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Abstract: Significant advancements in high-efficiency biology have brought considerable attention to precision 

medicine. Transforming genomic data into applicable, individualized therapeutic programs and patient-

specific prognoses remains a future goal, primarily involving the prediction of drug responses across a large 

number of patients. This study focused on developing machine learning models to predict the IC_50 values of 

the compound OTX015 using gene expression levels from cancer cell lines. By employing regression-based 

machine learning models, particularly the SVM model, trained on pre-laboratory data, consistent and 

generalizable performance with low error scores was achieved. These models were refined through 

hyperparameter optimization and validated with independent data sets. The findings underscore the utility of 

machine learning in drug discovery and personalized medicine, offering rapid and cost-effective IC_50 

predictions. However, to enhance reliability, further model development, extensive data collection, and 

evaluation with a broader range of compounds are recommended. This research highlights the potential of 

machine learning approaches to optimize experimental workflows, reduce costs, and advance personalized 

treatments by accurately predicting compound responses in healthcare. 
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1. Introduction 

Advancements in high-efficiency biology have greatly increased interest in precision medicine. 

Transforming genomic data into practical, individualized therapeutic programs and accurate patient-

specific prognoses remains an ongoing goal.This primarily involves predicting drug responses across 

a large number of patients [1]. 

Identifying a logical relationship between the 𝐼𝐶50  values of anticancer drugs and their 

quantitatively calculated physical amounts could be highly beneficial in predicting and designing 

new drugs, while also reducing time and cost [2]. Furthermore, predicting the response of a specific 

cancer to a treatment is a crucial objective in modern oncology, ultimately leading to personalized 

therapy [3]. 

In most modeling studies, assumptions have been made that similar drugs may exhibit similar 

responses in specific cell lines or, conversely, show divergent responses [4]. Additionally, one study 

demonstrated that it is possible to establish in silico multi-drug models using neural networks and 

random forests – non-parametric machine learning algorithms – to determine missing 𝐼𝐶50 values 

by leveraging genomic features from cell lines and chemical information from drugs [5]. 

For instance, the Bromodomain and Extra-Terminal (BET) protein family is directly or indirectly 

responsible for many cancers [6–12]. In various cancer types, including hematological tumors, 

neuroblastomas, breast cancer, and prostate cancer, the compound OTX015 has demonstrated strong 

in vitro and in vivo anti-tumor activity and good tolerability in preclinical studies. Additionally, 

OTX015 is the first BET inhibitor (BETi) to successfully advance to clinical trials [13,14]. However, the 
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potent effects of OTX015 may not be limited to these cancers. It could exhibit strong anti-tumor 

activity in other cancer types influenced by the BET protein family, or it might have entirely different 

effects than expected. Having an estimation of the potential relationship between this compound and 

other cancer cell lines before initiating clinical trials could help to outline a roadmap for these studies. 

Starting with cancer cell lines predicted to have high potential could save time and reduce costs. 

Despite many studies based on these ideas, developing models to predict drug sensitivity 

remains challenging. One of the primary solutions to this challenge is to gather as much high-quality 

bioactivity data as possible, although this can be costly. Another approach is to develop more 

accurate and robust computational models based on existing datasets to improve prediction 

performance [15].  

In this study, considering the many positive outcomes of predicting drug efficacy, it was aimed 

to develop a robust prediction model using the gene expression data of cancer cell lines and their 

response to OTX015 (𝐼𝐶50 values), a potent BETi. Our findings suggest that The SVM model is the 

most suitable for predicting potential drug candidates for cancer treatment due to its high 

generalization capability and consistent performance with this type of data and problems. 

2. Results 

In this study, five different machine learning models were used to predict the 𝐼𝐶50 values of the 

compound OTX015 on cancer cell lines found in the literature. Since 𝐼𝐶50  values are continuous 

variables, the selected machine learning models were regression-based. These models were Elastic 

Net (EN), K-Nearest Neighbors (KNN), Neural Network (NNET), Support Vector Machine (SVM), 

and Extreme Gradient Boosting (XGB). 

The performance of the models was evaluated by examining their Mean Absolute Error (MAE) 

scores. MAE scores are an important metric to measure how well or poorly each model performs. 

Using these scores, the performance of the models was compared both within different data 

dimensions and against each other. 

2.1. The Impact of Data Dimensions on Models 

To assess whether data dimensions affect the performance of the models, the main dataset was 

divided into five subsets. Each subset contained a different number of genes. This approach allowed 

us to examine whether increasing or decreasing the number of genes in the dataset had a significant 

impact on the performance of the prediction models. The gene counts in the five different subsets 

were 10, 25, 50, 75, and 100, respectively. The subsets were named according to the number of genes 

they contained. For instance, the dataset containing 10 genes was labeled as "Data of 10." 

The performance of the OTX015 compound across different data dimensions is shown in Table 

1. 

Table 1. The mean absolute error (MAE) scores of OTX015 compound across different data 

dimensions and models based on the number of genes. The lowest MAE score and the dataset yielding 

this score are highlighted in bold. 

Data EN KNN NNET SVM XGB 

Data of 10 1,357 1,625 1,491 1,143 1,593 

Data of 25 0,52 0,618 0,558 0,434 0,687 

Data of 50 1,04 1,174 1,167 0,855 1,307 

Data of 75 0,55 0,673 0,722 0,464 0,672 

Data of 100 0,281 0,355 0,491 0,254 0,352 

2.2. Evaluation of Error Dimensions of Models 

MAE scores provide information about the overall performance of the models. However, to 

obtain these average scores, the errors for each cell line were also examined. This analysis was 

conducted to determine whether the average error used to evaluate performance came from an 
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abnormal distribution. The individual errors made by each model for the cell lines across all data 

groups are shown in Figure 1. 

 

 

 

(a) (b) (c) 

 

 

 

(d) (e)  

Figure 1. Errors made by the models in predicting 𝐼𝐶50 values for each cell line in the Data of 10. The 

light green bars represent the highest and lowest errors. (a) EN, (b) KNN, (c) NNET, (d) SVM, and (e) 

XGB models show individual errors. 

2.3. Evaluation of Error Distributions of The Models 

Another crucial aspect in evaluating the performance of the models was the amaount of the 

errors. Ideally, models should frequently make low-degree errors while making fewer high-degree 

errors. In other words, for a model to be considered performing well, there should be frequent 

repetitions of errors close to zero, while larger errors should occur less frequently. Figure 2 presents 

the graphs showing the frequency of the errors made by the models. 
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(d) (e)  

Figure 2. Frequency of errors made by the models in the Data of 10. The X-axis represents the error 

magnitude, while the Y-axis indicates the frequency of these errors. (a) EN, (b) KNN, (c) NNET, (d) 

SVM, and (e) XGB models show the frequency of errors. 

2.4. Comparison of Predicted and Actual Values 

In addition to the errors of the models, the scale of their predictions is also important. This allows 

for the assessment of whether the models are generalizing well based on the information learned 

from the training data. To evaluate this, the predicted 𝐼𝐶50 values were compared with the actual 

values. The comparison graphs are shown in Figure 3. 

 

 

 

(a) (b) (c) 

 

 

 

(d) (e)  

Figure 3. Comparison of the predicted 𝐼𝐶50 values (colored circles) and the actual 𝐼𝐶50 values (light 

green triangles) for the models in the Data of 10. The X-axis represents the index numbers of the cell 

lines in the dataset, while the Y-axis represents the 𝐼𝐶50 values. (a) EN, (b) KNN, (c) NNET, (d) SVM, 

and (e) XGB models show the performance of the models. 
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2.4. Evaluation of the SVM Model In Singel-Patient Predictions 

Considering all results, the SVM model emerged as the most prominent model with the lowest 

minimum, maximum, and average error rates. It also showed a high concentration of low-degree 

error repetitions and had the lowest average error scores across different data dimensions. 

To emphasize the potential benefits of machine learning models in the field of personalized 

medicine, a scenario was created for individual patient predictions using the standout SVM model. 

Each cell line in the validation set of the Data of 10 was defined as individual patient data, and the 

SVM model was tasked with making predictions for a patient. The predictions made by the SVM 

model for 76 patients are shown in Table 2. 

Table 2. Single-patient performance of the SVM model. 

Patient Predicted 𝑰𝑪𝟓𝟎   Real 𝑰𝑪𝟓𝟎   Error 

Patient 1 4,03 6,528 -2,498 

Patient 2 3,604 3,413 0,191 

Patient 3 3,909 9,664 -5,755 

Patient 4 3,843 3,464 0,379 

*The continuation of Table 2 is on the next page. 

Table 2. (Continued). Single-patient performance of the SVM model. 

Patient Predicted 𝑰𝑪𝟓𝟎   Real 𝑰𝑪𝟓𝟎   Error 

Patient 5 3,918 5,052 -1,134 

Patient 6 3,935 5,136 -1,201 

Patient 7 4,091 3,476 0,615 

Patient 8 4,085 10,923 -6,838 

Patient 9 4,014 10,214 -6,2 

Patient 10 3,985 5,233 -1,248 

Patient 11 4,131 4,716 -0,585 

Patient 12 4,022 3,397 0,625 

Patient 13 3,871 3,302 0,569 

Patient 14 4,149 3,626 0,523 

Patient 15 4,036 3,359 0,677 

Patient 16 3,891 6,366 -2,475 

Patient 17 3,83 3,939 -0,109 

Patient 18 4,052 3,307 0,745 

Patient 19 3,651 3,469 0,182 

Patient 20 3,998 3,535 0,463 

Patient 21 4,038 5,51 -1,472 

Patient 22 3,931 3,259 0,672 

Patient 23 4,03 3,755 0,275 

Patient 24 3,986 3,614 0,372 

Patient 25 3,953 3,26 0,693 

Patient 26 3,625 3,351 0,274 

Patient 27 4,108 3,264 0,844 

Patient 28 3,923 9,608 -5,685 

Patient 29 4,144 3,622 0,522 

Patient 30 4,046 3,597 0,449 

Patient 31 3,542 3,907 -0,365 

Patient 32 4,184 4,389 -0,205 

Patient 33 4,085 3,69 0,395 

Patient 34 4,052 3,326 0,726 

Patient 35 4,107 3,318 0,789 
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Patient 36 3,915 3,586 0,329 

Patient 37 3,882 3,424 0,458 

Patient 38 3,763 5,623 -1,86 

Patient 39 4,115 5,589 -1,474 

Patient 40 3,598 3,261 0,337 

Patient 41 3,835 3,833 0,002 

Patient 42 4,058 4,19 -0,132 

Patient 43 3,67 7,39 -3,72 

Patient 44 3,616 3,499 0,117 

Patient 45 4,068 11,897 -7,829 

Patient 46 4,011 3,256 0,755 

Patient 47 4,045 3,818 0,227 

Patient 48 4,051 3,425 0,626 

Patient 49 4,029 3,399 0,63 

Patient 50 4,088 4,773 -0,685 

Patient 51 3,923 6,924 -3,001 

Patient 52 3,636 3,761 -0,125 

Patient Predicted 𝑰𝑪𝟓𝟎   Real 𝑰𝑪𝟓𝟎   Error 

Patient 53 4,05 3,844 0,206 

Patient 54 4,044 6,627 -2,583 

Patient 55 4,08 3,257 0,823 

Patient 56 4,073 3,991 0,082 

Patient 57 3,699 3,298 0,401 

Patient 58 3,579 3,582 -0,003 

Patient 59 4,028 4,722 -0,694 

Patient 60 3,961 3,524 0,437 

Patient 61 3,911 4,002 -0,091 

Patient 62 4,14 3,251 0,889 

Patient 63 3,803 4,755 -0,952 

Patient 64 4,075 4,819 -0,744 

Patient 65 3,705 4,166 -0,461 

Patient 66 4,142 4,921 -0,779 

Patient 67 3,679 3,382 0,297 

Patient 68 3,922 6,88 -2,958 

Patient 69 4,084 3,784 0,3 

Patient 70 4,006 6,483 -2,477 

Patient 71 4,001 4,095 -0,094 

Patient 72 4,04 3,319 0,721 

Patient 73 4,033 4,043 -0,01 

Patient 74 3,37 4,689 -1,319 

Patient 75 3,943 4,166 -0,223 

Patient 76 3,548 3,283 0,265 

Mean Absolute Error (MAE) 1,143 

*The continuation of Table 2 is on the next page.  

3. Discussion 

Precision medicine, highlighted by advancements in biology, underscores the importance of 

translating genomic data into individualized therapies. Predicting drug responses is critical for 

personalized approaches in cancer treatment [16]. Machine learning offers a solution to the challenge 

of predicting drug efficacy [17].  

In this study, the aim was to develop and compare robust machine learning prediction models 

using gene expression data from cancer cells and their responses to a specific drug. The models were 
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evaluated based on error dimensions, error amounts, and their predictions against actual values, both 

within different data dimensions and against each other. 

While previous machine learning studies have assumed that algorithms would learn better with 

more data, it has also been noted that traditional algorithms may encounter various challenges with 

large datasets [18]. In this study, subsets of the main dataset were created, and the relationship 

between data dimension and the performance of the machine learning models was assessed. Table 1 

shows the performance of all models on the five different subsets created for the compound OTX015. 

However, the results demonstrated fluctuating performance rather than a consistently increasing-or-

decreasing performance with larger data sizes. 

Secondly, the performance of individual cell lines, which affects the overall performance of the 

machine learning models, was also evaluated. This assessment was conducted to examine the 

distribution of all errors considered in calculating the models' average error. For instance, the errors 

for the SVM model shown in Figure 2.d. ranged from 7.829 to –0.889, with an average error (MAE) 

calculated as 1.143. In contrast, the errors for the XGB model shown in Figure 2.e. ranged from 7.92 

to –4.701, with an average error of 1.593. However, as seen in the XGB results, the degrees of both 

negative and positive errors were slightly higher compared to SVM. Consequently, the MAE score 

for the SVM model was lower than that for XGB. The EN model (Figure 2.a.) showed similar results 

to SVM, while the KNN and NNET models showed results similar to XGB. Similar results are 

observed in Figure 3, where the EN (Figure 2.a.) and SVM (Figure 2.d.) models made more errors 

close to zero. This indicates that these two models generally made low-degree errors for all cell lines, 

both negative and positive. In contrast, the KNN, NNET, and XGB models generally made slightly 

higher-degree errors compared to the other two models. This explains why, in Table 1, for the Data 

of 10 (the dataset used for these graphs), SVM had the lowest, and EN had the second-lowest MAE 

score. 

An additional evaluation was conducted to assess the generalization performance of the models. 

Figure 4 shows the predicted 𝐼𝐶50  values against the actual 𝐼𝐶50  values for all cell lines in the 

validation set of the Data of 10. The predictions of the EN and SVM models were closer to each other 

compared to the other three models, resulting in a linear appearance in the graphs (Figures 4.a. and 

4.d.). This indicates that the EN and SVM models made more general and similar predictions, likely 

dependent on the training set. The SVM model, which stands out in line with all these results, also 

came to the fore with its low MAE scores in another study comparing several machine learning 

models [19].    

In addition, this study demonstrated that the SVM model maintained its performance not only 

on the general dataset but also in predictions for individual patients (Table 2). This shows that the 

SVM model, trained on literature data, can achieve the same level of performance when given the 

gene profile of a single patient. Consequently, it is emphasized that machine learning models, 

particularly SVM, have strong potential for predicting individualized 𝐼𝐶50 values. 

Overall, when considering the results, the performance of all models was consistent across 

different compounds and demonstrated good performance with low MAE scores. However, the SVM 

model, evaluated with minor details, was identified as the most suitable model for the given problem 

among the five different machine learning algorithms. Therefore, this study, which used gene 

expression levels and 𝐼𝐶50 values of compounds on cancer cell lines, suggests that the SVM model 

is the most appropriate for predicting potential drug candidates for cancer treatment. The SVM model 

has a high generalization capability and the ability to obtain consistent results for this type of data 

and problems. 

The advancements in cancer treatment today are encouraging researchers to focus on 

developing new drugs and treatment strategies. In this context, the development of machine learning 

models to predict the sensitivity of cancer cells to drugs plays a significant role in identifying new 

treatment methods. This study aims to expand the boundaries of similar research and is based on 

some important studies found in the literature. For instance, in the study conducted by Chiu et al. 

(2019), machine learning models were used to predict the efficacy of drugs in different tumor types. 

Chiu and colleagues better understood the effects of drugs on cancer cells and identified potential 
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drug candidates by using mutation and expression profiles of cancer cells or tumors [20]. A similar 

approach is evident in the significant work of Su et al. (2019) in cancer research, where they developed 

a prediction model based on gene expression levels that could be used to determine sensitivity to 

drugs in cancer cells [21]. Additionally, it is also reflected in the study by Dring et al. (2019) on cancer 

treatment. Dring and colleagues emphasized the development of a data-driven precision medicine 

approach that optimizes therapeutic efficacy using machine learning algorithms [22].  

This study aims to offer a pioneering approach in cancer research and treatment, aiming to 

surpass similar studies in the literature. It addresses a crucial need in cancer research and treatment, 

namely, predicting potential drug candidates and recommended treatments for individual patients 

based on genomic information. Unlike other studies, this research does not focus on individual 

models for prediction or a single cancer type. Instead, the proposed models have the potential to 

predict for all cancer cell lines with gene expression levels for a compound. Moreover, they can 

provide drug response for compounds intended to be evaluated for every patient with genomic 

information. This highlights the unique diversity of performance of the proposed models, especially 

SVM, in the study. 

However, this study also faced limitations. First, the quality and completeness of the data used 

can affect the accuracy of the predictions. It must be noted that data may be incomplete or erroneous, 

which can influence the model's results. Additionally, this study focused on a specific drug 

compound, and testing more drug candidates may be necessary. Testing a broader range of drug 

candidates is important for obtaining more comprehensive results. Furthermore, using different 

machine learning algorithms and feature engineering techniques could enhance the model's 

performance. This would help the model make more accurate predictions and be more effective in 

real-world applications. Future research could address the limitations of our study by collecting more 

data or using different data sources to improve model performance. Moreover, employing various 

machine learning algorithms and feature engineering techniques could be considered to achieve 

more accurate predictions. 

In conclusion, our study highlights the significant role that machine learning can play in 

predicting potential drug candidates for cancer treatment and developing treatment options based 

on individual genetic profiles. While all models were shown to be effective in this context, the SVM 

model was found to be the best for this problem, demonstrating consistent results. Future studies 

should further explore this potential and make significant contributions to cancer treatment and 

personalized medicine. This study has laid the groundwork for achieving these goals and has 

introduced a new perspective to this important area of cancer research.     

4. Materials and Methods 

This study aims to develop five different regression-based machine learning models to predict 

the 𝐼𝐶50 values of the promising bromodomain inhibitor OTX015 in cancer cell lines. The necessary 

data were obtained from the following sources: 

• 𝑰𝑪𝟓𝟎  Values: The 𝐼𝐶50  values of OTX015 in cancer cell lines were obtained from the 

[CancerRxGene] (https://www.cancerrxgene.org/) data source. This data provides a crucial 

measure of the impact of OTX015 on cancer cell lines. 

• Gene Expression Data: The gene expression levels of cancer cells were obtained from the 

[Sanger Institute's Cancer Cell Lines Project] (https://cancer.sanger.ac.uk/cell_lines) data source. 

These data allow for a detailed examination of the gene expression profile in cancer cells. 

4.1. Data Preprocessing 

The obtained 𝐼𝐶50 values and gene expression data required some preprocessing before being 

used in the training, testing, and validation stages of the model. The data preprocessing process 

included the following steps: 

1. Data Integration: 𝐼𝐶50 values and gene expression data were merged based on cancer cell lines. 

This step helped determine in which cancer cells 𝐼𝐶50 values were determined for the OTX015 

compound and in which cells gene expression levels were measured. 
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2. Data Processing: Missing data were checked, and any incomplete data were removed from the 

dataset. Following the literature (Table 1), cell lines with 𝐼𝐶50 values of 200 µM or higher were 

considered inactive and were excluded from the dataset.  

3. Feature Engineering: To determine the features used for model development, feature 

engineering was performed on the gene expression data. Only significant gene expression levels 

were selected. Each gene in the dataset was subjected to Pearson correlation with the 𝐼𝐶50 value. 

The relationships were ranked from highest to lowest based on the absolute value of the 

correlation, irrespective of whether the correlation was positive or negative. Genes with 

significant correlations to 𝐼𝐶50 values were selected in sets of 10, 25, 50, 75, and 100 to evaluate 

the impact of data dimensions on the models, resulting in five different new datasets. 

4. Data Scaling: Rescaling the data often improves model performance by reducing error rates, 

depending on the nature of the problem, data, and models. Therefore, rescaling was applied to 

all five models used in this study. This contributed to better model performance and lower error 

rates. 

5. Creation of Training, Testing, and Validation Data: To evaluate the model's performance on a 

dataset it had not seen before, the dataset was split before model training. 80% of the data (314 

samples) was used for training and testing, and 20% (76 samples) was used for validation. The 

validation data set was reserved for assessing the model’s performance and was not used during 

the training or optimization stages. Cross-validation was performed using the training data. In 

cross-validation, the value of k was set to 5, creating five different training and testing sets 

during model training. 

4.2. Model Training, Utilization, and Evaluation 

In this study, five different regression-based machine learning models were selected to predict 

the 𝐼𝐶50 values of the compound OTX015 on cancer cell lines using the gene expression levels of 

these cells. Each model has distinct features and advantages, aiming to achieve the best predictive 

performance through this diversity:  

1. K-Nearest Neighbor  

2. Extreme Gradient Boosting  

3. Elastic Net  

4. Neural Networks  

5. Support Vector Machine  

These five regression models were trained separately using the same dataset and their 

performances on the same validation set were compared. During model training, hyperparameter 

optimization was conducted for key parameters that influence model performance. The optimal 

hyperparameters were determined based on the Mean Absolute Error (MAE) calculated using 

Equation (1):  

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛

𝑖 =1 |𝑥𝑖 − 𝑥|  (1) 

MAE was used to compute the mean of the absolute differences between the predicted and 

actual values. The parameters with the lowest MAE scores were selected as the optimal 

hyperparameters to maximize model performance. The models were then retrained with these 

optimal parameters and the same training set, and these retrained models were considered the best-

performing models. 

After optimization, the performance of the best models was evaluated using the validation set, 

which comprised 20% of the initial data that was not used during training. The MAE score was used 

for this evaluation. The MAE scores facilitated the comparison of model performances across 

different data sizes as well as among the five different machine learning models. The MAE scores 

obtained by the models on the validation sets are presented in Table 2.  

The entire workflow is illustrated in Figure 5. 
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Figure 4. This is the workflow diagram of the study. 

5. Conclusions 

In conclusion, the development and evaluation of machine learning models to predict 𝐼𝐶50 

values, which indicate the half-maximal inhibitory concentration of compounds or drugs, have 

yielded promising results. Specifically, the models were rigorously assessed using the drug candidate 

compound OTX015, known for its successful role as a BETi (Bromodomain and Extra-Terminal 

inhibitor). The study was extended to evaluate model performance across varying data dimensions, 

providing valuable insights into scalability and adaptability. 

The predictive capabilities of machine learning models are crucial for minimizing the cost and 

time associated with traditional laboratory experiments. Therefore, the outcomes of this research hold 

pioneering implications for experimental applications. By accurately predicting 𝐼𝐶50 values, these 

models serve as invaluable tools for prioritizing and facilitating experimental efforts, thereby 

enhancing efficiency in the drug discovery process. 

Moreover, beyond the realm of experimental optimization, these models demonstrate significant 

potential in the field of personalized medicine. The ability to predict individualized 𝐼𝐶50 values for 

drugs has transformative implications for tailoring therapeutic interventions to the unique 

physiological characteristics of patients. This not only enhances treatment precision but also 

underscores the broader impact of the models in developing patient-centered healthcare strategies. 

Based on these findings, further research and development are necessary to enhance the 

robustness, reliability, and applicability of machine learning models to various experimental 

scenarios. Specifically, there is a need for the collection of more data and better organization of 

existing data, as well as the evaluation of different model types and feature engineering techniques. 

Such improvements can accelerate progress in this field. Additionally, collaborative efforts between 
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computational and experimental researchers can foster an iterative model improvement process, 

continuously advancing prediction accuracy and generalizability. 

As a result, the study demonstrated the potential of using machine learning models to predict 

𝐼𝐶50 values in cell lines. However, ongoing research and further development of the models are 

necessary. Integrating the proposed models into routine laboratory applications and clinical decision-

making processes will lay a significant foundation for developing an effective tool that could lead the 

way in drug discovery and personalized medicine. 
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