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Abstract: Neuromorphic computing, a brain inspired non-Von Neumann computing system, 

addresses the challenges posed by the Moore’s law memory wall phenomenon. It has the capability 

to increasingly enhance performance while maintaining power efficiency. Neuromorphic chip 

architecture requirements vary depending on the application and optimizing it for large-scale 

applications remains to be a challenge. Neuromorphic chips are programmed using spiking neural 

networks which provide them with important properties such as parallelism, asynchronism, and 

on-device learning. Widely used spiking neuron models include the Hodgkin-Huxley Model, 

Izhikevich model, integrate-and-fire model and spike response model. Hardware implementation 

platforms of the chip follow three approaches: analog, digital, or a combination of both. Each 

platform can be implemented using various memory topologies which interconnects with the 

learning mechanism. Current neuromorphic computing systems typically use the unsupervised 

learning spike timing-dependent plasticity algorithms. However, algorithms such as voltage-

dependent synaptic plasticity have the potential to enhance performance. This review summarizes 

the potential neuromorphic chip architecture specifications and highlighting which applications 

they are suitable for. 

Keywords: neuromorphic computing architecture; neuromorphic computing learning; spiking 

neural networks; non-von neumann computer; brain-inspired chip 

 

1. Introduction 

Artificial intelligence (AI) is a continuously emerging field that is commonly used for various 

applications and purposes. Conventional technologies used for running complex AI algorithms 

utilize Von Neumann computers which have a high rate of power consumption and cause a carbon 

emission problem. As stated in article [1], training a single deep learning (DL) model can equate to 

the same amount of total lifetime carbon footprint of five cars and has approximately 656,347 

kilowatt-hours of energy consumption [1]. In addition, recent advancements in computing speed and 

capacity have reached a saturation level in performance due to the continuous application of Moore’s 

law which resulted in the memory wall phenomenon. Moore’s law refers to the decrease in size of 

transistors on digital integrated chips to achieve a faster performance. This also resulted in an increase 

of data movement and as computational speed continuously increased, memory performance overall 

remained the same leading to the memory wall phenomenon and saturations of the system’s 

performance [2]. As AI algorithms continue to evolve a new technology that meets the high 

performance, energy efficiency and large bandwidth requirements is needed [3]. Neuromorphic 

computing, which is a brain-inspired computing system has the capability to increasingly enhance 

performance at a decreasing level of power consumption. Neuromorphic computers are non-Von 

Neumann computers which are composed of neurons and synapses as opposed to separate CPUs 

and memory units [4]. 
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Neuromorphic chips are programed using spiking neural networks (SNNs) which provide a 

more energy efficient, computationally powerful network and fast and massively parallel data 

processing compared to artificial neural networks (ANNs). They are implemented using one of the 

four main spiking neuron models (shown in Figure 1) which include the Hodgkin-Huxley (HH) 

model, Izhikevich model, integrate-and-fire (IF) model and spike response model (SRM). These 

models closely exhibit biological neurons characteristics and behaviours [5,6]. In neuromorphic 

computing, various architectures can be developed based on the hardware implementation platform, 

network topologies, and neural models. Hardware implementation platforms follow three 

approaches: analog, digital, and a combination of both, as depicted in Figure 2. The subsections of a 

neuromorphic unit include the computational unit (neural model), the information storage unit 

(synaptic model), the communication unit (dendrites and axons), and the learning mechanism 

(weights update). Considering the advantages of both digital and analog implementation methods, 

they can be combined or used separately to implement the subsections of neuromorphic computing 

hardware. Additionally, various memory technologies can be employed in both analog and digital 

systems for two important reasons: synaptic plasticity (non-volatile information storage) and weight 

updates (fast read and write capabilities), as presented in Figure 2. 

 

Figure 1. Four main spiking neuron models used in neuromorphic chips. 

 

Figure 2. Neuromorphic architecture characterization diagram. 

An analog device for neuromorphic computing is a more cost-effective approach compared to 

digital design and can provide in memory computing but lacks flexibility. In a digital 

implementation, data exchange is required between the Arithmetic Logic Unit (ALU) and memory 

cells making its implementation at a large-scale challenging. However, a digital implementation has 

the ability to implement almost any learning algorithm and allows for more customization and 

flexibility [7]. A mixed design approach which includes the advantages of both analog and digital 

implementation can overcome several limitations. Digital communication stored in the form of digital 

spikes can be utilized for analog neuromorphic systems, increasing the duration of storage of the 

synaptic weights and the reliability of the system [8].  

Analog circuits for neuromorphic computing can be implemented using Memristors, CMOS or 

Resistive RAM. Memristors are an emerging memory device with a memristive memory and have a 

fast operation speed, low energy consumption and small feature size. They have a switching 
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mechanism between states through programming pulses. They can be classified into nonvolatile and 

volatile types, where the nonvolatile is capable in developing in-memory computing and the volatile 

is typically utilized for synapse emulators, selectors, hardware security and artificial neurons [9,10].  

Complementary metal oxide semiconductor (CMOS) transistors have been successfully used to 

implement neurons and synapses for neuromorphic architecture. In addition, they are widely used 

for large-scale spiking neural networks (SNNs) [11]. Lastly, resistive access memory (ReRAM) is a 

two-terminal nanodevice that is promising for neuromorphic computing as it can enable highly 

parallel, ultra-low-power computing in memory for AI algorithms. It is structurally simple and thus 

can be easily integrated into the system at a low power consumption [12].  

A digital implementation of neuromorphic architecture can be completed through the use of 

FPGAs, ASIC or a heterogenous system composed of CPUs and GPUs. Field-programmable gate 

arrays (FPGAs) provide several advantages for neuromorphic computing which include flexibility, 

high performance and reconfiguration capability and excellent stability. In addition, they can 

implement SNNs due to their parallel processing ability and sufficient size of local memory to restore 

weights. Recent implementations of FPGA-based neuromorphic systems utilize random access 

memory (RAM) to optimize the latency of memory access [6]. Application Specific Integrated Circuit 

(ASIC) implementations of neuromorphic systems are less flexible, have a higher production cost 

compared to FPGA and are limited to specific neuron models and algorithms [6,8]. However, ASIC 

provides low power consumption and a high-density local memory which are attractive features for 

neuromorphic systems development [13]. Modern ASICs include flash memory as they have a long 

retention time (>10 years). Flash memory has a three-terminal structure, is charge-based and a 

nonvolatile memory [5]. A heterogenous system architecture composed of both Central Processing 

Units (CPUs) and Graphics Processing Units (GPUs) for neuromorphic computing can provide 

flexibility in the programming due to the CPUs as well as parallel processing and accelerated 

computing due to the GPUs [14]. However, they cannot be easily scaled due to their high energy 

demands [13]. RAM or ReRAM can be utilized for the heterogenous system to store the weights [15].  

As illustrated in Figure 3, there are three main different machine learning methods that are 

commonly used: supervised learning, unsupervised learning, and reinforcement learning [6]. Non-

machine learning methods are less common but can also be used for neuromorphic computing for 

applications that solve a particular task [4]. Learning mechanisms are an essential step for developing 

neuromorphic systems as they are used to adapt to the specified application. On-chip training is 

extremely desired for many applications and refers to learning in a neuromorphic chip. Off-chip 

training is when learning is implemented externally through software for example and the weights 

are then postprocessed and used to fabricate the neuromorphic system [6]. 

 

Figure 3. Neuromorphic computing learning methods characterization diagram. 

Supervised learning is the training of data using labelled datasets and can be divided into 

backpropagation and gradient descent algorithms. Unsupervised learning is the training of data with 

an unlabeled dataset and can be divided into STDP and VDSP algorithms. Lastly, Reinforcement 

learning is when the machine learning algorithm learns from experiences and feedback without any 

labelled data. It is an iterative long-term process and can be divided into Q-learning and DQN 

algorithms [16]. 

Neuromorphic computing can be used for various applications and industries which include 

medical, large-scale operations and product customization, artificial intelligence, and imaging. Its 
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design parameters ultimately depend on the desired application and several companies have 

implemented a neuromorphic chip each with different architectures to solve different tasks [16] This 

review focuses on the various possible neuromorphic chip architectures and their capabilities.   

2. Background 

Neuromorphic chips consist of artificial neurons and synapses to achieve similar functions to 

the human brain. There are 1010 – 1012 neurons in the human brain that each have 104 synaptic 

connections operating simultaneously and communicating with each other through spike signals. 

The human brain inspired the development of this chip due to its ability to perform high-order 

intelligence tasks at a low energy consumption rate [5]. Neuromorphic chips are defined as non-von 

Neumann due to the governing of both processor and memory by neurons and synapses and 

reception of inputs as spikes. They have a parallel operation and are asynchronous (event-driven). 

Controversy, Von Neumann computers are composed of separate CPUs and memory units, and 

information is encoded as numerical values. They perform sequential processing and are 

synchronous (clock-driven) [4]. The main differences between Von Neumann architecture and 

Neuromorphic architecture are illustrated in Figure 4.   

 

Figure 4. Von Neumann architecture versus Neuromorphic architecture. 

Neuromorphic chips provide various advantages over current Von Neumann computers due to 

their operations properties which include: 

• Connectionism: is described using neural networks (NN) which consist of many simple units 

(neurons) interconnected together with weights. Determining the appropriate weights results in 

the NNs ability to learn and solve a given problem [7]. 

• Parallelism: all neurons work in parallel to each other to simultaneously perform various 

functions and ensure efficient and successful operation of neural networks [7].  

• Asynchrony: to achieve parallelism, synchronization of all neurons is not required as each 

neuron performs a specified task. Asynchrony reduces the power consumption that would 

otherwise be required to achieve synchronization [7]. 

• Impulse nature of information transmission: the information encoded as spikes differs between 

different pairs of neurons and does not occur instantly. A synapse is therefore characterized by 

the weight and time delay and provides advantages over traditional neural networks. It is 

asynchronous, allows the use of dynamic data due to its inclusion of the time component, it is a 

complex non-linear dynamic system, and the neuron is only activated upon the receival of a 

spike, reducing the power consumption as its inactive state does not consume a large amount of 

energy [7].  
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• On-device learning: it has the ability to learn in a continuous and incremental manner which in 

turn allows the customization and personalization of smart devices based on the user needs 

while maintaining privacy through the avoidance of user data transmission to the cloud [7]. 

• Local learning: conventional neural networks use backpropagation algorithms which introduce 

two problems: the weight transport problem and the update locking problem. The weight 

transport problem is the system’s inability to exchange information about the weight value and 

the update locking problem is the requirement of forward pass activation values to be stored for 

backward pass. Local learning is an alternative to backpropagation and uses a Spike timing 

Dependent Plasticity (STDP) model where the synapses are strengthened upon receival of a 

spike before the neuron generated the spike or weekend if the spike was received after the 

neuron generated the spike. As a result, local learning can train any size of network as it does 

not require large amounts of global data transfer operations [7]. 

• Sparsity: not all neurons are activated to perform a task. Neuromorphic chips have temporal, 

spatial and structural sparsity. Temporal sparsity is the data sparse in time which is determined 

by the transmission of only the changed part of a signal. Spatial sparsity is sparsity in data 

streams resulted by neurons activated only upon reaching a certain threshold value. Structural 

sparsity refers to the data flow with respect to the network topology, as each neuron has a limited 

number of connections, and they are not all fully interconnected together [7].  

• Analog computing: digital computing is limited due to its high costs. Analog circuits can be 

used to model the dynamics of the membrane potential and to model synaptic operations. 

Analog circuits provide a more time and energy efficient alternative.   

• In-memory computing: each individual neuron has its own memory or stored state which 

eliminates the need for transferring intermediate data or the competitive memory access [7]. 

2.1. Spiking Neural Networks (SNN) 

Neuromorphic chips are programed using spiking neural networks (SNNs) rather than artificial 

neural networks (ANNs) due to their biological functionalities and employment of biological neuron 

models such as the integrate-and-fire model, leaky integrate-and-fire (LIF) model, and Izhikevich 

model which all allow the communication between neurons through the generation of spike signals 

[5]. SNNs provide a more energy efficient, computationally powerful network and fast and massively 

parallel data processing for neuromorphic chips compared to ANNs. They are implemented using 

differential equations and have memory while ANNs are implemented using activations functions 

and have no memory [6]. The spike signals sent to a neuron accumulate in the neuron membrane 

potential and the signal is passed to other connected neurons only when the membrane potential 

reaches a certain threshold [5]. A charge leakage that dissipated overtime can occur if the threshold 

is not reached. In addition, outgoing synapses can be affected due to axonal delays which in turn 

results in information delay. Figure 5 illustrates the pre-synaptic and post-synaptic neurons 

connected by the synapses which carry the associated weight value. The weight value is excitatory if 

positive or inhibitory if negative. The synapses are trained using the selected learning mechanisms 

to alter the weights and activate the synapse only when needed. SNNs are organized into layers and 

their capability to transmit information at different times is known as the asynchronous function of 

neuromorphic chips which aids in reducing power consumption [4]. 
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Figure 5. Example of SNN and information transmission between neurons through synapses. 

challenging to implement on classical von Neumann architecture (CPUs/GPUs) due to the large 

demands of power and time. Hence, FPGA or ASICs which can offer a high-speed and low-power 

hardware implementations of SNNs are a good alternative for large-scale implementations [6]. Other 

implementations are completed using memristors combined with STDP [7].    

2.2. Spiking Neuron Models 

Four popular and widely used spiking neuron models include the Hodgkin-Huxley (HH) 

model, Izhikevich model, integrate-and-fire (IF) model and spike response model (SRM). These 

models closely exhibit biological neurons characteristics and behaviours. While ANN models include 

sigmoid, rectified linear unit (ReLU) or tanh, which are computation units [6]. 

The first developed model of a spiking neuron is the HH model. It described the initiation and 

propagation of action potentials of a neuron and describes the mathematical description of electric 

current through the membrane potential. It is the most accurate model in terms of mimicking real 

neurons; however, it is computationally expensive with a requirement of approximately 1200 

floating-point computations (FLOPS) per 1 ms of simulation. Therefore, this model is hard to 

implement for large-scale neural network simulations. The second proposed model is the Izhikevich 

model which is two-dimensional, offering a good trade-off between biological plausibility and 

computational efficiency. It requires only 13 FLOPs per 1 ms of simulation making it a better 

alternative for implementing a large-scale neural network. The IF model is a simple model that 

generates an output spike upon reaching a defined threshold. The LIF model is a type of IF neuron 

model with an addition of a leak to the membrane potential. LIF requires only 5 FLOPS making it the 

model with the lowest computational cost and widely used due to its added benefits of accuracy in 

mimicking the spiking behaviour of biological neurons and simulation speed. It is extremely suitable 

for large-scale network simulation and is commonly used for analog hardware implementations due 

to its ease of integration and modeling using transistors and capacitors. However, they are 

challenging to use for machine intelligence applications as the role of different firing patterns in 

learning and cognition is unclear and additional adaptation variables increase the model’s 

complexity [6,8]. Lastly, the SRM uses response kernels (filters) rather than differential equations to 

achieve similar behaviours to the LIF model, where the output spike is generated upon internal 

membrane potential reaching the threshold. It requires 50 FLOPS per 1 ms simulation which is higher 

than the previous two models but is still considered as low computation cost. In addition, it provides 

a less accurate representation of a neuron biologically compared to the HH model and is 

computationally complex if implemented digitally. Analog implementations of the SRM are less 

complex and can be done using charging and discharging RC circuits [6]. 
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2.3. SNN Testing 

Neuromorphic computing is an emerging field with a limited number of datasets that can be 

used to assess its performance. As each chip is designed for a specific application or task and it is not 

widely versatile, assessing its overall performance can be a challenge. A study [17] developed an on-

line testing methodology for neuromorphic hardware that can detect real-time abnormal operations 

due to hardware level faults. It can assess the confidence in the SNN prediction using a lightweight 

and non-intrusive on-die symptom detector that operated in parallel with the SNN. It determines 

whether the running input will be correctly predicted by the SNN using a system of two classifiers: 

strict and lenient. If both classifiers agree then it outputs a high confidence decision, otherwise, the 

test decision has low confidence. The algorithm was tested on an FPGA-based neuromorphic 

hardware platform and achieved a trustworthy operation with zero-latency transparent decisions for 

over 99.6% of the SNN inferences [17].  

3. Neuromorphic Circuit Design 

3.1. Analog Design 

There are three main types of analog implementations of neuromorphic chips: memristors, 

CMOS and resistive RAM. Memristors, also known as resistive memory devices apply the working 

principle of causing a chance of resistance due to a modification of the material at the atomic level. 

They can include resistive-switching random access memory (RRAM), phase-change memory (PCM), 

magnetic random-access memory (MRAM) or the ferroelectric random access memory (FeRAM). 

Their design depends on the required parameters of the application [13]. Memristors offer 

characteristics similar to biological synapses that have various advantages for neuromorphic chips 

such as in-memory computation, power efficiency, fast operational speed and small feature size 

[10,18]. A single-layer configuration of a memristor includes a memory density of up to 4.5 terabits 

per square inch. Memristors can be categorized into non-volatile memory switching (MS) and volatile 

threshold switching (TS). Non-volatile MS offers high-density memory and in-memory computing. 

While volatile TS is useful for synapse emulators, selectors, hardware security and artificial neurons. 

Bifunctional memristors are optimal for neuromorphic chips. They include functions of both volatile 

and non-volatile memristors to mimic functions of artificial synapses and neurons. However, the 

downside is the large storage windows required which are not guaranteed, alongside the endurance 

and simultaneous implementations of functions. Versatile memristors for multi-function circuits are 

yet to be successfully developed. Memristors can implement the SNN using the LIF neuron model 

due to its neuron-like threshold switching and artificial synapse properties [10].  

Another method to implement analog circuits is the use of CMOS technology. CMOS-based 

neuromorphic chips have successfully simulated functions of neurons and synapses but are limited 

due to their insufficient on-chip memory that results in the inability of storing weights and 

implementing a large-scale neural network. In addition, the DRAM off-chip storage used requires a 

great amount of power consumption. However, CMOS technology and devices that CMOS 

compatible are continuously being researched and developed as they are low in production cost, 

computationally efficient and have a high-density integration. In addition, they are extremely reliable 

and stable, allowing neuromorphic devices to operate for extended periods of time without 

compromising their performance [11,12].  

ReRAM device is a good alternative to tackle the limitations that are introduced by CMOS 

devices. They offer advantages such as low programming voltage, fast switching speed, high 

integration density and excellent performance scalability. However, they still experience inherent 

sneak-path leakage, signal noise and limited conductance states which reduce computational 

accuracy. ReRAM devices can achieve the synaptic function of STDP [12].  

3.2. Digital Design 

Digital design can be implemented using FPGAs, ASICs or heterogeneous system combining 

CPUs and GPUs. Overall, digital implementations are more flexible and cost effective for processing 
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large-scale SNN models compared to Analog implementations. Digital hardware represents all 

variables of neurons using bits and the bit precision is influenced by the energy consumption and 

memory requirements, thus indicating that the precision of variables is controllable and guaranteed. 

FPGAs may be more suitable for the application compared to ASICs or CPUs/GPUs due to their 

shorter design and implementation time and excellent stability. The possibility of utilizing a single 

FPGA device to implement an SNN can result in speed enhancement and lower power consumption. 

In addition, FPGAs support parallel processing which is essential for neuromorphic computing and 

contain sufficient space in the local memory for weight storing. A study [6] demonstrated that FPGA 

hardware using a complex network with a large number of filters and convolutional layers is able to 

process one image per second by implementing SNNs in real-time. Whilst a CPU with a much simpler 

network can process one image per minute. However, FPGA implementations remain to have some 

limitations such as its time-consuming implementation of neural networks compared to CPUs and 

GPUs. CPUs and GPUs are more widely used in neural networks due to their low programmability 

[6]. Heterogenous systems are more beneficial than individually using CPUs or GPUs as CPUs 

provide flexibility in programming but are unable to handle large-scale SNN computations, slowing 

down their performance and requiring longer training periods. While GPUs excel in parallel 

processing and can handle large-scale SNN computations at a high training speed and inference 

processes. However, as stated above, their downside is their high energy consumption [14].    

3.3. Mixed Design 

Mixed design incorporating digital and analog implementations can overcome the limitations 

that are introduced by analog hardware. Analog systems can be used for neuromorphic computing; 

however, the synaptic weights are stored in a digital memory for reliability and longer duration. In 

addition, digital communication can be utilized within the chip through the generation of digital 

spikes [8]. 

4. Machine Learning Algorithms 

4.1. Supervised Learning 

Supervised learning trains data using well-labelled training datasets and can be divided into 

two steps: regression and classification. Regression is the identification of the relationship between 

the dependent and independent variables. While classification is categorizing the output variables 

which is used to then predict the output’s label [16]. Implementation of supervised learning is less 

commonly used for neuromorphic computing as it requires complex neurons and synaptic models 

or floating-point values communication of gradients between layers and neural cores. As a result, its 

hardware implementation is complex. Common supervised algorithms are backpropagation and 

gradient descent. They are successful methods for traditional artificial neural networks, however, are 

challenging when training SNNs due to the nondifferentiable nature of spike events. Both algorithms 

provide less efficiency and stability when computing complex algorithms as they require adaptations 

due to their lack of direct mapping to the SNNs [4,6]. Alternative approaches for using 

backpropagation is mapping a pre-training deep neural network and then converting it into an SNN 

which achieved substantial state-of-the-art performance [4]. In addition, Backpropagation is not 

suitable for memristor-based hardware as they do not have the ideal device properties which include 

limited endurance, non-linear conductance modulation and device variability. In addition, 

continuous and incremental learning is not possible with back-propagation algorithms [13]. 
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Figure 6. Backpropagation algorithm network structure [4]. 

4.2. Unsupervised Learning  

Unsupervised learning trains data without a labelled dataset and is typically used to identify 

hidden patterns from the data. It can be divided into two steps: clustering and association. Clustering 

is the grouping of similar entities together while association is the determining of relations between 

the variables or features of the dataset [16]. Unsupervised learning algorithms include Spike-timing-

dependent plasticity (STDP) and Voltage-Dependent Synaptic Plasticity (VDSP).  

STDP is the most implemented algorithm in spiking neuromorphic systems as it is inspired by 

brain function and is straightforward to implement specially using analog hardware. It allows fast 

real-time, online, and asynchronous learning without compromising its computational complexity 

[3,6,18]. STDP operates by adjusting the weights on the relative spike timings from pre- and post-

synaptic neurons [4]. Synapses are strengthened upon receival of spikes before generation of neurons 

and weakened if spikes are received after generation of neurons. STDP allows local learning which 

reduces the amount of global data transfer operations and has the capability to train an unlimited 

size of network [7]. A hybrid system consisting of CMOS neurons and memristive synapses to achieve 

an STDP can result in accelerating neuromorphic computing and providing a high-density 

connection and efficient implementation of matrix-vector multiplication [8]. 

 

Figure 7. Spike-timing dependent plasticity architecture where the weights are adjusted based on the 

spike timings of the pre-synaptic neurons (i) and post-synaptic neurons (j) [4]. 

VDSP is proposed to overcome the two limitations of STDP where the first one is its requirement 

of storing precise spike times and traces in memory and used at every update to the processor. The 

added memory requirement in digital implementations of STDP is costly and is challenging in analog 

implementations due to the circuit area and power spent. The second limitation of STDP is its fixed 

time window which must include the spike time difference between post and pre-synaptic neurons 

in order to update the weight accordingly. Good performance is achieved only upon optimizing the 

region of the time windows based on the temporal dynamics of the spike signals. It is challenging to 

choose the appropriate STDP time window as well as to design flexible circuits to accommodate the 

time window. VDSP does not include a fixed time window to update the weights and can be easily 

incorporated into in-memory computing hardware by preserving local computing. Rather than using 

spike timings to evaluate the correlation between pre and post neurons, VDSP relies on the 

membrane potential of a pre-synaptic neuron. Using the LIF SNN model for VDSP can exhibit 
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exponential decay from its membrane potential and relay information about the neuron’s spike time. 

A high membrane potential indicates that a neuron is about to fire, while a low membrane potential 

indicates that a neuron has already been fired [20].   

4.3. Reinforcement Learning 

Reinforcement learning is a long-term iterative algorithm that learns from previous experiences 

or feedback without using any labelled datasets. Its accuracy increases with the amount of feedback 

received. Implementing reinforcement learning for bio-inspired hardware such as neuromorphic 

chips remain to be a challenge [16]. A study used reinforcement learning with Reward-Modulated 

STDP (R-STDP) which is a three-factor learning rule that can achieve the same effect as STDP which 

is identifying the correlations between pre and post-synaptic neurons, but it can also capture reward, 

which represents the progress of learning in any given iteration [21]. Further development and 

progress on R-STDP can be a beneficial algorithm and help realize the overall performance of the 

system.   

5. Neuromorphic Projects 

There are various neuromorphic projects implemented in industry or in academia. They each 

include different implementation methods, either digital or analog, include on-chip learning or 

external learning and have different features. A study by Ivanov, et al. provided a summary of all 

projects as demonstrated in Table 1 [7]. Comparing the properties of each project, it is observed that 

in-memory computations has not been implemented using digital design as they require data 

exchange between the arithmetic logic unit (ALU) and memory cells, introducing complexities and 

added costs. This limitation can be resolved as done by Loihi and TrueNorth projects by using more 

SRAM memory to move the memory closer to computing [7]. 

Table 1. Summary of neuromorphic project properties [7]. 

Property TrueNorth Loihi 

In-memory Computation Near-memory Near-memory 

Signal Spikes Spikes 

Size neurons/synapses 1M/256M 128K/128M 

On-device learning No STDP 

Analog No No 

Event-based Yes Yes 

nm 28 14 

Features 
First industrial neuromorphic 

chip without training (IBM) 

First neuromorphic chip with 

training (Intel) 

Property Loihi2 Tianjic 

In-memory Computation Near-memory Near-memory 

Signal Real numbers, Spikes Real numbers, Spikes 

Size neurons/synapses 120K/1M 40K/10M 

On-device learning STDP No 

Analog No No 

Event-based Yes Yes 

nm 7 28 

Features 
Non-binary spikes, neurons 

can be programmed 
Hybrid chip 

Property SpiNNaker Brain-ScaleS 

In-memory Computation Near-memory Yes 

Signal Real numbers, Spikes Real numbers, Spikes 

Size neurons/synapses - 512/130K 

On-device learning STDP STDP 
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Analog No Yes 

Event-based No Yes 

nm 22 65 

Features 
Scalable computer for SNN 

simulation 
Analog neurons, large size 

   

Property GrAIOne Akida 

In-memory Computation Near-memory Near-memory 

Signal Real numbers, Spikes Spikes 

Size neurons/synapses 200K/- 1.2M/10B 

On-device learning No STDP 

Analog No No 

Event-based Yes Yes 

nm 28 28 

Features 

NeuronFlow architecture, 

effective support of sparse 

computations 

Incremental, one-shot and 

continuous learning for CNN 

Property Memristor (IBM)  

In-memory Computation Yes  

Signal Spikes  

Size neurons/synapses 512/64K  

On-device learning Yes  

Analog Yes  

Event-based Yes  

nm 50  

Features 
Allows each synaptic cell to 

operate asynchronously 

 

6. Proposed Method and Future Work 

Designing a heterogenous quantum neuromorphic computing system can further enhance 

performance and reduce energy consumption in artificial neurons. Quantum computing processes 

information based on principles of quantum mechanics, allowing for simultaneous parallel 

computations of different possibilities. Information is represented using quantum bits, also known 

as qubits, which uses the principle of superposition, existing in multiple states (0 and 1). Use of 

quantum computing and materials can leverage the excellent pattern recognition capabilities of 

neuromorphic computing while reducing its overall power consumption. However, implementing 

quantum neural networks directly in hardware poses a challenge due to the need for precise control 

over connection strengths. Quantum coherence is susceptible to dissipation and dephasing, making 

hardware implementation complex. In addition, large spatial variation in heating and temperature 

can occur in this heterogenous system. Further research is required regarding these limitations to 

enable the system to successfully operate [22,23].    

In our previous work [24], we set out an architecture to achieve efficient processing of neural 

networks through neuromorphic processing. The NeuroTower is effectively a 2D, mesh connected 

network-on-chip integrated with stacks of DRAM integrated on top for 3D stacked memory. This 

architecture employs programmable neurosequence generators, which act as a medium of 

communication in the system to aid with the retrieval of data between the DRAM stacks and 

processing elements. Our research introduces a pruning component to exploit sparsity and reduce 

network-on-chip traffic, a significant source of power consumption in many hardware accelerators. 

The pruning unit prevents ineffectual operations from being executed and leaves only the effectual 

data required for processing.  

In NeuroTower, the memory is integrated as a stack of multiple DRAM chips each separated 

into 16 partitions. Along one column of partitions is a vault as shown in Figure 8 below. Each of these 
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vaults has an associated vault controller which controls data movement in and out of the vaults to 

other elements of the NeuroTower. Each vault is connected to one processing element to allow for 

parallel processing and these connections are realized by using high speed through silicon vias 

(TSVs) [25]. The DRAM stack is crucial to the operation of the system as all the information for 

processing is contained here. Every layer of the neural network, their states, and connectivity weights 

are stored in the vaults of the DRAM. This implies that the data movement paths are known before 

beginning processing. To make use of this, the paths are compiled into finite state machine 

descriptions which drive the programmable neurosequence generators (PNG) [6]. To initiate 

processing the host must load these state machine descriptions into the PNG which begins the data-

driven processing of each layer of the neural network. 

 

Figure 8. NeuroTower architecture with depiction of stacked memory. 

7. Conclusions 

With further advancements in neuromorphic computing which include large-scale 

implementations and on-chip learning, they have the potential to replace current Von-Neumann 

computers for running complex algorithms. Their power efficiency and learning capabilities allow 

them to drastically enhance the performance of a system. Future research needs to be completed 

regarding optimizing neuromorphic chip properties and learning techniques and using them for a 

wide range of applications, rather than only one specified application. Adopting a digital or mixed-

design hardware approach for running complex AI algorithms with a NeuroTower architecture 

coupled with quantum computing can result in a flexible computing system with large memory, 

enhanced performance and speed, while reducing energy consumption.    
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