Altmetrics
Downloads
132
Views
54
Comments
0
A peer-reviewed article of this preprint also exists.
This version is not peer-reviewed
Submitted:
17 June 2024
Posted:
27 June 2024
You are already at the latest version
Statistical Parameters |
STFT | Ridge Regression | Pearson CC | |||
Dia P | Non-Dia P | Dia P | Non-Dia P | Dia P | Non-Dia P | |
Mean | 40.7681 | 40.7863 | 0.0033 | 0.0025 | 0.0047 | 0.0045 |
Variance | 11745.67 | 11789.27 | 1.3511 | 1.3746 | 0.0004 | 0.0004 |
Skewness | 19.2455 | 19.2461 | 0.0284 | -0.0032 | 0.0038 | -0.0317 |
Kurtosis | 388.5211 | 388.5372 | 0.6909 | 0.9046 | -0.1658 | -0.0884 |
Sample Entropy | 11.0014 | 11.0014 | 11.4868 | 11.4868 | 11.4868 | 11.4868 |
Shannon Entropy | 0 | 0 | 3.9818 | 3.9684 | 2.8979 | 2.9848 |
Higuchi Fractal Dimension | 1.1097 | 1.1104 | 2.007 | 2.0093 | 1.9834 | 1.9659 |
CCA | 0.4031 | 0.0675 | 0.0908 |
S.No. | Parameters | Values | S.No. | Parameters | Values |
---|---|---|---|---|---|
1. | Initial Population (I) | 100 | 6. | Beta (β) | 0.4 |
2. | Maximum time of simulation | 10 (s) | 7. | Gamma (γ) | 0.7 |
3. | Number of males (M) | 15 | 8. | Roar | 0.25 |
4. | Number of hinds (H) | I M | 9. | Fight | 0.4 |
5. | Alpha (α) | 0.85 | 10. | Mating | 0.77 |
Feature selection | DR Techniques | STFT | Ridge Regression | Pearson CC | |||
Class | Dia P | Non-Dia P | Dia P | Non-Dia P | Dia P | Non-Dia P | |
BESO | P value <0.05 |
0.4673 | 0.3545 | 0.2962 | 0.2599 | 0.3373 | 0.3178 |
RDO | P value <0.05 |
0.4996 | 0.4999 | 0.4999 | 0.4883 | 0.4999 | 0.4999 |
Clinical Situation |
Predicted Values | ||
Dia | Non-Dia | ||
Real Values |
Class of Dia | TP | FN |
Class of non-Dia | FP | TN |
Classifiers | STFT | Ridge Regression | Pearson CC | |||
Train MSE | Test MSE | Train MSE | Test MSE | Train MSE | Test MSE | |
NLR | 1.59× 10−5 | 4.84× 10−6 | 7.29× 10−6 | 3.25× 10−5 | 4.36× 10−5 | 4.1× 10−4 |
LR | 1.18× 10−5 | 3.61× 10−6 | 1.16× 10−5 | 1.94× 10−5 | 9.61× 10−6 | 3.84× 10−4 |
GMM | 1.05× 10−5 | 2.89× 10−6 | 1.02× 10−5 | 1.48× 10−5 | 2.02× 10−5 | 8.41× 10−4 |
EM | 6.74× 10−6 | 2.89× 10−6 | 5.29× 10−6 | 1.37× 10−5 | 9.61× 10−6 | 3.72× 10−5 |
LoR | 2.46× 10−5 | 9× 10−6 | 2.7× 10−5 | 3.02× 10−5 | 4× 10−6 | 2.92× 10−5 |
SDC | 1.28× 10−5 | 4× 10−6 | 1.68× 10−5 | 1.22× 10−5 | 2.56× 10−6 | 1.85× 10−5 |
SVM (RBF) | 1.88× 10−6 | 1× 10−6 | 2.56× 10−6 | 4.41× 10−6 | 3.6× 10−7 | 4.41× 10−6 |
Classifiers | STFT | Ridge Regression | Pearson CC | |||
Train MSE | Test MSE | Train MSE | Test MSE | Train MSE | Test MSE | |
NLR | 1.43× 10−5 | 5.29× 10−5 | 1.44× 10−5 | 2.21× 10−5 | 9.41× 10−5 | 7.06× 10−5 |
LR | 3.76× 10−5 | 2.3× 10−5 | 7.74× 10−5 | 1.85× 10−5 | 2.5× 10−5 | 2.02× 10−5 |
GMM | 4.51× 10−5 | 1.3× 10−5 | 6.56× 10−5 | 3.97× 10−4 | 6.08× 10−5 | 3.02× 10−5 |
EM | 3.4× 10−5 | 1.37× 10−5 | 5.18× 10−5 | 3.14× 10−4 | 1.6× 10−7 | 1.3× 10−5 |
LoR | 9.97× 10−6 | 4× 10−6 | 9× 10−6 | 1.76× 10−5 | 4.9× 10−7 | 1.68× 10−5 |
SDC | 2.21× 10−5 | 1.6× 10−5 | 2.81× 10−6 | 2.81× 10−4 | 8.1× 10−7 | 8.65× 10−5 |
SVM (RBF) | 2.18× 10−6 | 1.44× 10−6 | 5.29× 10−6 | 4.9× 10−5 | 4.9× 10−7 | 8.1× 10−7 |
Classifiers | STFT | Ridge Regression | Pearson CC | |||
Train MSE | Test MSE | Train MSE | Test MSE | Train MSE | Test MSE | |
NLR | 2.62× 10−5 | 2.56× 10−6 | 6.08× 10−5 | 9× 10−6 | 5.04× 10−5 | 6.56× 10−5 |
LR | 4.85× 10−5 | 1.96× 10−6 | 6.24× 10−5 | 6.4× 10−5 | 2.25× 10−6 | 1.09× 10−5 |
GMM | 9.01× 10−6 | 4.41× 10−6 | 2.12× 10−5 | 2.25× 10−6 | 6.25× 10−6 | 1.22× 10−5 |
EM | 3.51× 10−5 | 7.29× 10−6 | 5.48× 10−5 | 2.81× 10−5 | 1.69× 10−6 | 7.84× 10−6 |
LoR | 1.39× 10−5 | 2.25× 10−6 | 3.02× 10−5 | 4.84× 10−6 | 3.6× 10−7 | 4× 10−6 |
SDC | 1.35× 10−5 | 2.89× 10−6 | 2.6× 10−5 | 1.96× 10−6 | 1.44× 10−7 | 1.68× 10−5 |
SVM (RBF) | 4.25× 10−7 | 3.6× 10−7 | 8.1× 10−7 | 9× 10−8 | 4× 10−8 | 2.5× 10−7 |
Classifiers | Description |
---|---|
NLR | The uniform weight is set to 0.4, while the bias is adjusted iteratively to minimize the sum of least square errors, with the criterion being the Mean Squared Error (MSE). |
Linear Regression | The weight is uniformly set at 0.451, while the bias is adjusted to 0.003 iteratively to meet the Mean Squared Error (MSE) criterion. |
GMM | The input sample’s mean covariance and tuning parameter are refined through EM steps, with MSE as the criterion. |
EM | The likelihood probability is 0.13, the cluster probability is 0.45, and the convergence rate is 0.631, with the condition being MSE. |
Logistic regression | The criterion is MSE, with the condition being that the threshold Hθ(x) should be less than 0.48. |
SDC | The parameter Γ is set to 0.5, alongside mean target values of 0.1 and 0.85 for each class. |
SVM (RBF) | The settings include C as 1, the coefficient of the kernel function (gamma) as 100, class weights at 0.86, and the convergence criterion as MSE. |
Metrics | Formula |
---|---|
Accuracy | |
F1 Score | |
Matthews Correlation Coefficient (MCC) | |
Jaccard Metric | |
Error Rate | ER = 1 - Accu |
Kappa |
|
Feature Extraction | Classifiers | Parameters | |||||
---|---|---|---|---|---|---|---|
Accu (%) |
F1S (%) |
MCC | Jaccard Metric (%) |
Error rate (%) | Kappa | ||
STFT | NLR | 85.7142 | 77.2727 | 0.6757 | 62.9629 | 14.2857 | 0.6698 |
LR | 87.1428 | 79.0697 | 0.7021 | 65.3846 | 12.8571 | 0.6985 | |
GMM | 87.1428 | 79.0697 | 0.7021 | 65.3846 | 12.8571 | 0.6985 | |
EM | 87.1428 | 79.0697 | 0.7021 | 65.3846 | 12.8571 | 0.6985 | |
LoR | 82.8571 | 72.7272 | 0.6091 | 57.1428 | 17.1428 | 0.6037 | |
SDC | 88.5714 | 81.8181 | 0.7423 | 69.2307 | 11.4285 | 0.7358 | |
SVM (RBF) | 91.4285 | 85.7142 | 0.7979 | 75 | 8.57142 | 0.7961 | |
Ridge Regression | NLR | 80 | 66.6667 | 0.5255 | 50 | 20 | 0.5242 |
LR | 80 | 68.1818 | 0.5425 | 51.7241 | 20 | 0.5377 | |
GMM | 81.4285 | 71.1111 | 0.5845 | 55.1724 | 18.5714 | 0.5767 | |
EM | 84.2857 | 74.4186 | 0.6348 | 59.2592 | 15.7142 | 0.6315 | |
LoR | 71.4286 | 58.3333 | 0.3873 | 41.1764 | 28.5714 | 0.375 | |
SDC | 78.5714 | 68.0851 | 0.5383 | 51.6129 | 21.4285 | 0.5248 | |
SVM (RBF) | 88.5714 | 80.9524 | 0.7298 | 68 | 11.4285 | 0.7281 | |
Pearson CC | NLR | 65.7143 | 52 | 0.2829 | 35.1351 | 34.2857 | 0.2695 |
LR | 78.5714 | 65.1162 | 0.5001 | 48.2758 | 21.4285 | 0.4976 | |
GMM | 77.1429 | 68 | 0.5385 | 51.5151 | 22.8571 | 0.5130 | |
EM | 78.5714 | 65.1162 | 0.5001 | 48.2758 | 21.4285 | 0.4976 | |
LoR | 82.8571 | 70 | 0.58 | 53.8461 | 17.1428 | 0.58 | |
SDC | 85.7142 | 75 | 0.65 | 60 | 14.2857 | 0.65 | |
SVM (RBF) | 92.8571 | 87.1795 | 0.8228 | 77.2727 | 7.14285 | 0.8223 |
Feature Extraction | Classifiers | Parameters | |||||
---|---|---|---|---|---|---|---|
Accu (%) |
F1S (%) |
MCC | Jaccard Metric (%) |
Error rate (%) | Kappa | ||
STFT | NLR | 84.2857 | 74.4186 | 0.6347 | 59.2592 | 15.7142 | 0.6315 |
LR | 74.2857 | 65.3846 | 0.4987 | 48.5714 | 25.7142 | 0.4661 | |
GMM | 80 | 69.5652 | 0.5609 | 53.3333 | 20 | 0.5504 | |
EM | 80 | 69.5652 | 0.5609 | 53.3333 | 20 | 0.5504 | |
LoR | 87.1428 | 79.0697 | 0.7021 | 65.3846 | 12.8571 | 0.6985 | |
SDC | 80 | 70.8333 | 0.5809 | 54.8387 | 20 | 0.5625 | |
SVM (RBF) | 91.4285 | 86.3636 | 0.8089 | 76 | 8.57142 | 0.8018 | |
Ridge Regression | NLR | 78.5714 | 66.6667 | 0.5185 | 50 | 21.4285 | 0.5116 |
LR | 62.8571 | 53.5714 | 0.2982 | 36.5853 | 37.1428 | 0.2661 | |
GMM | 61.4285 | 49.0566 | 0.2262 | 32.5 | 38.5714 | 0.2092 | |
EM | 65.7142 | 53.8461 | 0.3083 | 36.8421 | 34.2857 | 0.2881 | |
LoR | 81.4285 | 69.7674 | 0.5674 | 53.5714 | 18.5714 | 0.5645 | |
SDC | 71.4285 | 58.3333 | 0.3872 | 41.1764 | 28.5714 | 0.375 | |
SVM (RBF) | 88.5714 | 82.6087 | 0.7573 | 70.3703 | 11.4285 | 0.7431 | |
Pearson CC | NLR | 57.1428 | 44.4444 | 0.1446 | 28.5714 | 42.8571 | 0.1322 |
LR | 72.8571 | 61.2244 | 0.4310 | 44.1176 | 27.1428 | 0.4140 | |
GMM | 62.8571 | 51.8518 | 0.2711 | 35 | 37.1428 | 0.2479 | |
EM | 91.4285 | 84.2105 | 0.7855 | 72.7272 | 8.57142 | 0.7835 | |
LoR | 90 | 82.0512 | 0.7517 | 69.5652 | 10 | 0.7512 | |
SDC | 81.4285 | 62.8571 | 0.5174 | 45.8333 | 18.5714 | 0.5081 | |
SVM (RBF) | 92.8571 | 87.8048 | 0.8280 | 78.2608 | 7.14285 | 0.8275 |
Feature Extraction | Classifiers | Parameters | |||||
---|---|---|---|---|---|---|---|
Accu (%) |
F1S (%) |
MCC | Jaccard Metric (%) |
Error rate (%) | Kappa | ||
STFT | NLR | 90 | 83.7209 | 0.7694 | 72 | 10 | 0.76555 |
LR | 85.7142 | 75 | 0.65 | 60 | 14.2857 | 0.65 | |
GMM | 88.5714 | 82.6087 | 0.7573 | 70.3703 | 11.4285 | 0.7431 | |
EM | 84.2857 | 75.5555 | 0.6505 | 60.7142 | 15.7142 | 0.6418 | |
LoR | 90 | 83.7209 | 0.7694 | 72 | 10 | 0.7655 | |
SDC | 90 | 84.4444 | 0.7825 | 73.0769 | 10 | 0.7721 | |
SVM (RBF) | 95.7142 | 92.6829 | 0.8971 | 86.3636 | 4.2857 | 0.8965 | |
Ridge Regression | NLR | 68.5714 | 60.7142 | 0.4248 | 43.5897 | 31.4285 | 0.3790 |
LR | 60 | 46.1538 | 0.1813 | 30 | 40 | 0.1694 | |
GMM | 78.5714 | 70.5882 | 0.5820 | 54.5454 | 21.4285 | 0.5493 | |
EM | 64.2857 | 52.8301 | 0.2895 | 35.8974 | 35.7142 | 0.2677 | |
LoR | 74.2857 | 65.3846 | 0.4987 | 48.5714 | 25.7142 | 0.4661 | |
SDC | 77.1428 | 69.2307 | 0.5622 | 52.9411 | 22.8571 | 0.5254 | |
SVM (RBF) | 92.8571 | 88.3720 | 0.8367 | 79.1667 | 7.14285 | 0.8325 | |
Pearson CC | NLR | 62.8571 | 48 | 0.2190 | 31.5789 | 37.1428 | 0.2086 |
LR | 87.1428 | 78.0487 | 0.6901 | 64 | 12.8571 | 0.6896 | |
GMM | 84.2857 | 74.4186 | 0.6347 | 59.2592 | 15.7142 | 0.6315 | |
EM | 88.5714 | 80.9523 | 0.7298 | 68 | 11.4285 | 0.7281 | |
LoR | 92.8571 | 87.1794 | 0.8228 | 77.2727 | 7.14285 | 0.8223 | |
SDC | 80 | 69.5652 | 0.5609 | 53.3333 | 20 | 0.5504 | |
SVM (RBF) | 97.1428 | 95 | 0.93 | 90.4761 | 2.85714 | 0.93 |
Classifiers | DR Method | ||
---|---|---|---|
STFT | Ridge Regression |
Pearson CC | |
NLR | O(n2 logn) | O(2n2 log2n) | O(2n2 log2n) |
LR | O(n2 logn) | O(2n2log2n) | O(2n2 log2n) |
GMM | O(n2 log2n) | O(2n3 log2n) | O(2n3 log2n) |
EM | O(n3 logn) | O(2n3 log2n) | O(2n3 log2n) |
LoR | O(2n2 logn) | O(2n2 log2n) | O(2n2 log2n) |
SDC | O(n3 logn) | O(2n2 log2n) | O(2n2 log2n) |
SVM (RBF) | O(2n4 log2n) | O(2n2 log4n) | O(2n2 log4n) |
Classifiers | DR Method | ||
---|---|---|---|
STFT | Ridge Regression |
Pearson CC | |
NLR | O(n4 logn) | O(2n4 log2n) | O(2n4 log2n) |
LR | O(n4 logn) | O(2n4 log2n) | O(2n4 log2n) |
GMM | O(n4 log2n) | O(2n5 log2n) | O(2n5 log2n) |
EM | O(n5 logn) | O(2n5 log2n) | O(2n5 log2n) |
LoR | O(2n4 logn) | O(2n4 log2n) | O(2n4 log2n) |
SDC | O(n5 logn) | O(2n4 log2n) | O(2n4 log2n) |
SVM (RBF) | O(2n6 log2n) | O(2n4 log4n) | O(2n4 log4n) |
Classifiers | DR Method | ||
---|---|---|---|
STFT | Ridge Regression |
Pearson CC | |
NLR | O(n5 logn) | O(2n5 log2n) | O(2n5 log2n) |
LR | O(n5 logn) | O(2n5 log2n) | O(2n5 log2n) |
GMM | O(n5 log2n) | O(2n6 log2n) | O(2n6 log2n) |
EM | O(n6 logn) | O(2n6 log2n) | O(2n6 log2n) |
LoR | O(2n5 logn) | O(2n5 log2n) | O(2n5 log2n) |
SDC | O(n6 logn) | O(2n5 log2n) | O(2n5 log2n) |
SVM (RBF) | O(2n7 log2n) | O(2n5 log4n) | O(2n5 log4n) |
S.No | Author (with Year) | Description of the Population |
Data Sampling |
Machine Learning Parameter |
Accuracy (%) |
---|---|---|---|---|---|
1. | This article | Nordic Islet Transplantation program | Tenfold cross-validation | STFT, RR, PCC, NLR, LR, LoR, GMM, EM, SDC, SVM(RBF) | 97.14 |
2. | Maniruzzaman et al. (2017) [46] | PIDD (Pima Indian diabetic dataset) | Cross-validation K2, K4, K5, K10, and JK |
LDA, QDA, NB, GPC, SVM, ANN, AB, LoR, DT, RF |
ACC: 92 |
3. | Hertroijs et al. (2018) [47] | Total: 105814 Age(mean): greater than 18 |
Training set of 90% and test set of 10% fivefold cross-validation |
Latent Growth Mixture Modeling (LGMM) | ACC: 92.3 |
4. | Deo et al. (2019) [48] | Total: 140 diabetes: 14 imbalanced age: 12–90 | Training set of 70% and 30% test set with fivefold cross-validation, holdout validation |
BT, SVM (L) | ACC: 91 |
5. | Akula et al. (2019) [49] | PIDD Practice Fusion Dataset total: 10,000 age: 18–80 |
Training set: 800; test set: 10,000 |
KNN, SVM, DT, RF, GB, NN, NB | ACC: 86 |
6. | Xie et al. (2019) [50] | Total: 138,146 diabetes: 20,467 age: 30–80 |
Training set is around 67%, test set is around 33% | SVM, DT, LoR, RF, NN, NB | ACC: 81, 74, 81, 79, 82, 78 |
7. | Bernardini et al. (2020) [51] | Total: 252 diabetes: 252 age: 54–72 | Tenfold cross-validation | Multiple instance learning boosting |
ACC: 83 |
8. | Zhang et al. (2021) [52] | Total: 37,730, diabetes: 9.4% age: 50–70 imbalanced |
Training set is around 80% test set is around 20% Tenfold cross-validation |
Bagging boosting, GBT, RF, GBM | ACC: 82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 MDPI (Basel, Switzerland) unless otherwise stated