
from the Hausdorff dimension, D, as [285].

[ _log(N(e))
Dfi = lim [—W} (]6)
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where N(¢) igghe total number of e-length segments thefffogether form a curve related
to the time series. N(e) = L/2¢ [285] and Dy, are as follows if the length of the curve is L.

log(L) —log(2
Dy = lim | 28(L) — log 2€)
e—0 log(€)
The N points of the curve L can be mapped to a unit square of N x N cells of the
normalized metric space by twice performing a linear transformation. Equation (18) yields
the fractal dimension of Sevcik' with thuransformafitm [285,287]:

L log(L) — log(2¢€)
Dy = Jim, [] * TJog2IN=-1)) } (18)

17)

The calculation improves as N — co.

5.2.6. Rescaled Range Analysis g

In order to identify trends that could recur in the future, the R/S analysis uses two
variables: the range, R, and the standard deviation, S, 0& data [278,279]. In accordance
with the R/ S technique, tlE} average, (x)y = Klr ):,;Y_l x(n), over a period of N time units,
transforms a time series X(N) = x(1),x(2),...,x(N) into a new variable y(n, N) in a
specififfijme period 1, (1 = 1,2,..., N). The so-called cumulative deviation of the time
series, y(n, N), has the following formula:

y(n,N) = ): x(i) — {(x)n) (19)

i=1

The rescaled range is calculated as [86,278,279]:

_ R(n)
R/S = S(n) (20)

The distance between the lowest and largest value of y(n, N) a defines the range R(1n)
in:
R(n) = 1gagNy(n,N) — lgfthy(n,N} (21)

The standard deviation 5(n) is calculated as follows:

N
Z x(n) = (x)n)? (22)

S(n) =
\ =

R/S exhibits power-law dependence on the bin size n

R{n) H
Sy C-n (23)
where H is the Hurst exponent and C is a proportionality constant.
The final equation’s log transformation is a linear relationship:

log(@) =log(C) + H - log(n) (24)
S(n)
This is used to directly calculate the Hurst exponent H, which is the slope of the best line
fit. Itis important to note that the only direct method to calculate Hurst exponents is via
the R/S analysis.
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6. Precursors and earthquake related parameters

Several attempts have been made to link earthquake related parameters and data
derived from precursors. There is a variety of empirical relationships between earth-
quake magnitudes, preparation zone areas, precursory time and other earthquake-related
characteristics. FollfEling some of these empirical relations are given.

Rikitake [288] prop@&Bd a model showing the relations between anomaly, the precur-
sory time 1" in days, the magnitude of an earthquake M and distance from epicentre R in
km. According to this model:

logT =0.76-M — 1.83 (25)

Talwani [289] suggested and empirical earthquake forecast model as

My, = logD —0.07 (26)
where M| is the local magnitude of an earthquake and D is the forecasting period in
days).
Gubha [290] provided another model associating the precursory time T in days and the
magnitude M of an earthquake as

logT = A+ B-M (27)
fHere A and B are statistically determined coefficients.

Dobrovolsky et al. [291] proposed an empirical relationship for the calculation of the
earthquake preparation zone Rp (km) and the magnitude (M) of the ensuing earthquake:

Rp = 10(1.43—M (28)
Fleischer [292] suggested that the epicentral distance D in km and the magnitude M of
an earthquake are associated as

D = (1/1.66)-104"M (29)

where A=0.813 for M<3 and A=0.480 for M>3.
Fleischer and Morgo Campero [293] suggested that

Xy = 1008M (30)
where x4 is the dislocation range in km and M is the magnitude of an earthquake where
MZ=3.

Virk [294] proposed a different relation that combined the epicentral distance D in km
and the magnitude M of an earthquake as

D = 10"M (31)

whereA=0.32 for 10 km < D < 50 km, A=0.43 for 50 km < D < 100 km, A=0.56 for 100
km < D < 500 km and A=0.63 for 500 k@ D < 1250 km.
The epicentral distance, Rg, in kim between a monitoring site and the earthquake's
epicentre can be calculated as
Rg = DR (32)

where R is the Earth's)s radius (6370 km) and

- D = cos;-cosa; + sina;-sinn;-(cos(f; — B;) (33)
25

with («;, B;) are the coordinates of the earthquake and («;, ;) are the coordinates of the
monitoring station [180].




Version June 11, 2024 submitted to Appl. Sci. 20 of 52

36
Chetia etal. [1 6medgllﬁple linear regressions to examine the greatest variab
caused by pressure, temperature and rainfall in soil gas radon. They suggested that the
precursory time T(days), epicentral distance D (ki) and magnitude M (My) are connected
with the relationship
log(DT) =079-M + b (34)

where b equals 0.18, a is approximately 3.51 and D equals roughly to D 100.58 M.

The reader may recall, in relation to the estimations given in this section, that there
is no-one to one correspondence between recorded anomalies and occurrence of an earth-
quake [4]. Moreover, the earthquake generation processes are multi-facet [4] and therefore
a combination of techniques is needed [4,34,36,82,272] to increase the scientific evidence. In
view of these references the estimations presented in this section have significant limitations.
On the other hand, several papers of the previous decades, but also modern, make use of
these estimations. For several scientist these are considered as adequate and enough.

7. Table of papers

Table 1 presents a collection of papers for electromagnetic precursors. Table 2
shows the papers collection for radon precursors. The papers in both tables are presented
chronologically and therefore old events are also included. To avoid unessential records,
historical earthquakes are limited to very strong and extremely strong. Although the
knowledge and methodologies have evolved, the techniques of treatment of these old
earthquakes are not definitely new, since they refer to the available ones of the publication
time. The historical electromagnetic precursors also include the great papers that pioneered
and opened breakthroughs in the seismic knowledge. Especially in radon precursors,
the data include traditional anomaly treatment that hold up-to-date, that is the grade
of anomalous behaviour in respect to the baseline and the anomaly duration. Modern
methods include in both cases fractal behaviour and self-organisation analysis.

The collection of papers is the most significant part of this review, because it gathers
the knowledge and may assist the related research. For the reason that the papers are many,
a special presentation approach was selected so as every row to present all the data of each
earthquake and the maximum of available information. Since every paper is special and
the published information is not uniform, a certain variety of data that are available in
most of the papers have been included as column names, but effort has been put to present
special information also. All papers have been accessed in the site of each journal and the
available information were downloaded as BibTEX file, or converted to BIB format from
the corresponding RIS record of each journal. Digital Object Identification (doi) data were
also searched and inserted wherever available.

In the next pages both tables are given.
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Evaluating Table 1and Table 2, it can be supported that the majority of publications
are based on visual observations of collected data and some extend of statistical analysis.
This can be explained by the fact that both for historical and new earthquakes it is very
difficult to collect data from at least one station nearby. As mentioned by Cicerone et al.
[6], it is a serendipitous finding to have a strong earthquake and a station which collects
data during the seismic rupture and is installed in the, generally mentioning, effective
epicentre's area. As mentioned in several publications and expressed collectively in Eftaxias
[176], there is no one to one correspondence between earthquake occurrence and anomaly
detection. Moreover, even the most advanced methods do not manage to have a very
effective forecasting of earthquakes. These facts complicate the analysis even today (2024).

The most advantageous methods seem nowadays to reflect the fractal and self organi-
sation nature of the rupturing crust of the earth during preparation of earthquakes. Very
robust method is the natural time analysis with has much more to give. The satellites are
now several and can be accessed conveniently. This provides new insights in the related
research. Remote sensing and SAR techniques are very powerful as well. Not omitting
of course the number of installed stations worldwide. These new tools give boost to the
modern approaches which are also multi-facet and with the collaboration of different
groups.

Historically radon gas has the majority of publications in relation to earthquakes with
many radon papers presenting associations with very strong earthquakes. Nowadays there
is a balance between radon and electromagnetic precursors, with the latter to have more
options due to the different frequency ranges and the remote sensing and satellite methods.
Radon has also provided new approaches and therefore both precursors are very significant.
In fact electromagnetic and radon precursors seem to be the subject of many papers up to
date.

The collaboration between scientists and the multi level approaches with different
methodologies is the key point to the seismic reasearch in the following years. This research
is ongoing and in a continuous search for credible and powerful precursors.

8. Conclusions

This paper is a review on electromagnetic and radon precursors for earthquake fore-
casting. The electromagnetic precursors emerge in a diverse frequency band ranging from
ultra low to very high frequencies. Nowadays electromagnetic data are collected from
satellites, whereas the remote sensing techniques are in increasing usage also. Within
the electromagnetic spectrum is also the TEC measurements and the modern approach
of SAR studies. The various investigators are still working independently, nevertheless
there is great space for inter-collaborations. The traditional approach is still the recordings
from ground stations, with the precursors of the ULF range to have the greater history
and potential. MHz KHz frequencies provide also very good estimations. On the other
hand, radon precursors are those with the oldest usage. Many great earthquakes have been
studied with the help of radon stations worldwide. Radon is easily detected and may travel
far due to its inert nature. For this reason it assist in forecasting of earthquakes from far.

The majority of the reported precursory anomalies have been and still are visually
observed. Several statistical approaches have been utilised in the papers. Especially for
radon, the £2¢ criterion is the one most frequently used. In the recent years advanced
methods have been published and used in several new publications. Special mention
is in the modern approach of Natural Time which has great potential and many future
earthquakes to be applied to. Power-law as well as Monofractal and Multifractal Detrended
Fluctuation Analysis have been used in both elecromagnetic and radon precursors. Usage
has been done to R/S analysis, fractal dimension analysis and Hurst exponents. Block
entropy and several entropy measures have been used as well. Combinational analysis
between different monofractal methods has been used with success. All these modern
methods attempt to outline the fractal and self organised critical features of the fracturing
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parts of the earth's crust during preparation of earthquakes. Much research needs to be
implemented and new approaches are still on demand.

Several models have been proposed for the interpretation of the collected precursory
data.The LAIC model has been in great use by many papers. The theory of asperities has
been employed both in electromagnetic and radon precursors. In radon research other
models have also been utilised. Since each earthquake is e special event it is difficult to find
a universal model which covers all aspects of the research outcomes. The main problem is
that many precursors have characterised so, after the occurrence of the earthquakes. This
is a disadvantage that will be overcome as the research is progressing. There are papers
that forecast earthquakes prior to their occurrence and this is still the most distinguishing
issue. The work of researchers from different sub-disciplines of electromagnetic and radon
precursors will provide better forecasting results in terms of science.
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