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Abstract: In recent studies, the circulation of a (SLG) super-Lorentz-Gaussian beam in a non-turbulent 
troposphere has been investigated and used for laser applications. This method uses the extended Huygens-
Fresnel integral technique and refers to the multiplication of the Gaussian beam by the Lorentz function. 
Formulas are derived for the normal density and approximate field of the Lorentz-Gaussian beam in a non-
turbulent troposphere. The average density power and the propagation characteristics of the SLG jet in the 
non-turbulent troposphere are numerically represented. The characteristics of the beam boundaries at 
atmospheric non-turbulence for the propagation distance of an SLG beam in a non-turbulent troposphere are 
also discussed in detail and are practical in an optical communication system used in lasers. 

Keywords: SLG; nonturbulent troposphere; huygens-fresnel integral; intensity; receiver field 
 

1. Introduction 

In modern studies, the propagation of SLG in FSO is the understanding of the nature of ray 
propagation such as intensity, scintillation index, source size, and many factors that can be calculated 
and analyzed, the sharp dispersion of a Lorentz-Gaussian delivery is a higher order than that of a 
Gaussian ray propagation. As a result, Lorentz-Gaussian beams have been used as long as with more 
appropriate reproductions G(Gaussian) and to explain the propagation of SLG in (FSO) free-space 
optics [1], also to illustrate the digital phase shifter and its application in communication circuits for 
design and comparison with Gaussian propagation in FSO [2]. In addition, the oblique propagation 
of the Gaussian laser in a turbulent atmosphere was investigated and the Huygens-Fresnel 
integration process was studied [3]. In other words, the static model of ITU-R turbulence construction 
was applied and the mean SLVGB intensity was calculated in the oblique beam propagation at 
different perpendicular distances [4], which corresponds to the mean aperture receiver. We once 
checked the parameters such as the source size factor that affect the energy propagation profile. In 
addition, the analysis showed that the mean aperture is inflated with increasing distance of the 
scattering length [5]. In addition, the study of paraxial propagation in the tropospheric layer 
according to the width of the beam and the size of the source of the initial profile spread over space, 
also the structure of constant parameters that explain the wave prefiltration by using SLG beam 
Kolmogorov [6–8] free space, the paraxial propagation of Lorentz was studied such as Lorentz Gauss 
beams [9]. The factorial formulations of the Lorentz function and the long-range Lorentz beam were 
unanimously confirmed [10,11]. Moreover, the long-range propagation of the Gaussian beam, 
although the fractional Fourier transform was trained to the accuracy of Lorentz [12]. To numerically 
explore the focal oscillation, the Lorentz-Gaussian beam occupied by the pinhole lens structure was 
derived [13]. In addition, the second-order beam propagation for Lorentz or Lorentz-Gauss beam 
effects was investigated as described in [14,15]. the SLG beam was invented by using Lorentz beams 
as a basis in reference [16]. Due to these requirements in the area of remote detection and optical 
transport in free space, extensive studies on the propagation of different laser types in a turbulent 
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atmosphere were also modified. [17–23]. Finally, in this paper, we use new modelling and apply the 
mathematical technique to improve the non-turbulent SLG on beam propagation and its application 
in optical communication systems. 

2. Propagation of an SLG Jet in a Non-Turbulent Troposphere 

The super-Lorentz G-beam in the transmitter plane at L = 0 revenue for the formulation, 
transmitter field of SLG illustrated in the Cartesian coordinate system, the L-axis is latched and the 
axis propagates as follows:  
                               

               (1) 

 

a,b ( , )t tU x y denotes the transmission field of the SLG beam a
tx , a

ty  is the oblique 

synchronised structure position on the source side, and, beam widths ( lsylsx ww , ) that correspond to 

the parameters of SLG and   are the wavelength of the SLG beam in the following, let us 
understand what we have understood by the beam according to Equation (2). If you set the beam 
order a, and b to 1, and 0, is likely that you will hit the vital beam and the original order of Supper 
LG beams. This has already been explained in this reference [3,6,24].  
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Wherever the beam widths of the Gaussian part gsygsx ww ,   are denoted by their position and 

the focal length constant parameter gygx FF ,  over the x and y directions [6,25], the next point in 

Equation (3) can be found. The limits of the 2 ( )pC   constants with the quantity of α=1, are posted 

in a straight line from the organised standards in ref [26] and are Hermite polynomial 2 (, )pH . 
Notwithstanding the first impression that the overhead process might cause a 
theatrical increase in the sum of calculations as  
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Where Hermite polynomial 2 (, )pH , the field basis in equation (1) acts and presents the 

Huygens-Fresnel integral method in a nonturbulent atmosphere, moreover, L means the propagation 
distance between the transducer plane, the receiver field , ( ,a bU p z )  evolves in a cartesian 

coordinate system which is studied in equation (4), [27] 
 

              (4)   

 

For the update of the SLG beam via the formula of the extended Huygens-Fresnel integral for 
the start of the synchronization observed in Eq. (5). Our information is a little from Eq. (1) and Eq. (3, 
4) given the new expression to follow in Eq. (5) follow and z L . 
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To evaluate the expansion as shown in the equation (6) as shown 
         

                                      (6) 

The lower solution of this extension can be seen in equation (7) 

22222 22 ytytytytxtxtxtxt ssppssppsp              (7) 

By substitution, the above equations containing a number (3, 6, 7) are replaced in equation (8), 
resulting in a new equation that reads as follows 

 

 

                                                                                  

 

(8) 

 

Eq. (8) describes the receiver field and the determination of the subexpression by substituting 
Eq. (9) into Eq. (8). It has been observed that it can then be simplified into Eq. (8) as below 
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We have used approximate statements that solve equation (9a) as shown, but the Γ(.)refers to a 
gamma function, p is the ray order of the SLG ray, and now is the solution of equation (9) that appears 
in ref [24], first equation (9a), and erroneously the imitation exclusively of the synopsis, thus in refs 
[24,26] as obtained equations (9b, 9c, 9d) as below 
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We use equation (9c) and place the formulation (22.1.1) above it for the same thing to which it 
refers.  
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We are about to engrave the equations via Eq.(9a,9b,9c). Moreover, the order of the original life 
is connected to the order of the equations, as you can see 
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To illustrate and replace equation (9f) with equation (9g), the results of these equations are then 
flattering, as shown below and converted as 
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We obtain equation (9h) by subtracting the variable constant from equation (9g) as traces  
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We set p = 1, 2, as shown in Eq.(9i), and in what way we evaluate the derivative of Eq.(9i) to 
originally use an undeveloped Eq.(9h), as scream 
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By setting a ray order n = 1 and calculating a subsequent copy of Eq.(9i), which first gives the 
result for calculating the first derivative of Eq.(9j) and becomes the result for recalculating the next 
derivative of Eq.(9k), as shown below 
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You can get the result in equation(9m) and then develop equation(9k) through the influence and 
as follows 
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In addition, the result of innovative production is clarified in equation(9n) and then 
equation(9m) is substituted into equation(9i) so that equation(9i) reads as follows 
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The expression of Eq.(9n) was improved holistically and from the basic Eq.(9n) later Eq.(9p) 
results as follows 
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Solve the integral of equation (9q) and the integral of equation (9p) using the formula (3.381.11) 
of this reference [24] and substitute equation (9q) as follows 
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Equation (9p) is the solution key of the integral associated with equation (9i) and can be obtained 
in equation (10) as follows 
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To obtain the new equation (11), you must change equation (8) in [27] as follows. 
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To be back sequences of Eq. (11), we are applying the factor fixed is an out of the integral and 
then gets extra Eq. (12) as below 

22
0.5 1 0.5 0.5 0.5 1

, 4 4 3 3

exp( ) 1 ( 1) 4 (2) 2 (1)( , ) 2 2
2 4(2)!

a b
a b yt xt xt yt

lsx lsx lsx

k jkzU p z ds ds s s
j z w w w

   
   

 
   

 

    
      

   

1 2 2 2 2 2 2 2 2 2 2 2
2exp ( ) ( 2 2 ) 0.5 ( ) 0.5 ( )

2
gy

gx xt xt xt xt xt yt yt yt yt xt lsx yt lsx
yt

w jkw s p p s s p p s s s w s w
s z

      


 
          
  

    (12)             

By using the formulation (3.462.2.8) to resolve Eq. (12) we effort to put Eq. (13) into Equation (12) 
of ref [24] as verified in Eq. (14) as beneath 

2 2
0.5 2

2
2

0

1!
( 2 )! ! 4

kp n
p px qx q p

k

q nx e dx p e
n n n k k q


 



               
            (13)      

2

2

0.5
2 ( )gx

lsx

jkp w
z w

 



                                 1

xtq z jkp             (14)         

If you use equation (14) and equation (14) to solve equation (12), you get the new equation (15), 
which you can see below 

2
2

0.5 1 0.5 0.5 0.5 1
, 14 4 3 32

exp( ) 1 ( 1) 4 (2) 2 (1)( , ) 2 2
2 2 (2)!

k
a b yt yt

lsx lsx lsx

k jkzU p z f ds s
j z w w w

   
   


   



    
      

  

                             

(15) 

 

To obtain the solution of the second integral of Eq. (15), which was previously solved in the same 
way, obtain Eq. (16) as follows  





  222222 )(5.0)2(

2
)(exp lsxytytytytytxtytgy wsssppp

z
jksw 



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z
jkwp gy 2






                                 

z
jkp

q yt
           (16) 

On the other hand, replace equation(16) with equation(15) to solve the second integral with the 
same formula as in equation(16), and you will get the final result of the receiver field of SLG as given 
in equation(17), as shown below 

21 2 4
0.5 1 0.5 0.5 0.5 1 2 2 2

, 14 3 3

exp( ) 1 ( 1) 4 (2) 2 (1)( , ) 2 2 exp ( )
2 24(2)!a b xt yt

lsx lsx lsx

k jkz jkU p z f p p
j z w w w z

     
 

 
                    

 

(17) 
The systematic equations derived above for the average intensity and the receptive field appear very 
complex. But n is the ray order of SLG, which is set to 0.1. As you increase n and gamma, the values 
drop dramatically when you set n = 5. For the results, the mean density and operational beam size 
calculations are done quickly by using the formulations that are now derived as described in 
reference [28]. As surveys 
 

, , ,( , ) ( , )p z a b a bI U p z U p z                         (18) 

Although the direction of the receiving plane influences the intensity zpI ,  embodies the 

intensity of SLG of SLG and , ( , )a bU p z  is definite as a receiver field. 

3. Numeric Computations and Outcomes Analysis 

To summarize, the above formula can be used to calculate and derive the propagation of the 
SLG jet and the average intensity of a non-turbulent atmosphere. In addition, the standardized 
intensity of the SLG in Figures (4,8,11,13) is dented in different orders of magnitude, so a non-
turbulent atmospheric environment of this jet dictates the positions of the jet order (00,01,10,11), 
scientifically at static propagation distances. Since the x and y directions in Eq. (18) are divisible, the 
unit of mean intensity in the x path is considered in the figures above. However, the factors used for 
the calculations are chosen as traces: and λ = 0.8μm. In addition, the standardized intensity power of 
a Gaussian beam with similar source size is shown in each figure for easy comparison. Since the sharp 
propagation of the super-LG jet in the basal plane is more advanced than the propagation of the 
Gaussian jet, the propagation of the SLG jet in a non-turbulent troposphere is less demanding than 
the propagation of the Gaussian jet. In addition, the difference between the propagation of the SLG 
beam and the Gaussian beam is increased by specifying the propagation distance z. Therefore, the 
measured 2D receiver field change between the hypothetical and the mathematical propagation in 
the x-direction of the SLG beam is shown in Figures (1, 5, 9, 15). In each figure of this receiver plane, 
the propagation distance is given as z = 2000 m to illustrate the same parameter constant. However, 
the 2D source field measured with the same parameters is shown in Figures (3,7,10,14). Gaussian part 
and the smaller Lorentz function The SLG beam is dominated. Therefore, the intensity distribution 
of the SLG beam in a non-turbulent atmosphere is closest to the Gaussian distribution observed in 
Figures (1,3,4,5,8,9,11,13,14,15). Accordingly, the effects of the super-Lorentz and Gaussian 
components are the same and the intensity of the SLG jet has been scattered. To illustrate the 
propagation of the SLG beam in a turbulent troposphere, the effective receiving field of the SLG beam 
against the transverse axis in a non-turbulent troposphere is described in each figure. Also, the same 
control variation of the result for the receiving field in the x and y directions only assumes that the 
result shown is the same as that observed in each figure. Moreover, the velocity of the SLG beam is 
the same as that of the smaller beam. As we have already mentioned, these figures (2, 6, 7, 10, 12) 
refer to the source sizes and propagation distances in different beam orders. To summarize, a 
hypothetical SLG beam in a non-turbulent troposphere radiates faster at a higher structure constant 
and is practical in an optical communication system used in lasers. In particular, the comparison with 
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the numerical intensity values is shown in the figures of the receiver field. Finally, we point out 
symbolically in the figures that the beam has an order in all figures. 
 

 
Figure 1. The x-side of an SLG beam at propagation distances in a non-turbulent troposphere is 
observed in the standardized receiver field of the computational and theoretical deliveries in, z = 2km. 

 

 

Figure 2. SLG beam at propagation distances in a non-turbulent atmosphere, z = 2 km. Stabilized 
receiver field of the hypothetical propagation on the x-side. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2024                   doi:10.20944/preprints202407.0013.v1

https://doi.org/10.20944/preprints202407.0013.v1


 9 

 

 

Figure 3. Proliferation reserves in a non-turbulent troposphere, z = 2000 m. Standardized source field 
supply in the x-guideless of an SLG jet. 

 

Figure 4. Propagation distances in a non-turbulent troposphere, z = 2000m for Standardized Intensity 
supplies in the x-side of an SLG beam. 
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Figure 5. The x-side of an SLG beam at spread distances z =2000 m in a nonturbulent troposphere for 
Regularized receiver field numerical and theoretical distributions. 

 

Figure 6. Propagation distances z = 2000 m in a non-turbulent troposphere for the standardized 
receiver field of a hypothetical coverage on the x-side of an SLG beam. 
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Figure 7. Propagation distance z = 2000 m in the turbulent troposphere for a standardized source field 
and deliveries on the x-side of an SLG jet. 

 

Figure 8. Dispersion distances z = 2000 m in a non-turbulent troposphere for Standardized 
Concentration supplies in the x-side of an SLG beam. 
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Figure 9. SLG jet at proliferation distances z =2000 m in the turbulent troposphere for the 
mathematical field of the regulated receiver and hypothetical deliveries on the x-side. 

 

Figure 10. Propagation of the source size in the turbulent troposphere z = 2000 m for a regulated 
source field and deliveries on the x-side of an SLG jet. 
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Figure 11. Size of the proliferation source in a raging troposphere z = 2000 m Normalized intensity 
deliveries in the x-side of an SLG beam. 

 
Figure 12. SLG beam with scattered source size, z =2000 m in the moving troposphere for standardized 
receiver field, mathematical and hypothetical deliveries in x-direction. 
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Figure 13. SLG beam at proliferation source size, z = 2000 m in the turbulent atmosphere for 
Standardized Strength deliveries in the x-side. 

 
 

Figure 14. SLG jet at proliferation source sizes at a distance z = 2000 m in the raging troposphere for 
the standardized source field and the supply in the x-side. 
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Figure 15. SLG beam at propagation distances z =2000 m in the turbulent troposphere for stabilized 
receiver field mathematical and hypothetical deliveries on the x-side. 

4. Conclusions 

Finally, the average analytical density and numerical receiver field of the SLG beam in a raging 
troposphere are mathematically derived to illustrate these equations from (1 - 18), and Figures (1 - 
15) are related to the super-Lorentz beam supply based on the expansion method of the extended 
Huygens-Fresnel integral. It is noteworthy that the Gaussian beam in a raging troposphere obtains a 
smaller beam order than the super-Lorentz beam during profile propagation. Therefore, we have 
obtained a smaller beam size for the parameters. As a result, the SLG jet propagates in a turbulent 
troposphere with a better jet order. Finally, this work offers advantages for use in laser applications 
and for use in optical communication systems 
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