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Abstract: Background: The quantification of electromyographic activity using surface electrodes is invaluable 

for understanding gait disorders in patients with central nervous system lesions. We propose to evaluate a 

commercially available low-cost system compared to a reference system in participants with stroke-related 

movement disorders in functional situations. Methods: Three hemiparetic participants performed three 

functional tasks: two treadmill walks at different speeds and a sit-to-stand test. The vastus lateralis and 

gastrocnemius medialis muscles were equipped with two EMG sensors. The comparison between the two EMG 

systems was based on 883 identified cycles. Spearman’s correlation coefficients (SC), linear correlation 

coefficients (LCC), and cross-correlation coefficients (CCC) were calculated. Results: The main results indicate 

good to very good similarity of the EMG signals collected from the two tested sEMG systems. In the 

comfortable walking condition, an SC of 0.894±0.091 and an LCC of 0.909±0.094 were noted. In the fast walking 

condition, an SC of 0.918±0.064 and an LCC of 0.935±0.056 were observed. For the 1-minute sit-to-stand test an 

SC of 0.880±0.058 and an LCC of 0.881±0.065 were noted. Conclusions: This study demonstrates good to very 

good similarity between the two sEMG systems, enabling the analysis of muscle activity during functional 

tasks. 

Keywords: EMG; validation; stroke; gait 

 

1. Introduction 

The quantification of electromyographic (EMG) activity using surface electrodes (sEMG) is 

invaluable for understanding gait disorders in patients with central nervous system lesions. Several 

objectives underpin the need to understand these gait disorders. Firstly, EMG quantification aids in 

the technological identification of muscles activated during walking. Numerous studies have 

detailed the contributions and activation levels of lower limb muscles [1,2]. For instance, [2] one has 

indicated the timing of different muscles’ activation during a normalized gait cycle. The authors 

observed that while timing may be similar, the intensity expressed as a percentage of maximal 

voluntary force differs between these muscles. Therefore, EMG activity quantification is particularly 

useful for identifying the nuances in muscle recruitment patterns. Quantifying these activation 

patterns by their temporal and/or intensity characteristics is also helpful to identify changes in muscle 

activation patterns, such as hyperactivity of certain muscles, co-contraction of agonist or antagonist 

muscle groups, or to a lesser extent, muscle paresis. 

This quantification, which identifies the timing and/or intensity of muscle activation, is essential 

for characterizing gait disorders and quantifying the impact of therapeutic interventions. The 

therapeutic management of gait disorders in patients with central nervous system lesions can be 

pharmacological, rehabilitative, surgical, or combined with walking aids [3–6]. For example, 

pharmacologically, [3] showed that the injection of botulinum toxin into the rectus femoris muscle 

reduced its abnormal activity observed during the swing phase via sEMG, leading to an 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2024                   doi:10.20944/preprints202407.0021.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202407.0021.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

improvement of peak knee flexion and gait quality. In consequence, quantifying muscle activity via 

sEMG plays a clinical key role for understanding and managing gait disorders in patients with central 

nervous system lesions. This tool plays a crucial role in clinical evaluation, monitoring progress, and 

optimizing treatment strategies for these patients. 

However, while sEMG quantification is easier to use than fine-wire EMG, it presents several 

limitations that must be considered. In clinical practice in order to at identify gait disorders resulting 

from abnormal muscle activities, following electrode placement recommendations for each superficial 

muscle is essential. Whatever, patient-specific morphological or pathological characteristics, such as 

changes in soft tissue properties due to surgical interventions, the clinician are constrained to strictly 

adher to these placement recommendations. In consequence, sometimes these constraints may require 

the development of specific calculation codes from raw sEMG system data to combine scientific rigor 

with clinical utility. 

Therefore, studies focusing on tool comparison are as essential as studies characterizing the 

EMG activity of primary muscles activated during gait in patients with central nervous system 

lesions. Several studies have validated new sEMG systems by comparison with representative sEMG 

systems in their application domain, such as analyzing muscle activity in industrial settings [7,8] or, 

in our case, clinical settings [9,10]. Regarding the comparison of new systems with reference systems 

in industrial settings, [7] have quantified parameters characterizing muscle fatigue to validate signal 

quality. More recently, [8] have also focused on similar applications with the same objective of fatigue 

quantification but using additional parameters. Concerning clinical applications, [9] have compared 

an innovative system with a reference system using maximal voluntary contraction of arm flexor and 

extensor muscles by quantifying the correlation level of the same variables between the two systems. 

Regarding lower limb muscle activity, [10] have compared a low-cost system with a reference system 

using functional movements such as jump, squat, lunge, and knee extension, using validation 

indicators based on signal similarity. 

Our study follows this evaluation trend of new systems against reference systems by comparing 

recorded signals in functional situations. We propose to evaluate a commercially available low-cost 

system compared to a reference system in participants with stroke-related movement disorders in 

functional situations such as comfortable and fast-paced walking and a sit-to-stand test. 

2. Materials and Methods 

2.1. Participants and Experimental Procedure 

Three hemiparetic participants (two men, one woman) performed three functional tasks: two 

treadmill walks at different speeds and a sit-to-stand test. These participants undertook these motor 

tasks as part of the inclusion visit of a research protocol on the effect of repeated botulinum toxin 

injections [NCT02699775]. The inclusion visits aimed to identify participants meeting the inclusion 

criteria, which, for this study, were hemiparetic patients post-stroke (more than six months), capable 

of autonomous walking or with simple technical assistance, and having gait disorders associated with 

muscle hyperactivity. During this visit, some participants were equipped with a second sEMG system 

certified as a medical device in accordance with European medical device regulations. These 

participants were accustomed to treadmill walking due to their weekly rehabilitative care at their 

medical facility. 

The functional tasks were chosen arbitrarily but are representative of the rehabilitative care for 

this population. We selected two locomotor tasks on a treadmill lasting three minutes: the first at a 

self-determined comfortable speed and the second at a self-determined fast speed. We did not impose 

a common speed since the inclusion visit aimed to identify hyperactivity in one or more muscles 

engaged during walking and, for this study, we sought to compare signals recorded by two different 

systems on the same muscle. The sit-to-stand task corresponded to the one-minute sit-to-stand test, 

commonly used to evaluate the motor and physical abilities of various pathologies [11]. 

Two muscles were equipped with two different sEMG systems (the Kinvent Kmyo system and 

the Trigno Avanti Delsys system detailed in the sections below). We equipped the Vastus Lateralis 
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and Gastrocnemius Medialis muscles. These muscles were intentionally chosen because they met two 

criteria: involvement in locomotor tasks and sufficient size to accommodate two sEMG sensors from 

different systems. The electrodes were positioned following the recommendations of the SENIAM 

project (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles, 

http://www.seniam.org/). For the Vastus Lateralis: Electrodes need to be placed at 2/3 on the line from 

the anterior spina iliaca superior to the lateral side of the patella. For the Gastrocnemius Medialis: 

Electrodes need to be placed on the most prominent bulge of the muscle. 

2.2. Material: EMG System 

The Kinvent Kmyo, a dual-channel wearable sEMG sensor. The first channel is tailored for 

straightforward application, enabling direct connection to self-adhesive pre gelled electrodes with 

3.5mm snap connectors. the second channel, designed for high-precision measurements, incorporates 

a three-electrode wired setup with a Right Leg Drive node for enhanced noise reduction. It operates 

at a maximum sampling frequency of 2000Hz, with adjustable amplification gains and utilizes a 24-

bit Analog-to-Digital Converter (ADC) to ensure a signal resolution of 0.1uV and baseline noise 

below 10uV peak-to-peak. This study uses the integrated channel with 2 self-adhesive pre gelled 

electrodes. 

The Trigno Avanti Sensor integrates an sEMG sensor with an IMU within its compact design. 

This facilitating detailed motion and muscle activity analysis using a single device. Trigno Avanti 

Sensor use dry electrode and fixed on the body by using double sided tape. The technical information 

of both systems is summarized in Table 1. 

Table 1. Technical information for Kmyo (Kinvent) and Trigno Avanti systems (Delsys). 

 Trigno Avanti Sensor Kinvent Kmyo 

Dimensions 27x37x13mm 64x40x16mm 

Weight 14g 30g 

Battery life 8 hours 12 hours 

Input differential range 11 mV / 22 mV 186 mV 

Sensor Resolution 16 bits 24 bits 

EMG Baseline Noise (typical) 0.75 uV < 1.0 uV 

Number of channel 1 2 

Sampling rate(max) 4370 Hz 2000 Hz 

Synchronization accuracy <1 sampling period <1 sampling period 

2.3. Data Analysis 

Following the completion of all exercises and the recording of signals from both the Kmyo 

System and the Delsys System, we proceeded with a thorough data analysis. 

Recording of self-determined comfort and fast speed walking generated 361 and 443 cycles 

respectively for the two muscles. The one-minute-sit-to-stand test recording yielded 59 cycles. 

EMG signals are particularly prone to various types of noise and artifacts that can obscure the 

actual muscle activity. Sources of noise include electrical interference from power lines, motion 

artifacts due to electrode movement, and physiological noise such as other muscle activities or cardiac 

signals. Additionally, factors like electrode placement, skin impedance, and muscle fatigue can affect 

signal quality. Proper signal processing is crucial to remove these unwanted components and ensure 

accurate interpretation and reliable results [12–14]. 

Our analysis method involves a multi-step signal processing procedure and the assessment of 

performance indicators to compare the Kmyo System with the Delsys System. The signal processing 

steps include signal filtering to remove noise, synchronization to align the data accurately, 

rectification and normalization to facilitate comparisons between different electrode sites, envelope 

calculation to smooth the signal amplitude over time, and data trimming to segment the gait cycles 

[15–17]. The validation indicators used to evaluate the similarity and relationship between the signals 
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from the two systems include Spearman’s correlation, Linear Correlation Coefficient (LCC), and 

Cross-Correlation Coefficient (CCC) [13,18]. 

By implementing these steps, we aimed to achieve a comprehensive and reliable comparison of 

the Kmyo System’s performance against the Delsys System, ensuring the validity of our results for 

various research and clinical applications. 

2.3.1. Signal Processing 

Signal processing involves several steps to prepare the raw EMG data for analysis. These steps 

include signal filtering, synchronization, rectification and normalization, envelope calculation, and 

data trimming (Figures 1 and 2). 

2.3.1.1. Signal Filtering 

Signal filtering is the process of removing noise and artifacts from the raw EMG data to enhance 

the quality and reliability of the signal. The purpose of filtering is to eliminate unwanted components, 

such as low-frequency movement artifacts and high-frequency noise, which can obscure the true 

muscle activity signals. 

To achieve this, we applied a band-pass Butterworth filter with a frequency range of 40-400 Hz, 

which effectively removes low-frequency and high-frequency noise (Figure 1 b). Additionally, we 

used a notch filter centered around 50 Hz to eliminate power line interference (Figure 1 c). These 

filtering steps ensure that the remaining signal accurately represents the muscle activity by 

minimizing external and physiological noise sources. 

 

Figure 1. Vastus Lateralis signal signal processing of Raw data (a), after Band Pass Pass filtring (b) 

and after Notch filtring.(c) for two systems Delsys system (Reference System) and Kmyo system (Test 

System). 

2.3.1.2. Signal Synchronization 

Signal synchronization is crucial to align the EMG data accurately for comparative analysis. 

Synchronization ensures that signals from different sensors are temporally aligned. 

For accurate comparative analysis, synchronization of the sEMG signals from four independent 

sensors was paramount. The Kmyo System and Delsys System feature inherent inter-system 

synchronization capabilities. Synchronization between these commercial systems was achieved using 

a Kmove sensor from Kinvent and the 3D motion analysis system. The Kmove, an IMU-based motion 

sensor, collects detailed kinematic data and wirelessly synchronizes with the Kmyo System. 

Simultaneously, the 3D motion analysis system is synchronized with the Delsys System. At the onset 

of recording, the experimentater’s finger equipped with a reflective marker taps the Kmove sensor in 

order to generates a significant acceleration signal peak. This event’s timestamp marks the 

synchronization point for the Kmyo System sEMG signals. The finger marker’s trajectory, captured 

by the 3D motion analysis system, identifies the tap moment, allowing for the synchronization of the 

Delsys System’s recorded sEMG signals. 
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2.3.1.3. Signal Rectification and Normalization 

Signal rectification and normalization are essential steps to facilitate meaningful comparisons 

between EMG recordings from different electrode sites, muscles, or sessions. Rectification involves 

converting all negative values of the EMG signal to positive values, effectively creating a full-wave 

rectified signal (Figure 2 b). This step ensures that the signal amplitude reflects the absolute value of 

muscle activity. 

Normalization is necessary to facilitate comparison between electrode sites on the same muscle, 

on two different muscles, or for documenting changes over days. In fact, normalization is a 

prerequisite for any comparative analysis of EMG signals. 

Due to the physical limitations of our post-stroke subjects, performing maximum voluntary 

contraction (MVC) exercises was not feasible. Instead, we used the peak value recorded during each 

session for normalization (Figure 1 d). This approach, validated in prior research, provides an 

effective alternative for populations where MVC is challenging to achieve. By normalizing to the 

session’s maximum value, we ensure that the variations in signal amplitude are attributed to muscle 

activity rather than extrinsic factors. 

2.3.1.4. Envelope Calculation 

Envelope calculation is used to derive the amplitude envelope of the EMG signal, providing a 

smooth representation of the signal’s amplitude over time (Figure 2 c) 

To calculate the envelope, we used a Butterworth low-pass filter with a cutoff frequency of 5 Hz. 

This filter was applied to the rectified EMG signal using a zero-phase forward and reverse digital 

filtering method to avoid phase distortion. The result is a smooth envelope that represents the signal’s 

amplitude modulation. 

 

Figure 2. Vastus Lateralis signal processing Filtring (a), Rectification (b), Envelope (c) and 

Normalisation (d) for two systems Delsys system (Reference System) and Kmyo system (Test System). 

2.3.1.5. Data Trimming 

Data trimming is the process of segmenting the EMG data into specific intervals that correspond 

to the gait cycles for easier comparison and analysis. The EMG data were recorded while the 

participants walked on a treadmill. Data from the Kmyo System, the Delsys System, and a 3D motion 

analysis system were simultaneously recorded. After synchronization, we used the 3D motion 

analysis system to visually inspect and manually identify heel strike events, marked by reflective 

markers placed on the heel of the participants. These heel strike events were used to cut the timeseries 

data into gait cycles, facilitating more straightforward and accurate comparison of the EMG data. 
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2.3.2. Validation Indicators 

The validation indicators used in this study assess the similarity and relationship between the 

signals from the Kmyo System and the Delsys System. These indicators are calculated using the 

normalized signal envelopes obtained from both systems. The data used for these calculations 

include the filtered, rectified, normalized, and segmented EMG signals. The indicators are computed 

for each gait cycle, providing a detailed comparison of the signal envelopes across cycles. These 

validation indicators include Spearman’s correlation, Linear Correlation Coefficient (LCC), and 

Cross-Correlation Coefficient (CCC), each offering a different perspective on the relationship 

between the two sets of signals. 

2.3.2.1. Spearman’s Correlation (SC) 

Spearman’s correlation is a non-parametric measure that assesses the monotonic relationship 

between two variables. It evaluates how well the relationship between the signals from the Kmyo 

System and the Delsys System can be described using a monotonic function. 

Spearman’s correlation coefficient ranges from -1 to 1. A value of 1 indicates a perfect positive 

monotonic relationship, -1 indicates a perfect negative monotonic relationship, and 0 indicates no 

monotonic relationship. This measure helps in understanding how similar the rank ordering of the 

signals from the two systems is. 

2.3.2.2. Linear Correlation Coefficient (LCC) 

The Linear Correlation Coefficient (LCC), also known as Pearson’s correlation coefficient, is a 

measure of the linear relationship between two variables. It evaluates how well the data points fit on 

a straight line when plotted against each other. 

LCC values range from -1 to 1. A value of 1 indicates a perfect positive linear relationship, -1 

indicates a perfect negative linear relationship, and 0 indicates no linear relationship. High LCC 

values indicate that the signals from the Kmyo System are linearly related to those from the Delsys 

System, demonstrating the Kmyo System’s ability to capture muscle activity similarly to the Delsys 

System. 

2.3.2.3. Cross-Correlation Coefficient (CCC) 

The Cross-Correlation Coefficient (CCC) measures the similarity of two signals as a function of 

the time-lag applied to one of them. It is used to determine how one signal matches with another 

when shifted in time. 

CCC values range from -1 to 1. A value of 1 indicates a perfect match with an optimal time-lag, 

-1 indicates a perfect inverse match, and 0 indicates no correlation. High CCC values indicate a strong 

time-dependent similarity between the signals from the Kmyo System and the Delsys System, 

highlighting the temporal alignment and consistency of the muscle activity captured by both systems. 

3. Results 

In the experimental tasks, data were collected from 3 subjects performing 3 different tasks: 

walking at self-selected comfortable and fast speeds, and one-minute sit-to-stand. The EMG signals 

were recorded from two muscles, the gastrocnemius medialis and the vastus lateralis. A total of 881 

cycles were collected for the two muscles and 3 experimental conditions. For the walking at self-

selected comfortable speed task, a total of 361 cycles were collected from the both muscles. In the 

walking at self-selected fast speed task, 443 cycles were collected. For the one-minute sit-to-stand 

task, 59 cycles were recorded from both muscles. Table 2 summarizes the validation indicators, 

including the Cross-Correlation Coefficient (CCC), Linear Correlation Coefficient (LCC), and 

Spearman’s correlation (SC). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2024                   doi:10.20944/preprints202407.0021.v1

https://doi.org/10.20944/preprints202407.0021.v1


 7 

 

Table 2. Values of the Cross-Correlation Coefficient (CCC), Spearman’s correlation (SC), and Linear 

Correlation Coefficient (LCC) for comfortable, fast walking tasks and one-minute-sit-to-stand test 

(1MSTS). 

 
Tasks 

Comfortable Walk Fast Walk 1MSTS 

CCC 

Min 0.864 0.876 0.914 

Max 0.997 0.997 0.990 

Mean 0.975 0.978 0.965 

Std 0.017 0.014 0.018 

SC 

Min 0.232 0.095 0.649 

Max 0.990 0.991 0.966 

Mean 0.894 0.918 0.880 

Std 0.091 0.064 0.058 

LCC 

Min 0.088 0.092 0.576 

Max 0.991 0.992 0.973 

Mean 0.909 0.935 0.881 

Std 0.094 0.056 0.065 

The analysis of the EMG signals during the walking at self-selected comfortable speed task 

showed that the CCC values ranged from 0.864 to 0.997, with a mean of 0.975 and a standard 

deviation of 0.017. The LCC values ranged from 0.088 to 0.991, with a mean of 0.909 and a standard 

deviation of 0.094. Spearman’s correlation values ranged from 0.232 to 0.990, with a mean of 0.894 

and a standard deviation of 0.091 (Table 2 Figure 3). 

For the walking at self-selected fast speed task, the CCC values ranged from 0.876 to 0.997, with 

a mean of 0.978 and a standard deviation of 0.014. The LCC values ranged from 0.092 to 0.992, with 

a mean of 0.935 and a standard deviation of 0.056. Spearman’s correlation values ranged from 0.095 

to 0.991, with a mean of 0.918 and a standard deviation of 0.064 (Table 2 Figure 3)). 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3. Histogram of Spearman’s correlation (SC), and Linear Correlation Coefficient (LCC) for 

Comfortable (a-b), Fast (c-d) walking tasks and 1MSTS (e-f). 

In the one-minute sit-to-stand task, the CCC values ranged from 0.914 to 0.990, with a mean of 

0.965 and a standard deviation of 0.018. The LCC values ranged from 0.576 to 0.973, with a mean of 

0.881 and a standard deviation of 0.065. Spearman’s correlation values ranged from 0.649 to 0.966, 

with a mean of 0.880 and a standard deviation of 0.058 (Table 2 Figure 3).  
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4. Discussion 

This study aims to validate a low-cost sEMG system against a reference sEMG system to enable 

the analysis of surface muscle electromyographic activity during locomotor or functional tasks in 

patients with central nervous system lesions causing movement disorders. To achieve this goal, we 

compared the output signals of the two sEMG systems. Three chronic stroke patients with movement 

disorders performed two walking conditions and a functional task. In clinical evaluation activities of 

motor capabilities or difficulties, the quantification of muscle activities is necessary. However, 

although indirect quantification of the force produced by the analyzed muscle is possible from a 

signal obtained under a condition where the person develops maximal voluntary muscle force, it 

remains difficult for patients with central nervous lesion. Indeed, [19] indicates that for hemiparetic 

patients following a central nervous system lesion of traumatic or vascular origin, a disturbance of 

motor control is observed [19]. This disturbance of motor control is a result of damage to the 

corticospinal pathways, also known as pyramidal syndrome, which corresponds to a set of 

neurological manifestations affecting voluntary motor control [19]. Thus, it is difficult to normalize 

the EMG signal collected for the analyzed muscles during locomotor tasks by performing a 

movement where the patient must voluntarily develop maximal force against resistance. However, 

to compare multiple tasks performed by the same patient, several studies have proposed using other 

situations than maximal voluntary isometric contraction, such as a movement at constant angular 

velocity or the studied motor task [20,21]. Given the population of our study, we integrated these 

works into our signal analysis steps. Additionally, in clinical evaluation activities of motor 

capabilities or difficulties, the quantification of temporal parameters of muscle contraction is 

pertinent information. Numerous studies highlight an association of movement disorders not by the 

amount of muscle force developed but by the timing of muscle activity during the performed motor 

task. For example, [3] indicates that the knee flexion deficit during the swing phase observed in 

hemiparetic patients is concomitant with the EMG activity of the rectus femoris muscle in the middle 

of this phase. These authors attribute the activity of this muscle to the fact that its contraction at this 

moment in the gait cycle limits knee flexion since the rectus femoris has a knee extension action. 

Similarly, [6] implicates the muscle activity of the triceps surae at the end of the swing phase as a 

potential cause of the plantar flexion strike. Or the absence of EMG activity of the tibialis anterior at 

the end of the swing phase as a cause of the lack of ankle dorsiflexion [6]. 

For all these motor situations, the clinician needs to identify these muscle contractions. 

Therefore, the use of an sEMG system must be able to meet the constraints related to medical device 

regulations and enable this clinical analysis. This is why we chose the same similarity comparison 

criteria proposed by [10]. These authors proposed several indicators, including the Spearman 

coefficient, the linear correlation coefficient, and the cross-correlation coefficient. The different gait 

or sit-to-stand cycles performed by the three participants on the two analyzed muscles allowed us to 

test the similarity of over 800 cycles. We specifically analyzed the similarity of 443 cycles for the 

comfortable walking condition, 361 cycles at a fast pace, and 59 cycles for the 1MSTS test. For these 

different conditions and these three comparison criteria, our results indicate that the low-cost 

commercial sEMG has good to very good similarity with the reference sEMG. 

Firstly, in agreement with the work by [10], the cross-correlation coefficient (CCC) indirectly 

indicates the quality of post-processing synchronization as we note a nearly zero time lag. The 

calculated CCCs for comfortable walking, fast walking, and 1MSTS are respectively 0.975±0.017, 

0.978±0.014, 0.965±0.018 (Table 2). Obtaining values of 1 is impossible due to the propagation of the 

electrical signal during muscle contraction. Although close, the EMG sensors are not exactly in front 

of the same muscle area. Thus, during muscle contraction, the electrical signal propagates, at different 

latency to different muscle localisation [22]. This physiological constraint must be estimated, 

particularly by the cross-correlation coefficient, so that the lag does not impact the similarity 

calculation by other indicators (Spearman coefficient, linear correlation coefficient). Consequently, 

the closer the value is to 1, the more the interpretation of values obtained with other indicators will 

be related to the quality of the sEMG system. 
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For the comfortable walking condition, we observe an average Spearman correlation coefficient 

of 0.894±0.091. This result is consistent with the results obtained by [10]. A more in-depth analysis 

indicates that some cycles present a positive but weak similarity (SC min 0.232), while other cycles 

have very strong similarity (SC max 0.990). Graphically, we observe that the distribution of cycles 

with high similarity is much more significant than those with low similarity (Figure 3). This graphical 

observation also helps to understand the low calculated standard deviation. This analysis is similar 

for the linear correlation coefficient. Indeed, we quantify an average LCC of 0.909±0.094 with a 

minimum value of 0.088 and a maximum of 0.991. 

For the fast walking condition, we observe an average Spearman correlation coefficient of 

0.918±0.064. A more in-depth analysis indicates that some cycles present a positive but very weak 

similarity (SC min 0.095), while other cycles have very strong similarity (SC max 0.991). As with 

comfortable walking, we observe graphically that the distribution of cycles with high similarity is 

much more significant than those with low similarity (Figure 3). This graphical observation also helps 

to understand the low calculated standard deviation. This analysis is similar for the linear correlation 

coefficient. Indeed, we quantify an average LCC of 0.935±0.056 with a minimum value of 0.092 and a 

maximum of 0.992. For an industrial user, it is certain that obtaining the highest possible values is 

preferable, but it is also necessary to provide explanations when some cycles have positive but weak 

correlation coefficients. We believe that these few cycles with low similarity may result from motion 

artifacts as described by [23]. These authors detail all the best practices necessary to obtain a high-

quality EMG signal. Despite adhering to these recommendations, such as cleaning the skin before 

placing the sEMG electrodes, no recorded signal can be entirely perfect regardless of the 

commercialized EMG system. Thus, cycles with low similarity may correspond to motion artifacts 

contained in the signal of the low-cost system as well as the reference system. In clinical activities 

aimed at studying movement disorders, particularly those associated with disturbances in muscle 

activity, the possibility that the recorded signal from a commercialized system may be subject to 

artifacts is a guarantee of quality, as surprising as it may seem. Thanks to numerous works that have 

long described the elements affecting EMG signal quality related to recording, processing, and sEMG 

electronics, we can identify these artifacts during analysis and interpretation [12,22,23]. Thus, in the 

context of analyzing movement disorders, especially for patients with central nervous system lesions, 

identifying these clinically considered disturbing muscle activities is essential. Numerous studies 

incriminate several muscles for different movement disorders, facilitating identification during the 

analysis of EMG signals obtained during clinical examination with the patient [36]. However, 

although these works greatly assist the clinician in understanding the specific movement disorders 

of their patient, interpretation remains specific for each patient to allow the clinician to consciously 

choose the therapeutic options they will propose. This clinical reality requires trust in the analysis 

equipment. This trust relies on regulatory and scientific validity, as well as the system’s sensitivity 

and, consequently, its exposure to motion artifacts and other sources of disturbance, which are 

increasingly and better reduced. On this point, we agree with the validation indicators used by [10], 

as they quantify the level of similarity between two signals but also, by indicating the minimum 

similarity values, allow us to appreciate the system’s sensitivity to motion artifacts, among others. 

These disturbances were only slightly present in the 1MSTS condition. Indeed, we obtain a 

minimum SC of 0.649 and a minimum LCC of 0.576. For the rest, all the validation indicators show 

good similarity, as we quantify an average SC of 0.880±0.058 and an average LCC of 0.881±0.065. 

However, these values, while considered good performance, are lower than in the two walking 

conditions. The sit-to-stand movement involves a greater range of hip and knee flexion/extension 

movements than walking. We can think that the skin motion artifact may be more significant in this 

condition than in the other two and thus impact the signal quality. This ultimately can increase the 

number of cycles with good rather than very good similarity (Figure 3). 

The comparison of new sEMG systems with reference systems in our user community of 

clinicians is essential. Whether we have usage objectives for guiding therapeutic choices or answering 

research questions, we cannot solely rely on compliance with medical device regulations. Our work 

contributes to the scientific community’s evaluation dynamics of these new devices. Thus, in line 
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with the validation indicators proposed by [10], we observed good to very good similarity of EMG 

signals collected between low-cost commercialized sEMG systems and reference systems for 

analyzing movement disorders in patients with central nervous system lesions. 

5. Conclusions 

The comparison of new surface electromyography (sEMG) systems with reference systems 

within our community of clinical users is essential. This study aims to compare two commercial 

sEMG systems, one low-cost and the other a reference standard. A total of 863 cycles from three 

functional conditions involving two lower limb muscles in three stroke patients were analyzed. The 

similarity analysis of sEMG signals using validation indicators such as Spearman correlation 

coefficients, linear correlation coefficients, and cross-correlation coefficients indicates good to very 

good similarity between the two sEMG systems. This work contributes to the ongoing evaluation of 

new medical devices by the scientific community. 
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