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Abstract: This review provides an overview of eXplainable AI (XAI) methods for oncological
ultrasound image analysis and compares their performance evaluations. A systematic search of
Medline Embase and Scopus between March 25 and April 14 2024 identified 17 studies describing
14 XAI methods, including visualization, semantics, example-based, and hybrid functions. These
methods primarily provided specific, local, and post-hoc explanations. Performance evaluations
focused on Al model performance, with limited assessment of explainability impact. Standardized
evaluations incorporating clinical end-users are generally lacking. Enhanced XAl transparency
may facilitate Al integration into clinical workflows. Future research should develop real-time
methodologies and standardized quantitative evaluative metrics.
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1. Introduction

Artificial intelligence (Al) technologies are omnipresent, with the healthcare industry experiencing
exponential integration in recent years. Projections indicate further expansion of the global Al
healthcare market, with an expected compound annual growth rate (CAGR) exceeding 36% from
2024 to 2030 [1,2]. The rapid growth is driven by several key factors, including the accumulation of
patient health-related digital information, the increased demand for (personalized) medicine, and the
intensified need to reduce care expenses and tackle healthcare workforce shortages [1,3,4].

As digital health data becomes increasingly available, so does the pursuit to derive deeper
insights from them. In response to the mounting pressure on healthcare systems, Al technologies are
applied to offer diverse solutions [5,6]. Widely adopted and integrated Al algorithms can facilitate
accurate and early-stage disease prediction, analyze complex medical images, and assist in the medical
decision-making process [1,7]. These advancements have promise to improve diagnosis, treatment,
prognosis, and overall quality of life for patients across various conditions [8].

In the medical imaging field, ongoing research is exploring novel algorithms, architectures, and
methodologies [2,9]. These innovations show potential to aid clinicians in extracting decisive insights
from medical images, identifying abnormalities, facilitating precision-guided interventions, and
improving patient outcomes [7,10]. Machine learning (ML) and Deep learning (DL) are specific subsets
of Al Specifically, DL algorithms employ neural networks and have demonstrated significant success
in tasks such as image pre-processing, registration, segmentation, and classification, even surpassing
human performance levels [11,12]. The research focus on implementing innovative and powerful
system architectures to address various healthcare tasks has led to increasingly complex Al solutions
[11,13]. However, the complex layered architecture of such neural networks presents challenges in
directly interpreting results, due to their inherent "black box" properties. This limits the provision of
intuitive explanations for the processes and outcomes of Al systems [11]. The need for transparent
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decision-making processes becomes apparent in healthcare settings, where Al-based support systems
directly influence patient care. Additionally, to gain the trust of clinicians, the inner workings of
medical Al systems should be understandable [11,14]. Furthermore, legal and ethical frameworks,
such as the European Union’s General Data Protection Regulation (GDPR) and the European Al Act
(AIA), mandate meaningful explanations of algorithmic decisions to ensure compliance and protect
patient rights [15]. Similarly, identifying errors and potential biases is essential in developing and
applying trustworthy Al systems in healthcare [16].

In response to the growing demand for explainability, the field of eXplainable AI (XAI) has
emerged [17,18]. XAI encompasses “techniques that enable stakeholders to understand an Al algorithm
and its decisions better” [11,17]. The global XAI market has been valued at $5 billion (2022) and is
expected to reach over $24 billion by 2030, with a CAGR of 21.5% [19]. XAI for medicine is the
second largest field in the trend, showing exponential growth [20]. Such explanations of intricate DL
processes and outcomes for clinical applications impact functional benefits, clinical confidence, and
patient outcomes [21]. Particularly, in the fight against cancer, where timely and accurate decisions
are critical and DL model results can directly influence treatment decisions, the integration of XAl is
fundamental [22]. Researchers have proposed different strategies for qualitative and quantitative XAl
using comprehensible text, mathematics, or visualizations, however, a widely accepted benchmark for
XAl is missing.

This need for XAl is underscored by the rapidly increasing global cancer burden. Over 35 million
new cancer cases are predicted in 2050, depicting a 77% increase since 2022. The rapidly growing
global cancer burden reflects both population aging and growth, as well as increased exposure to
risk factors such as tobacco, obesity, and pollution [23]. In the past several years, researchers have
developed Al tools based on deep knowledge that have been highly effective and have demonstrated
great accuracy in oncological image analyses [24,25] and predicting various types of cancer, including
breast, brain, lung, liver, and prostate cancer [8].

One particular area where XAl can provide significant advantages is in ultrasound (US) imaging.
This widely used real-time, non-invasive, and relatively low-cost modality plays a crucial role in
diagnosing and monitoring various cancers [26,27]. During oncological surgeries, it can be used, for
example, for tumor localization and /or margin assessment [28-30]. Despite its benefits, US imaging
faces challenges such as variability in operator performance and image quality, as well as the need for
extensive training to accurately interpret images due to artifacts, noise, and the lack of distinct global
anatomical structures [31]. These challenges present opportunities for XAI methods to enhance US
image interpretation by providing transparent, understandable insights that aid clinicians in making
fast and accurate decisions during clinical procedures. By offering real-time, interpretable feedback
in terms of additional information or by highlighting areas of concern on images, XAI may enhance
diagnostic accuracy, clinician confidence, and patient trust in Al-driven assessments.

While recent studies have started integrating XAI into Al-driven healthcare applications, a
noticeable gap in research exists. Despite several reviews exploring XAl methods in general medical
imaging applications [11,14,32], they lack a specific focus on oncological ultrasound imaging contexts.
Moreover, these reviews fail to provide an extensive comparison of the advantages and disadvantages
of various XAI methods for clinical use, as well as a comprehensive overview of the evaluation metrics
employed. To the best of our knowledge, no review investigates the utilization and comparative
effectiveness of XAI methods in oncological ultrasound imaging. This review aims to address this
gap by investigating XAl methods for real-time ultrasound imaging data. The review will specifically
analyze the role of XAl methods in segmentation, classification, and localization tasks. Our primary
objective is to offer an overview of identified XAI methods and assess their qualitative and/or
quantitative impact.
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2. Materials and Methods

2.1. Search Strategy and Data Collection

Between March 25™ 2024 and April 14" 2024, comprehensive searches were conducted in the
Medline Embase [33] and Scopus [34] databases to identify relevant articles. The search strategy
compromised terms related to explainable artificial intelligence, ultrasound imaging, and image
analysis tasks including segmentation, classification, and margin assessment (see Appendix A). No
filters regarding publication dates were applied. Boolean operators were used to combine the major
topic terms and their synonyms. The search was constrained to articles published in English and
duplicate articles were removed. Articles were included based on their focus on applying or developing
XAI methods for ultrasound image analysis tasks.

2.2. Study Eligibility Criteria

Articles were systematically selected following the PRISMA 2020 statement [35]. The titles and
abstracts of identified articles were screened by a single assessor (L.S.W.). Articles were excluded if they
met one or more of the predefined exclusion criteria: (i) non-human studies, (ii) imaging modalities
not aligned with ultrasound imaging, (iii) studies unrelated to cancer or oncological procedures,
(iv) absence of XAI method discussion or analysis, (v) lack of focus on segmentation, classification,
or margin assessment tasks, (vi) reviews, editorials, conference abstracts, letters to the editor, or
studies with insufficient methodological detail, (vii) studies without medical topic, focus or application.
Articles with inaccessible full texts were excluded as well. The remaining full-text articles were further
assessed for eligibility and solely included if none of the exclusion criteria were met. The selection
process is illustrated in Figure 4.

2.3. Data Extraction

Data extraction was performed independently for all included studies. General study
characteristics were collected such as researched cancer type, clinical application, study design, and
dataset specifics. The Al models developed in the studies were analyzed to provide contextual
knowledge of the intrinsic data structures the XAI methods aimed to explain. The types of XAl
methods applied in the included articles were identified to provide an overview of the explanatory
techniques employed in the Al-driven analysis of ultrasound imaging data within an oncological
context. Characteristics of each identified XAI method were cataloged, including their operational
mechanisms, explanatory function, input requirements, outputs, and evaluation metrics.

The operational mechanisms of methods were categorized using taxonomic criteria proposed in
previous research [11,17,22,32], these comprise:

* Model-Specific vs. Model-Agnostic: Model-specific explanation methods are limited to
application on particular Al model architectures, e.g. a specific convolutional network model
(CNN), see Figure 1. These methods leverage the underlying network’s internal characteristics
and use reverse engineering to generate their explanations. Model-agnostic explanation methods
only operate on the model input and output, thus, independent of the model architecture. They
aim to clarify the model’s underlying f(x) function, for example, by approximating f(x) with
another, simpler model that should be explainable. Other agnostic methods attribute weights
to each model variable, depending on its influence on the f(x), to decompose the importance
between variables [36].

* Global vs. Local scope: Global scope explanations provide general relationships learned by the
model, by assessing common patterns in the overall dataset that drive the model’s predictions,
see Figure 2. Local scope methods offer explanations of the model’s specific prediction for a
given input or single case.
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¢ Intrinsic vs. Post-hoc explanation: Intrinsic explanation models can construct general, internal
relationships between input and output made during predictions, due to their simple structure
(e.g. decision trees, linear regression model, or support vector machine), see Figure 3. Post-hoc
explanations are applied to analyze models after these have completed training, providing
insight into the learned relationships. The important difference is that post-hoc explanations
train a neural network and attempt to explain the behavior of the black box network after that.
In contrast, intrinsic explanations force the neural network to be explainable itself [32].

Model-specific Model-agnostic

Al model A XAl method Explanation Model A XAl method Explanation

Al model B

s

Figure 1. Schematic representation of XAI methods with model-specific (left) or model-agnostic (right)

dependencies.
Global Local
Al model Al model
O oo oo oo O O
Dataset predictions Case prediction

Figure 2. Schematic representation of XAI methods with global (left) or local (right) scopes.

Data Al model Black box Trained model

Figure 3. Schematic representation of XAI methods with intrinsic (bottom) or post-hoc (top)

applications.
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2.4. Main Outcomes

The primary outcome was to provide an overview of XAI methods utilizing real-time ultrasound
data for cancer-focused classification, segmentation, or localization tasks. The function-specific
performance of XAI methods, which include explaining by examples, semantics, or, visualization,
was assessed. This categorization of explanatory functions is based on proposed deep learning
frameworks for medical image analysis [14,32]. Further elaboration focused on the advantages and
disadvantages of each function’s identified XAI methods, emphasizing their clinical relevance and
contribution. Additionally, the extent and impact of quantitative versus qualitative evaluations of
XAl were explored across the included studies. Special emphasis was given to studies that integrated
quantitative evaluations of XAl capabilities and assessments by clinical end-users, highlighting the
practical impact of these technologies in clinical settings.

3. Results

3.1. Data Collection

On May 29'h 2024, the search strategy identified a total of 222 articles from the Medline Embase
(n=57) and Scopus (n=165) databases. After the removal of 65 duplicates, 157 articles remained for the
initial title and abstract screening. The screening phase resulted in the exclusion of 129 articles due
to non-human study models (n=30), lack of real-time ultrasound imaging data (n=51), irrelevance to
cancer (n=95), absence of XAl applications (n=25), focus on impertinent tasks (n=18), inappropriate
study types (n=19), and no medical application (n=51). Excluded articles complied with one (n=29) or
multiple exclusion (n=100) criteria.

Subsequently, the remaining 28 articles underwent full-text analysis. Two articles were excluded
during the retrieval, due to their unavailability of full text. The full-text analysis of the remaining
26 articles resulted in an additional exclusion of 9 articles based on the pre-defined criteria. These
exclusions encompassed articles that (i) investigated non-human subjects i.e. objects (n=2) and animals
(n=1); (ii) utilized inappropriate imaging data types such as static photographs (n=2), mono-modal
CT scans (n=1), schematic images (n=1), or the use of ultrasound for navigational purposes instead of
image analysis (n=1); (iii) lacked sufficient relevance to cancer or oncology (n=4); (iv) only mentioned
XAl as a future recommendation (n=2) or in mathematical expressions (n=2); (v) focused on peripheral
tasks such as captioning (n=1), eye-gaze mapping (n=1), or lacked a specific task (n=1); and (vi) were
directed towards non-medical image description applications (n=3). Excluded articles complied with
one (n=4) or multiple (n=4) exclusion criteria. Ultimately, 17 articles were eligible and selected for
further in-depth analysis [37-53]. Figure 4 provides a visual overview of the article selection process.
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1. Non-human studies (n=3)

| 2. Imaging modality is not ultrasound (n=5)

"] 3. Studies unrelated to cancer or oncological procedures (n=4)
4. Absence of XAI analysis or discussion (n=4)

5. Lack of focus on Al-based segmentation, classification, or
margin assessment tasks (n=3)

6. Studies with insufficient methodological detail (n=0)

7. Studies without medical topic, focus or application (n=3)

Included

I I

17 records included

Figure 4. Flowchart visualizing the results of the PRISMA-based article selection process.

3.2. General Study Characteristics

The general study characteristics of all included articles (n=17) were extracted and compared,
see Table 1. The studies comprise a variety of cancer types, with the majority focused on breast (n=8)
or thyroid (n=5) cancers. Further, most studies focus on diagnostic applications (n=11), and only a
few address surgical applications (n=2). Regarding study type, most studies are retrospective (n=14),
indicating a common reliance on historical data for analysis.

Several studies employ extensive datasets, highlighting the significant data-handling capabilities
of current medical image analysis technologies. In the study by Hassan et al. (2022) over 600,000
prostate multi-modal MRI and US images were used [42]. In the studies by Song et al.(2023) and
Qian et al. (2021) more than 19,000 and 10,000 breast US images were analyzed respectively [47,49].
The number of included lesions were highest in Song (2023) et al. [49], Han (2022) et al. [41], and
Karimzadeh (2023) et al. [43], all counting 2,917 or more unique lesions.

The distribution of tissue types varies in the studies and illustrates the different focuses of
studies, encompassing two (n=13), or three (n=4) different tissue types. Studies with tripartite tissues
distinguished between healthy, benign, and malignant in three studies [38,45,48], with a single study
differentiating between three malignant variants [53]. The thirteen studies with binary tissue labels
discriminated between benign and malignant tissue. In the twelve studies describing datasets’ class
balance, eight studies were unbalanced, with malignant data as the minority in six studies [38,44,45,49,
50,52] and the majority in two studies [48,53]. Four studies showed relative class balance [37,39-41].
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Table 1. General characteristics of included studies
Author (year) Cancer Type Clinical Application Study Type Imaging Acquisition Type Dataset
Al-Jebrni A.H. (2023) [37] Thyroid Diagnosis R Us Continuous STNU
Basu S. (2023) [38] Gallbladder Diagnosis R Us Single shot GBUS
Byra, M. (2022) [39] Breast Diagnosis R us Single shot Clinical
Dong, E. (2021) [40] Breast Diagnosis R Us Continuous Clinical
Han, X. (2022) [41] Thyroid Diagnosis P UsS Single Continuous Clinical
Hassan, M. R. (2022) [42] Prostate Diagnosis R US + MRI  Continuous (US) + Static slice (MRI) Cancer Imaging Archiv
Karimzadeh, M. (2023) [43] Breast Screening R Us Continuous BUSI, BUSIS, HMSS
Lombardi, A. (2023) [44] Leiomyogenic Surgery (pre-operative) R Us Continuous, 3D volume scan Clinical
Martizzi, D. (2021) [45] Breast Screening P Us 3D volume scan Clinical
Morris, J. (2023) [46] Thyroid Diagnosis R UsS Continuous Clinical
Qian, X. (2021) [47] Breast Screening P Us Continuous Clinical
Rezazadeh, A. (2022) [48] Breast Diagnosis R Us Continuous Public
Song, D. (2023) [49] Thyroid Screening R Us Single shot Clinical
Tasnim, J. (2024) [50] Breast Diagnosis R Us Continuous BUSI, Mendeley, UDIAT, OMI, Bl
Thomas, J. (2020) [51] Thyroid Surgery (pre-operative) R Us Continuous Clinical
Zhang, B. (2021) [52] Breast Diagnosis R Us Continuous BUSI, BUSIS
Zheng, H. (2024) [53] Gastrointestinal stromal tumors Diagnosis R Us Continuous Clinical

NA = Not Available, P = Prospective, R = Retrospective, US = Ultrasound, MRI = Magnetic Resonance Imaging
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3.3. Imaging Modality

Most of the included studies used solely ultrasound as imaging modality (n=16), while one study
combined US with MRI [42]. A detailed overview of the ultrasound systems covered in the included
studies can be found in Appendix B.

Fourteen studies employed continuous US acquisition, underscoring a dynamic, real-time imaging
trend. Rezazadeh (2022) et al. and Zheng (2024) et al. highlight the importance of live feedback during
oncological procedures [48,53]. Two studies acquired 3D volume scans [44,45]. All studies mention a
trend towards real-time imaging combined with Al to enhance clinical accuracy and patient outcomes.

3.4. AI Models

Properties of the Al models studied can be found in Tables 2 and 3. The developed models
primarily focused on classification, followed by segmentation and localization, see Figure 5. Six studies
applied ML models for either classification (n=5) or segmentation (n=1) tasks. Fourteen studies applied
DL models for classification (n=12), segmentation (n=1), or localization (n=1) tasks.

14%

5%

= Classification = Localization - Segmentation

Figure 5. Division of Al-based image analysis tasks in the included studies.

Prominent DL architectures for classification were VGG-16, DenseNets, and ResNets. The
predicted classes were compared to labels originating from (histo)pathology reports (n=8), clinical
diagnosis (n=8), or expert annotations (n=2). Four studies encompassed multi-class tasks where models
predicted multiple malignancy risk-level descriptors [41,43,46,47]. The average reported classification
accuracy was 0.89 (0.78-0.95) across binary models and 0.85 (0.78-0.96) across multi-class models
(Table 2). The highest performing models combined either DenseNets [41] or ResNet-18 [47] with
an attention module for final class prediction. Segmentation tasks were performed using a U-Net
architecture in one out of two studies [43], with a reported Dice Similarity Coefficient (DSC) of 0.83
(Table 3). The localization task was performed on a global level. Results from segmentation and
localization tasks were compared to ground truth manual annotation masks.
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Classification (n=16)

Author (year)

Architecture

Task

Ground Truth

Accuracy AUROC

Al-Jebrni, A.H. (2023) [37]
Basu, S. (2023)* [38]
Byra, M. (2022) [39]
Dong, F. (2021) [40]
Han, X. (2022) [41]

Hassan, M. R. (2022) [42]
Karimzadeh, M. (2023)* [43]

Lombardi, A. (2023) [44]
Morris, J. (2023) [46]
Qian, X. (2021) [47]

Rezazadeh, A. (2022) [48]
Song, D. (2023) [49]
Tasnim, J. (2024) [50]

Thomas, J. (2020) [51]
Zhang, B. (2021) [52]

Zheng, H. (2024) [53]

Inception-V3
BagNets33
ResNet
DenseNet-121
DenseNets + SGE attention module

VGG-16 + Random Forest
VGG-16

XGBoost
Local texture quantization
ResNet-18 + SENet
LightGBM
DenseNet-121
ResNet-18 + InceptionV3
ResNet 34
VGG-16

VGG-16

Tumor class benign or malignant

Tumor class benign or malignant (local-level)

Tumor class benign or malignant
Tumor class benign or malignant
TI-RADS risk level (multi-class) &
Tumor class benign or malignant
Tumor class benign or malignant
BI-RADS risk level (multi-class) &
Tumor class benign or malignant
Tumor class benign or malignant
TI-RADS risk level (multi-class)
BI-RADS risk level (multi-class)
Tumor class benign or malignant
Tumor class benign or malignant
Tumor class benign or malignant
Tumor class benign or malignant
BI-RADS risk level (multi-class) &
Tumor class benign or malignant &
Likelihood of malignancy
Tumor class benign or malignant

Clinical diagnosis
Histopathology + Radiologist assigned lexicons
Pathology
Histopathology
Clinical diagnosis
Histopathology
Radiologist manual annotation
Clinical diagnosis
Clinical diagnosis
Clinical diagnosis
Clinical diagnosis
Histopathology
Clinical diagnosis
Pathology / Clinical diagnosis
Clinical diagnosis
Histopathology
Clinical diagnosis
Clinical diagnosis
Clinical diagnosis
Pathology

0.874
0.921
0.887
0.884

0.780 (w)
0.954
0.875

0.852 (w)
0.913

>0.80
091
NA
0.915
0.777

0.843 (w)
0.889

0.932

0.905
0.971
0.835
0.899

0.981

0.994

0.955
0.93

0.952

% = Study with Al model encompassing multiple tasks, NA = Not Available, (w) = weighted score, AUROC = Area
Under the Receiver-Operator Curve, Sens = Sensitivity, Spec = Specificity, MAE = Mean absolute error, PPV =
positive predictive value, NPV = negative predictive value, MCC = Matthew’s correlation coefficient, Rec = Recall,

MSE = mean squared error
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Table 3. Properties of Al models for segmentation and localization
Segmentation (n=2)
Author (year) Architecture Task Ground Truth Performance
Karimzadeh, M. (2023)* [43] U-Net Lesion mask NA DSC 0.827
Martizzi, D. (2021) [45] Gaussian Mixture Models + Blob detection ROI mask Radiologist manual annotation of ROI  Recall 0.83 (benign)Recall 0.95 (malign:

Localization (n=1)

Author (year)

Architecture Task Ground Truth

Performance

Basu, S. (2023)* [38]

ResNet-50 ROl identification (global-level)  Radiologist bounding box annotation

Mean IoU 0.484Mean Intersection 0.9:

* = Study with Al model encompassing multiple tasks, NA = Not Available, DSC = Dice Similarity Coefficient, IoU
= Intersection over Union
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3.5. XAI Methods

In total, fourteen distinctive XAI methods were identified across the included studies. The main
characteristics of each XAI method were cataloged and can be found in Table 4. The operational
mechanisms of the identified XAI methods showed the following distribution:

* Model: Specific (71.4%) vs. Agnostic (28.6%)
* Scope: Local (85.7%) vs. Global scope (14.3%)
¢ Explanation: Intrinsic (42.9%) vs. Post-hoc (57.1%)

Within the nine DL model-specific XAI methods, eight methods were specific to CNNs and one to
Transformers. Two CNN-specific methods, BI-RADS-Net and MT-BI-RADS, implemented multi-task
learning (MTL) to improve Al-model classification and segmentation performance respectively [43,52].
The XNML segmentation model, described by Martizzi et al. (2021), was the only XAI method that
showed ML model-specific attributes and was tailored to their in-study developed PRISM™ platform
[45]. The remaining four XAI methods were model-agnostic, solely operating on input and output,
independent of the Al model architecture. The most occurring explanations comprised a local scope
and post-hoc application, see Figure 6. The local scope indicated a focus on the explanation of specific
patient cases. The post-hoc applications of XAl indicated models used for explaining model outputs,
for better comprehension of the decision-making process of Al models.

16

14

12

-
=]

E’ XAI Function
é 8 Example-based
&J . Semantics
2 m Visualization

4 2 ?

2

.

Intrinsic Post-Hoc Intrinsic Post-Hoc
Global Local

Figure 6. Frequency of various compositions of XAI methods’ scope and application in the included
studies, categorized by function. Note that some XAI methods served multiple functions and were
used in multiple studies, hence the total counts in this figure exceed the number of studies and XAI
methods listed previously.
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Table 4. Characteristics of identified XAI methods

XAI Method Model Specific Scope Explanation Al Task XAI Function XAI In
Activation heat map [38] No Global Intrinsic Localization Visualization Imag
Activation Maximization [50] CNNs Global Post-hoc Classification Visualization Feature
Bag-of-Features [38] Transformers Local Intrinsic Classification Semantics ROIin US
BI-RADS-Net [52] MTL using CNNs Local Intrinsic Classification Semantics, Example based Breast US images -
CAM [39,50] CNNs Local Post-hoc Classification Visualization Imag
Explainer [49] CNNs Local Intrinsic Classification Visualization Images + convolute
Grad-CAM [37,41,47,49,53] CNNs Local Post-hoc Classification (n=6), Segmentation (n=1) Visualization Imag
Image similarity AIBx [51]) CNNs Local Post-hoc Classification Semantics, Example based Imag
LIME [42] No Local Post-hoc Classification Visualization Imag
LTQ-E [46] No Local Post-hoc Classification Semantics US image + Embedded
MT-BI-RADS [43] MTL using CNNs Local Intrinsic Segmentation Visualization Breast US
Region of Evidence (ROE) [40] CNNs Local Post-hoc Classification Visualization Imag;
SHAP [43,44,48] No Local Post-hoc Classification Semantics Image + feat
XNML [45] PRISM™ platform (ML)  Local Intrinsic Segmentation Visualization, Example based =~ 3D Quantitative Transmissior

QL = Qualitative, QT = Quantitative, MTL = Multi-Task Learning
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3.6. XAI Functions

The main XAI function implemented in the identified methods was visualization (n=9), followed
by semantics (n=5) and example-based (n=3), see Figures 7 and 8. All three XAI methods with
an example-based function were combined with additional semantics (n=2) or visualization (n=1)
functions.

13%

29%
58%

Example-based = Semantics = Visualization

Figure 7. Division of XAI method’s functions.

14
12
10
10
ﬁ? 8 Task
% u Classification
E 6 ® Localization
Segmentation
4
7
2 2
3
1
0
Example-based Semantics Visualization

XAI Functions
Figure 8. Frequency of identified XAI functions in the included studies, categorized by image analysis
task. Note that some XAI methods served multiple functions and were used in multiple studies, hence
the total counts in this figure exceed the number of studies and XAI methods listed previously.

3.6.1. Visualization

In classification tasks, visualization provided insight into model behavior realized through
backpropagation, perturbation, optimization, or feature attribution approaches.

Backpropagation-based approaches include saliency maps to visually represent the importance
of different areas of the input image in the prediction process by highlighting pixels with the highest
impact on the predicted class output. These approaches provide model-specific, local scope, post-hoc
explanations. Byra et al. (2022) and Tasnim et al. (2024) used class activation mapping (CAM), which
replaces the fully connected layers at the end of CNNs with global average pooling layers to spatially
aggregate the feature maps from the last convolutional layer [39,50]. The layer outputs are used to
create a heat map, by weighting the class-specific spatial grid with the output weights connected
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to the class predictions. This heat map can hereafter be overlaid on the original image to show the
discriminative regions used by the network to identify that class.

A generalized, gradient-weighted form of CAM, Grad-CAM,, is used for classification tasks in
six studies [37,41,47,49,53]. Grad-CAM is model-specific to CNNs and can be used without global
average pooling, allowing the application to a wider variety of CNN architectures. Grad-CAM first
computes the gradients of the target output concerning the feature maps of the last convolutional
layer, which are global-average-pooled to obtain the importance weights for each feature map. These
weights are multiplied with the forward activation maps to create the localization map and passed
through a ReLU function to preserve the features that positively influence the class of interest. The
result is an overlay of the produced heat map highlighting the most discriminative areas on the input
image, see an example in Figure 9.

Input Expert annotations Baseline With MAG With CA  With Both

GIST 3 3 Gl layered area

Ieiomyoma GI layered area
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L ;‘_=i.— Tumor area
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_-)
—
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o]
3 3
Mg Tumorarea
i

\

|
i
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}

Figure 9. Visualization examples for GIST, leilomyoma and pancreatic rest tumors with the Grad-CAM
plots generated by different methods reflecting the decision basis of different models. The first column
presents the original US image. The 2nd column shows the expert annotations. The 3rd-6th columns
present the generated Grad-CAM saliency maps using a baseline model, a Multi-Attribute Guided
Network (MAG), a contextual attention network (CA) and a combined MAG-CA network. Adapted
from Zheng et al. (2024) [53], with permission from Elsevier.

Perturbation-based approaches perturb the input image to assess the importance of image areas
for the proposed task (e.g. classification). Local Interpretable Model-agnostic Explanations (LIME) are
used in Hassan et al. (2022) [42]. LIME provides a local explanation by replacing a complex model
locally with simpler models, for example by approximating a CNN by a linear model, see Figure 10.
The input data is perturbed and the simplified model is used to learn the change in output. The
similarity of the perturbed input to the original input is used as a weight, to ensure that explanations
provided by the simple models with highly perturbed inputs have less effect on the final explanation.
The simple model is trained on the dataset of perturbed samples using the prediction labels and the
assigned weights. The simple model’s coefficients serve as the explanation for the instance. In the
case of classification tasks, the coefficients reveal the contribution of each feature to the prediction of a
specific class. Unlike CAM and Grad-CAM, LIME is model-agnostic and can be applied to any type of
(ensemble) model.
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tual image Explainable AT
Figure 10. Input of the (a) original input image and (b) radiologist highlighted region of hypoechoic
lesion with mixed echogenicity prostate for malignant case, compared to the resultant (c) simulated
image by LIME which initially locates the regions that could be worth of investigation given the input
image and (d) the final generated image by LIME explaining why the case was classified as malignant.
Adapted from Hassan et al. (2022) [42], with permission from Elsevier.

Optimization-based approaches involve optimizing the input to see what features the network
learns to recognize as belonging to a certain class, rather than observing changes in output due to
perturbations or backpropagation of error. Tasnim et al. (2024) propose Activation Maximization, a
technique where the model’s parameters are adjusted to maximize the output activation of a specific
class or feature [50]. The input image is iteratively adjusted until the pattern that most excite a
particular neuron or layer is found. Activation Maximizations allow the exploration of what each part
of a neural network is looking for in its input.

Feature attribution approaches identify and quantify the contribution of individual features or
regions in the input data to the output prediction. The Region-of-Evidence (ROE) method described
by Dong et al. (2021) focuses on highlighting discriminative regions (ROEs) in ultrasound images that
the CNN relies on for making class decisions, aligning with feature attribution through visualization
[40]. The Explainer framework designed by Song et al. (2023) generates heat maps, or "E maps",
from the convolution of feature maps to highlight the region a CNN model uses for determining the
output class [49]. These E maps, which have the same dimensions as the input feature maps, assign
values between 0 and 1 to represent the importance of each pixel. Subsequently, these E maps are
multiplied by the feature maps, with their resultant map used for the classification. This method
produces salient mappings directly aligned with the model’s reasoning process, providing intrinsic
explanations as it leverages the model’s internal architectures and computations to attribute features
directly contributing to the output. Pixels deemed unimportant are assigned a value of 0, effectively
excluding the features they represent from the classification. This approach contrasts with Grad-CAM,
which identifies significant features considered by the model, whereas the Explainer focuses on the
features the model actually uses to make predictions [49]. Although there may be overlap, these two
sets of features are not identical. Additionally, the Explainer framework reshapes feature maps from
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different layers into the same size, allowing it to combine inputs from multiple layers, rather than
being limited to the last convolution layer.

In segmentation tasks, integrated visualization approaches approaches empowered visual
evaluations of the model’s ability to separate different regions (tumor vs. healthy tissue) within
the images. Integrated visualization techniques enhance explainability without perturbing the input
or analyzing backpropagation gradients directly, as they inherently integrate visualization into the
model’s architecture. The XNML method integrated data-centric learning and causal explanations
directly into the learning process. It focused on generating explainable ML predictions in medical
anomaly detection by generating color-coded masks ranking lesion candidates [45]. In Karimzadeh
et al. (2023) the developed MTL approach combined classification, segmentation, and quantitative
explainability using semantic Shapley Values [43]. Their MT-BI-RADS model outputs the predicted
category of each BI-RADS risk assessment descriptor and provides visual explanations by highlighting
tumor regions with image segmentation.

In localization tasks, object detection frameworks localized and highlighted critical areas (lesions)
in an image using backpropagation-based heat maps that allowed for visual interpretation by experts.
The activation heat map in Basu et al. (2023) was generated from global image features [38]. This
method involved backpropagation of gradients from the output back to the input image, resulting
in a map localizing salient regions in the images. The activation heat map was subjected to Otsu
binarization to determine the highest activated region, and a bounding box was selected that covered
this local region of interest (ROI), see Figure 11.

Figure 11. Generation of the ROI and the local patches from the images using the global features. (a)
The original image to be used as the input for the global branch. (b) The generated Activation heat map
of the features. (c) The binarized heat map and the bounding box spanning it. (d) The cropped local
patch to be used as the input to the local branch. Adapted from Basu et al. (2023) [38], with permission
from Elsevier.

3.6.2. Semantics

XAI methods involving semantics aimed to produce meaningful descriptions or labels that
correlate closely with the features and decision-making criteria used by clinical experts. This approach
enhances the explainability of Al systems by providing explanations that are not only technically
accurate but also understandable and clinically relevant. The identified semantics methods presented
feature-based or transparency-based approaches and were all applied in classification tasks.

Feature-based approaches emphasize individual or groups of features that substantially influence
model predictions. These semantic explanations provide insights into the intrinsic decision-making
processes of models by correlating computational assessments with clinically relevant features. The
Bag-of-Features (BoF) method transforms complex image data into discrete features known as "visual
words," simplifying the interpretation of transformer models” decisions. The method segments images
into local patches and identifies recurrent patterns, creating a vocabulary of visual words that represent
clusters of similar patches. These visual words are then used to generate histograms that serve as
input to classifiers, allowing models to make predictions based on the distribution of these words.
This approach not only simplifies image data but also aligns closely with clinical interpretations,
focusing on patterns and textures indicative of pathological conditions [38]. Developed by Zhang et al.
(2021), BI-RADS-Net employs BI-RADS descriptors such as shape, margins and densities, as features
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to elucidate their impact on tumor malignancy classifications. This method leverages standardized
clinical lexicons, enhancing the transparency and applicability of Al in clinical settings [52].

The SHAP (SHapley Additive exPlanations) method quantifies the contribution of each input
feature to model predictions using Shapley values, a concept from cooperative game theory, to ensure
fair and consistent explanations across all possible combinations of feature inputs. SHAP has been
applied in various studies to provide quantitative, post-hoc explanations. In Karimzadeh et al., SHAP
shows the contribution of each BI-RADS descriptor in MTL breast cancer classifications, offering
insights into the significance of ultrasound image features like shape and margin [43]. Lombardi et al.
(2023) utilize SHAP to identify key features in dermatoscopic images most indicative of malignancy
or benignity, highlighting the diagnostic importance of specific visual patterns [44]. Rezazadeh et al.
(2022) apply SHAP to an ensemble model for breast cancer diagnosis, detailing how statistical texture

features impact malignant or benign class predictions [48], see Figure 12. These associations supported
more informed clinical decisions.
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Figure 12. SHAP explanation example: Results of a malignant case in breast ultrasound images in
which the trained ensemble model can be analyzed to provide explainable decision paths within a
series of decision trees. In each tree classifier, orange arrows indicate the decision path. The model
compares the texture features from the input image (represented by orange numbers at the bottom
of each dashed box) with the learned thresholds (indicated by black triangles on each histogram)
at each node of the decision tree. Adapted from Rezazadeh et al. (2022) [48] Licensee MDPI, Basel,
Switzerland. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY) license.

Transparency-based approaches are designed to be inherently explainable or to enhance existing
models with additional mechanisms that explain their internal decision processes. These approaches
ensure that the features learned by the model are clinically meaningful and do not just represent
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simulated correlations or artifacts of the training data. The image similarity technique (AIBx) in
Thomas et al. (2020) integrated clinically significant patterns and semantic descriptors into Al models.
The Al predictions were aligned with medical standards by embedding diagnostic categories, molecular
markers, treatment responses, and recurrence status directly into the decision-making process [51]. The
LTQ-E method enhances the local texture quantization (LTQ) model by using intermediate decision
labels for added transparency. In Morris et al. (2023), LTQ-E extracted and aggregated embeddings
from the penultimate layer of each separate decision-label model into a unified feature set. Hereafter,
these collected features are used by linear or neural network model classifiers to predict thyroid-related
TI-RADS-level labels [46]. Incorporating clinical knowledge into the computational explanation
process aligns such methods with clinical reasoning steps to increase the models’ trustworthiness and
transparency.

3.6.3. Example-Based

In XAI with example-based functions, methodologies provide insights and understanding about
model decisions by highlighting similarities to previously encountered cases, specific features, or
patterns that the model has learned are indicative of a particular class or output. Example-based
methods allow clinicians to compare the Al’s findings in classification and segmentation tasks with
decisive features or established cases, enhancing confidence in and acceptance of model predictions.

Feature attribution approaches included BI-RADS-Net for classification. BI-RADS-Net employed
specific descriptors that align with terms derived from medical standards to explain class decisions
[52]. Each descriptor acts as a feature example, illustrating how the model classifies breast ultrasound
images based on standardized criteria.

Analogical reasoning approaches employed a case-based approach in AIBx and a counterfactual
approach in XNML. In Thomas et al. (2020), AIBx actively involved operating clinicians in the decision
process by, upon the input of an initial image for analysis, generating a collection of visually and
clinically similar images based on previously confirmed cases, alongside an initial classification.
Clinicians review these images to confirm or adjust the classification, where the image similarity
mirrors clinicians’ memory and expertise to deepen the trust in the Al system [51]. The XNML model
leveraged causal and counterfactual explanations to enhance ML models’ explainability. It linked
statistical data with clinical outcomes, to provide rationales for each segmentation and to aid anomaly
detection [45].

3.7. XAl Advantages and Disadvantages

Comparison of XAl methods reveals relative advantages and disadvantages across visualization,
semantics, and example-based functions, highlighting the varied clinical relevance and potential
impact of each method.

Visualization methods such as CAM and Grad-CAM provide direct and intuitive visual insights
into influential areas within an image, particularly useful for tumor detection or classification tasks.
These methods preserve high-resolution spatial information and are class-discriminative, making
them suitable for differentiating between various conditions across a wide range of CNN architectures,
without the need for architectural modifications. However, their requirement of a CNN architecture
(with global average pooling) limits their broader application. This limited choice of algorithms
could potentially exclude (neural) networks that could better fit the data. Additionally, saliency-based
methods like Grad-CAM and LIME often rely on external validation to verify their accuracy. LIME
uses simple models for local approximations, making its explanations easily understandable. The
perturbation of the input shows the resultant change in the model output and can be used to explain
which regions are driving the predictions directly. Despite being model-agnostic and providing
specific, locally focused explanations, LIME may not generalize across different datasets. The method’s
reliability heavily depends on how perturbations are implemented, and managing feature contributions
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in high-dimensional data can be challenging, necessitating careful interpretation to prevent misleading
outcomes [42].

Semantic methods in XAl aim to bridge the gap between complex algorithmic image analysis and
practical clinical interpretation by incorporating clinically relevant lexicons for higher confidence in
class decisions. The Bag-of-Features (BoF) method concentrates on well-defined, localized features
for detailed US image analysis. In Basu et al. (2023), BoF was used to identify features unknown to
radiologists lexicons, but present in 78% of tumor-labeled cases. This feature could be added to the
lexicon after its characterization is determined [38]. Other semantic methods, such as BI-RADS-Net,
utilize BI-RADS descriptors to align class predictions more with clinical practice, effectively integrating
the explanations into clinical workflows [52]. MT-BI-RADS expands upon this by providing both visual
and semantic explanations of the significance of each BI-RADS descriptor in the decision-making
processes. The Shapley values offer quantifiable insight into individual feature importance, explaining
complex patterns in histopathological images and aiding clinical decision-making [43]. Despite these
advantages, the semantic methods identified were mainly developed for classification tasks, which
could hinder their applications for segmentation or localization. Additionally, while methods like
LTQ-E are effective in pattern extraction for TI-RADS labels at the image level, their complexity may
potentially limit routine clinical use [46].

Example-based methods provide substantial educational and practical advantages in Al model
validation and debugging by aligning model reasoning with clinical expert judgment. These methods
are particularly beneficial in reducing human subjectivity, as demonstrated by the AIBx image similarity
in Thomas et al. (2020), which reduced the number of unnecessary biopsies in clinical studies compared
to decisions made without similarity support [51]. The task-specific design and use of familiar
diagnostic categories for example-based XAl enhance user trust and integration into clinical systems.
In addition, example-based methods can potentially serve an educational purpose, providing real-life
case studies for less experienced radiologists or students. Nevertheless, the effectiveness of these
methods is constrained by the availability and representativeness of example cases. The lack of clinical
evaluation and the dependency on high-quality, well-curated databases can obstruct broader adoption.

XAI methods that combine functions can leverage individual strengths of trustworthiness,
interpretability, and operational efficiency while addressing limitations such as opacity, limited
applicability, and clinical integration challenges. For example, in Karimzadeh et al. (2023), the
MT-BI-RADS framework integrated tumor mask visualizations with quantitative SHAP values
for breast cancer diagnosis, improving transparency and diagnostic confidence by aligning Al
outputs with familiar BI-RADS categories [43]. This method addressed the limitations of opacity
in traditional computer-aided diagnosis (CAD) systems by providing both intrinsic and post-hoc
insights. Additionally, the image similarity algorithm AIBx in Thomas et al. (2020) provided a valuable
decision-support tool for breast cancer that enhanced diagnostic accuracy by correlating semantic
image features with clinically relevant analogous examples [51]. Overall, the combined XAI approaches
have the potential to improve accuracy, increase efficiency, and facilitate smoother integration of Al
models into existing clinical workflows.

3.8. XAI Evaluation

The evaluation process of XAI methods was based on qualitative (QL) and/or quantitative (QT)
metrics, as seen in Table 4, with four studies including both QL and QT evaluation metrics [43,44,49,50].

3.8.1. Qualitative

All but one XAI method using QL evaluation performed visual inspections of the XAI output, i.e.
saliency maps and segmentation masks, to determine XAI method performance. Visual inspections
generally consisted of examining Al-generated saliency maps overlaid on original images to ensure that
the highlighted regions in the saliency maps corresponded to medically significant areas, qualitatively
validating the model’s focus areas and their alignment with medical knowledge. In the study of
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Tasnim et al. (2024), the objective was to confirm that the CAMs correctly focused on lesion regions
rather than the surrounding tissues to determine reliable diagnosis [50]. Some studies compared visual
inspections to previous methods or manual segmentations. For example, Al-Jebrni et al. (2023) showed
that their model’s Grad-CAMs consistently and accurately identified thyroid nodules, outperforming
previous studies” Grad-CAMs, which had scattered focus areas [37]. Hassan et al. (2022) compared
LIME-generated explanations with radiologist-annotated regions containing malignancy indicators,
confirming the model’s predictions [42]. The degree of improvement attributed to applying XAl was
not explicitly expressed with a (qualitative) performance metric.

In most studies, clinician involvement within the visual inspections was not mentioned, with
the evaluation primarily focused on the technical processes of generating and inspecting the XAl
methods’ computational means. However, manual segmentations [39] or ROI annotations [38,42]
by experienced radiologists during the dataset preparation phase indicated some clinical input in
multiple studies. Formalized evaluations of XAI contributions with standardized questions or metrics
were often lacking. Zheng et al. (2024) analyzed how the model’s attention shifted during different
diagnostic stages, comparing this to the step-by-step approach of human experts [53]. Experts provided
qualitative feedback on the Grad-CAM heat maps’ clarity and relevance, assessing whether these visual
explanations improved their understanding of the model’s decisions and clinical decision-making.
Interpretability scores were given, although specific details on the scoring were not mentioned.

3.8.2. Quantitative

The QT metrics focused mainly on semantics and generally comprised standardized performance
metrics in the field of Al-based image analysis. Classification performance was quantified by confusion
matrix scores e.g. accuracy, precision, sensitivity, specificity, F1-score, or Area Under the Receiver
Operating Characteristic (AUROC). Accuracy was the most common and provided a general indication
of the proportion of correct predictions (true positives and true negatives) out of all class predictions
made. Segmentation performance was quantified using DSC, determining the overlap between the
predicted and ground truth mask segments. Scores ranged from 0 (no overlap) to 1 (perfect overlap),
indicating the model’s success in delineating the tumor boundaries within the images. Localization
performance was quantified with the common Intersection over Union (IoU) metric. The metric
evaluated how precise the tumors were localized within the image, considering both the accuracy of
the boundary box and the class prediction. These standard metrics provide quantitative insights by
statistically evaluating the AI model’s performance in intended tasks. They are essential for tuning the
model, understanding its strengths and weaknesses, and comparing its performance with other Al
models. However, these metrics primarily measure the performance of Al models itself and do not
quantify the impact of XAI on improving model explainability in these evaluations.

A few studies involved clinicians during the XAI evaluation phase [40,44,47,49,53]. Song et
al. (2023) conducted reader studies with nine physicians who used heat maps generated by their
XAI Explainer method to assist in diagnosing 200 test set US images (100 malignant) [49]. The
physicians initially diagnosed without XAI assistance to establish a baseline, hereafter they used
the heat maps to aid their decisions. Performance improvements were measured using accuracy,
precision, recall, F1-score, and AUROC curves, showing higher performance with the Explainer
visualizations, especially among junior physicians. In Qian et al. (2021), a two-part reader study with
seven radiologists (14 years of experience on average) compared the performance of BI-RADS-Net with
and without Grad-CAM heat maps. Reviewing 152 breast lesions (44 malignant) from 141 patients in
the test set, the radiologists initially diagnosed without XAl assistance and then reassessed using the
heat maps. Their study found that visualizations with heat maps improved sensitivity, specificity, and
overall diagnostic accuracy, highlighting the technique’s added value in clinical practice [47].

Uncommon QT evaluation metrics for XAI methods were found in several studies:

¢ Shapley values are derived from game theory and provide a method to distribute the impact
among contributors (features) in a cooperative game (prediction model). Each feature value’s
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contribution is determined by assessing the change in prediction when a feature is added or
removed for all possible combinations of features. The aim is to fairly attribute the model’s output
to its input features, providing insights into which features are most important for predictions.
In three studies, SHAP values are used to determine which clinical features (e.g. tumor size,
shape, or texture) most significantly impact the models’ classification of a tumor as benign or
malignant [43,44,48].

® The Zero-mean Normalized Cross-Correlation (ZNCC) score presents a statistical measure to
assess the similarity between two images. It calculates the degree of similarity between two
images through a normalized cross-correlation measurement formula, subtracting their mean
and dividing by their standard deviation. The ZNCC score ranges from -1 to 1, where 1 indicates
perfect correlation, 0 indicates no correlation, and -1 indicates perfect inverse correlation. In
Tasnim et al. (2024) the ZNCC score quantitatively assessed the feature separation ability of
the Activation Maximization generated images in a benign-malignant (i.e. binary) classification
problem [50].

¢ The Pointing game metric is a QT evaluation method used to assess how well the areas identified
by saliency maps align with relevant regions in medical images. It evaluates whether the most
significant activation points in the saliency map correspond to specific anatomical or pathological
features in the analyzed images. Byra et al. (2022) used the pointing game to verify if the CAM
saliency maps highlighted significant regions for accurate diagnosis i.e. breast mass region,
peritumoral region, or region below the breast mass [39], see Figure 13.

* The Resemblance votes metric is used in Dong et al. (2021) for QT evaluation of how well
the ROE identified by the Al aligns with the regions considered important by physicians for
making diagnostic decisions [40]. The metric categorizes the ROE into three resemblance levels
as perceived by clinicians: High Resemblance (HR), where the ROE closely matches the features
used by physicians; Medium Resemblance (MR), where the ROE partially matches; and Low
Resemblance (LR), where there is little to no match. Considering the perceived resemblance of
Al predictions actively included clinicians and can aid in validating and improving the model’s
explainability and utility in clinical practice.

Benign masses Malignant masses
us image Saliency map US image Saliency map

ass  Peritum:

g
Figure 13. US images presenting benign (left) and malignant (right) breast masses and the
corresponding CAM-generated saliency maps pointing out the three pre-determined regions in US
images. The white cross indicates the extreme activation value of CAM responsible for the particular

pointing game result. Adapted from Byra et al. (2022) [39], an open-access article distributed under the
terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND).

Regarding the additional QT metrics identified, the ZNCC score primarily evaluates the Al
model’s performance in terms of image similarity and feature activation. The evaluation contributes to
understanding model behavior by illustrating AI model responses to variations in input, however, it
does not directly assess the explainability. The Pointing Game specifically evaluates the explainability,
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as it measures the alignment between the model’s focus (saliency maps) and the clinically relevant areas
in the images. Similarly, the Resemblance votes method evaluates the explainability as it quantifies
the correspondence between the ROE and the diagnostic areas identified by physicians, rather than
the accuracy of the underlying Al system. Comparably, the Shapley values quantify the contribution
of individual clinical features to the output. These explanations of which features the model uses to
make a specific decision are as important as the decision itself.

4. Discussion

4.1. Key Findings

This systematic literature review aimed to investigate the use of explainable Al in oncological
ultrasound image analysis, given the need for transparent and trustworthy Al systems in healthcare.
Specifically, it sought to provide an overview of the identified XAI methods, including their operational
mechanisms, explanatory function, and evaluation metrics. Additionally, the review aimed to compare
the advantages and disadvantages of these XAI methods for clinical use.

Fourteen different XAI methods were identified. Most methods employed visualization functions
that intuitively highlight influential image areas in prediction processes. However, these methods
typically required specific architectures and depended on external validation, potentially limiting their
broader application. Other methods incorporated semantic or example-based functions, aligning with
clinical reasoning to reduce human subjectivity. Despite their advantages, semantic methods often
face challenges in more complex tasks and the effectiveness of example-based methods depends on
the quality of examples used. Hybrid approaches that combine multiple explanatory functions have
shown promise in leveraging the strengths and mitigating the limitations of individual methods, thus
enhancing user trust and understanding.

Integrating XAl into oncological imaging, particularly in real-time applications, holds significant
potential for enhancing analysis accuracy, surgical precision, and clinical decision-making. For example,
Song et al. (2023) showed performance improvements in US-based thyroid cancer diagnosis using
their XAI Explainer method, particularly benefiting junior physicians [49]. In the study of Qian et
al. (2021), breast lesion diagnosis aided by Grad-CAM heat map visualizations improved sensitivity,
specificity, and overall diagnostic accuracy, highlighting the technique’s added value in clinical practice
[47]. Zheng et al. (2024) demonstrated that XAl during live endoscopic US procedures can improve
diagnostic accuracy by identifying discriminative tumor features in US images, supporting real-time
surgical decisions and outcomes, particularly in distinguishing between visually similar tumors [53].

A significant gap identified in the current literature is the absence of standardized evaluation
metrics that specifically quantify the impact of explanations provided by XAI methods in
cancer-focused image analysis utilizing real-time ultrasound data. Current studies predominantly
employ subjective assessments that rely on visual inspections to evaluate XAI methods. Researchers
typically conducted these qualitative assessments without the involvement of clinical end-users.
This approach limits the practical applicability and relevance of such evaluations. Some subjective
assessments attempt to integrate quantitative metrics, such as the Pointing Game metric, which aligns
network attention with clinical expectations to enhance trust in Al decisions. This metric is designed
to elucidate why a model makes certain decisions, addressing the "black box" nature of models [39].
However, inconsistency in the application of these evaluations complicates comparisons across studies.
The traditional quantitative evaluative metrics used (e.g. confusion matrix, DSC, IoU) are indispensable
for objectively describing the accuracy and reliability of Al models, but they primarily focus on the Al
model’s performance itself rather than the explainability aspects of XAI outputs. There is, thus, a need
for metrics specifically designed to assess how transparent and interpretable Al models are to clinical
end-users. Such metrics could include user studies or (subjective) clinical ratings of the transparency
and effectiveness of explanatory tools. Currently, to our best knowledge, no comprehensive benchmark
exists that specifically addresses XAl evaluation for medical image analysis. Although a pioneering
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evaluative benchmark designed for XAl visualization in general image analysis tasks is noted [54], it
lacks a focus on medical or cancer applications and does not consider semantic or example-based XAI

Moreover, evaluations often miss objective judgments and feedback from clinical end-users,
though crucial components for practical implementation. Studies using tailored quantitative metrics
such as ZNCC scores focus more on technical validation, while methods involving clinicians ensure
Al aligns with clinical reasoning, stimulating better integration [38]. Only a few studies actively
incorporate clinicians in their XAI evaluations [40,44,46,47,49,53]. Dong et al. (2021) actively involved
physicians in assessing the resemblance levels of the ROE to ensure that Al-generated evidence
was clinically relevant and aligned with their diagnostic criteria [40]. Additionally, three studies
[44,46,49] iteratively consulted clinicians in the development of the XAlI, to ensure explanations were
clinically relevant and useful. Clinicians participated in usability testing sessions to evaluate the
effectiveness and clarity of the explanations provided by the XAI systems. Hereafter, their feedback
was used to refine the explanations to match clinical needs better [46,49]. Lombardi et al. (2023)
specifically employed a human-centered design to involve healthcare professionals throughout the
design, implementation, and evaluation phases of the proposed XAI pipeline [44]. The remaining
two studies solely incorporated radiologists [47] or endoscopists [53] to qualitatively assess models’
performance in providing understandable visual outputs.

4.2. Comparison with Existing Literature

Despite broad interest in XAI method development, it remains challenging to compare different
evaluations due to the absence of standardized evaluation metrics. This need for a common
framework of metrics that can be applied universally is repeatedly concluded in the literature [12,16,55].
Similar to our findings, Abrantes et al. (2024) mention a focus on visual and post-hoc explanations,
pointing out the unclear impact these explanations have on clinical outcomes. Additionally, they
note the risk of over-reliance on the model when providing users with insubstantial explanations,
potentially even reducing decision performance. They emphasize the importance of improving
Al’s operational transparency in future XAl developments [12]. Similarly, Antoniadi et al. (2021)
observed that XAI could boost clinicians’ confidence and generate causal hypotheses in clinical
decision support systems, increasing the systems’ trustworthiness and acceptability. However, they
mention a distinct shortage in XAl evaluations, particularly in user studies that address clinician needs
[16]. In support, Amann et al. (2020) argue that neglecting explainability in clinical decision support
systems poses a threat to individual and public health [55]. The variability and scarcity of objective
evaluations complicate effective comparisons of XAI methods” impacts. Developing standardized,
clinically relevant evaluation metrics for XAl is needed to assess both the technical performance and
explainability of Al models.

4.3. Limitations

The results of the review should be interpreted taking several limitations into account. No articles
were identified that applied XAI for intra-operative margin assessments. The ambiguous taxonomy
of XAI might have resulted in missed studies during our search strategy, despite efforts to create a
broad search string to minimize this risk. The heterogeneity of study designs and outcomes among the
included studies further complicates the synthesis of results.

The included studies focused on certain cancer types with tailored imaging approaches leading
to the development of specialized XAI systems. This, however, limits their general application.
The proposed XAI methods may require extensive adjustments for new data and applications.
Furthermore, many XAI methods have not been evaluated in real clinical settings, limiting their
practical adoption. This lack of comprehensive clinical assessment and insufficient end-user feedback
during the development and evaluation of XAI methods represents a significant gap. The lack of
discussion on computational time in the studies is also concerning. Many existing XAI methods
use parts of the data or derivatives of real-time images. Time is an essential feature in real-time
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environments. Consequently, our conclusions regarding the expected clinical potential and impact of
XAl in cancer-based image analysis remain uncertain. Future XAl methods should focus on developing
approaches that can handle dynamic and complex image data e.g. for better integration into oncological
surgery.

4.4. Strengths

This systematic review has several strengths regarding comprehensiveness and relevance. The
identification of 14 methods and their categorization into three main XAI functions (visualization,
semantics, example-based) aligns with existing literature [14,32]. The extracted characteristics of XAl
methods show a similar distribution to those in the study by Van der Velden et al. (2022), which
surveyed over 200 papers on XAI for DL-based medical image analysis. This study found that most
XAI methods provided CNN-specific, local, post-hoc explanations using saliency maps [32]. Reflecting
these findings reinforces the relevance of the categorized XAI methods.

Another notable strength of this review is the provided overview comparing XAl methods for
cancer-focused image analysis tasks, encompassing classification, segmentation, and localization. To
the best of our knowledge, this is the first review to specifically address XAl for real-time ultrasound
imaging in cancer applications.

Additionally, the review underscores the need for standardized and widely accepted evaluative
metrics in XAI which are currently missing. It reinforces the need for clinical end-user integration in
developing and evaluating XAI methods, consistent with previous research [12,16,55]. Addressing
existing gaps and aligning with established literature, this review provides a foundation for future
advancements in XAI for cancer-focused image analysis.

4.5. Implications & Future Research

The findings in this review have several implications for current research, development, and
clinical implementation of XAl XAI has shown the potential to enhance clinician confidence and act
as a second reader, improving clinical accuracy and decision-making. However, while explainability
can improve transparency, it can lead to over-reliance on Al systems. This is problematic when
models are uncertain or incorrect, potentially reducing the decision performance [12]. Therefore, it
is necessary to integrate clinical end-users in the development and evaluation processes, focusing
on the quality and utility of the explanations provided. Future research should prioritize this by
creating "explainability for end-users". Interactive explanations, where end-users can refine and adjust
explanations, should be explored. Additionally. the traditional XAI methods like LIME or SHAP focus
on feature attributions, which may not align with human conceptual reasoning. Future research should
explore concept-based XAI methods, as proposed by Longo et al. (2024) [21]. These explanations
embed human-understandable concepts into Al outputs, facilitating the integration of expert clinical
knowledge. These methods should be developed for tasks beyond computer vision applications, such
as classification and regression in oncological contexts. Initial examples can already be seen in the BoF
[38] and BI-RADS-Net [52] methods.

XAI methods combining functions and scopes can provide rich explanations that align more
closely with human cognitive processes [21]. Such hybrid methods ensure technical accuracy whilst
enhancing transparency and user trust, particularly important in critical care areas such as oncology.
However, many XAI methods identified present generalization issues across different datasets or
conditions, indicating the need for further refinement of XAl to ensure robustness and sophistication.
Policymakers should consider the balance between the benefits of explainability and the potential
monetary and safety costs [15].

Future research should address identified shortcomings to advance the application and
effectiveness of XAl in cancer-focused ultrasound image analysis. These include the need for
standardized evaluation metrics and the development of an evaluation framework that addresses the
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clinically relevant impact of the explanations provided. Such a framework should ensure that XAI
methods are consistently and quantitatively evaluated for increased reliability and comparability.

5. Conclusions

In conclusion, this review provides an overview of various XAl methods applied to cancer-focused
image analysis using real-time ultrasound imaging data, aimed at addressing the "black box" nature
of advanced Al models. The enhanced transparency resulting from XAI implementations can help
clinicians make more informed decisions, foster trust, and facilitate the integration of Al into clinical
workflows. The identified XAI methods show promise, particularly when combining functions and
actively incorporating clinical end-users. However, challenges remain regarding the XAI method’s
novelty, ambiguous evaluations, and data dependency. Addressing the identified gaps and proposing
methodological improvements will be essential for promoting the practical implementation and
clinical efficacy of XAL The expansion of XAI towards real-time cancer applications and developing
standardized quantitative evaluative metrics are crucial steps in this advancement.
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Appendix A

Medline search string:
((((explainab*) ADJ12 (artificial-intelligen* OR Al OR deep-learn* OR machine-learn* OR neural-network* OR
machine-intellig* OR automated-reason™ OR machine-reason*)) OR XAI).ab,tikf.) AND (exp Ultrasonography/
OR Ultrasonics/ OR (ultrasound* OR ultrasonic OR echograph* OR ultrasonograph®).ab,tikf.) AND
(Classification/ OR exp Neoplasm Staging/ OR Margins of Excision/ OR (segmentat* or classificat* OR
margin* OR delineation* OR staging).ab,ti kf.)

Scopus search string:
TITLE-ABS-KEY(((((explainab®) W/12 (artificial-intelligen* OR Al OR deep-learn* OR machine-learn*
OR neural-network* OR machine-intellig* OR automated-reason* OR machine-reason*)) OR XAI)) AND
((ultrasound* OR ultrasonic OR echograph* OR ultrasonograph*)) AND ((segmentat™ or classificat* OR
margin® OR delineation* OR staging)))
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Appendix B
Table Al. Characteristics of ultrasound imaging systems utilized per study
Author (year) US Modality System (Manufacturer)

Al-Jebrni, A.H. (2023) [37] us EPIQ 7 (Philips) + DUS8 (Technos)

Basu, S. (2023) [38] Transabdominal US Logic S8 (GE Healthcare)

Byra, M. (2022) [39] Breast US SonixTouch Research (Ultrasonix)

Dong, E. (2021) [40] UsS Resona 7 (Mindray)

Han, X. (2022) [41] Us NA (Siemens), NA (Philips)

Hassan, M. R. (2022) [42]
Karimzadeh, M. (2023) [43]

Lombardi, A. (2023) [44]
Martizzi, D. (2021) [45]
Morris, J. (2023) [46]
Qian, X. (2021) [47]
Rezazadeh, A. (2022) [48]
Song, D. (2023) [49]
Tasnim, J. (2024) [50]

Thomas, J. (2020) [51]
Zhang, B. (2021) [52]

Zheng, H. (2024) [53]

Transrectal US
Breast US

Transvaginal or transabdominal US & 3D US
Quantitative Transmission US
us
us
Breast US
us
Quantitative US

[OF)
Breast US

Endoscopic US

Hi-Vision 5500 (Hitachi)
C41V end-fire probe (Nobulus)
LOGIQ E9 + LOGIQ E9 Agile (GE Healthcare)
VIVID 7 (GE Healthcare), LOGIQ E9 (GE Healthcare), EUB-6500 (Hitachi), iU22 (Philips), ACUSON 52000 (Siemer
NA
NA
NA
Aixplorer (SuperSonic)
LOGIQ E9 (GE Healthcare) + LOGIQ E9 Agile (GE Healthcare)
NA
LOGIQ E9 + LOGIQ E9 Agile (GE Healthcare)
Voluson730 scanner (GE Healthcare)
ACUSON Sequoia C512 (Siemens)
iU22 (Philips)
Sonix-Touch Research (Ultrasonix)
NA (GE Healthcare), NA (Philips), NA (Sonosite)
LOGIQ E9 + LOGIQ E9 Agile (GE Healthcare)
VIVID 7 (GE Healthcare), LOGIQ E9 (GE Healthcare), EUB-6500 (Hitachi), iU22 (Philips), ACUSON 52000 (Siemer
NA

NA = Not Available, US = Ultrasound
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