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Abstract: Neuromorphic computing, a brain inspired non-Von Neumann computing system,
addresses the challenges posed by the Moore’s law memory wall phenomenon. It has the capability
to increasingly enhance performance while maintaining power efficiency. Neuromorphic chip
architecture requirements vary depending on the application and optimizing it for large-scale
applications remains to be a challenge. Neuromorphic chips are programmed using spiking neural
networks which provide them with important properties such as parallelism, asynchronism, and
on-device learning. Widely used spiking neuron models include the Hodgkin-Huxley Model,
Izhikevich model, integrate-and-fire model and spike response model. Hardware implementation
platforms of the chip follow three approaches: analog, digital, or a combination of both. Each
platform can be implemented using various memory topologies which interconnects with the
learning mechanism. Current neuromorphic computing systems typically use the unsupervised
learning spike timing-dependent plasticity algorithms. However, algorithms such as voltage-
dependent synaptic plasticity have the potential to enhance performance. This review summarizes
the potential neuromorphic chip architecture specifications and highlighting which applications
they are suitable for.

Keywords: neuromorphic computing architecture; neuromorphic computing learning; spiking
neural networks; non-von neumann computer; brain-inspired chip

1. Introduction

Artificial intelligence (Al) is a continuously emerging field that is commonly used for various
applications and purposes. Conventional technologies used for running complex Al algorithms
utilize Von Neumann computers which have a high rate of power consumption and cause a carbon
emission problem. As stated in article [1], training a single deep learning (DL) model can equate to
the same amount of total lifetime carbon footprint of five cars and has approximately 656,347
kilowatt-hours of energy consumption [1]. In addition, recent advancements in computing speed and
capacity have reached a saturation level in performance due to the continuous application of Moore’s
law which resulted in the memory wall phenomenon. Moore’s law refers to the decrease in size of
transistors on digital integrated chips to achieve a faster performance. This also resulted in an increase
of data movement and as computational speed continuously increased, memory performance overall
remained the same leading to the memory wall phenomenon and saturations of the system’s
performance [2]. As Al algorithms continue to evolve a new technology that meets the high
performance, energy efficiency and large bandwidth requirements is needed [3]. Neuromorphic
computing, which is a brain-inspired computing system has the capability to increasingly enhance
performance at a decreasing level of power consumption. Neuromorphic computers are non-Von
Neumann computers which are composed of neurons and synapses as opposed to separate CPUs
and memory units [4].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Neuromorphic chips are programed using spiking neural networks (SNNs) which provide a
more energy efficient, computationally powerful network and fast and massively parallel data
processing compared to artificial neural networks (ANNSs). They are implemented using one of the
four main spiking neuron models (shown in Figure 1) which include the Hodgkin-Huxley (HH)
model, Izhikevich model, integrate-and-fire (IF) model and spike response model (SRM). These
models closely exhibit biological neurons characteristics and behaviours [5,6]. In neuromorphic
computing, various architectures can be developed based on the hardware implementation platform,
network topologies, and neural models. Hardware implementation platforms follow three
approaches: analog, digital, and a combination of both, as depicted in Figure 2. The subsections of a
neuromorphic unit include the computational unit (neural model), the information storage unit
(synaptic model), the communication unit (dendrites and axons), and the learning mechanism
(weights update). Considering the advantages of both digital and analog implementation methods,
they can be combined or used separately to implement the subsections of neuromorphic computing
hardware. Additionally, various memory technologies can be employed in both analog and digital
systems for two important reasons: synaptic plasticity (non-volatile information storage) and weight
updates (fast read and write capabilities), as presented in Figure 2.

Spiking Neuron Models
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Figure 1. Four main spiking neuron models used in neuromorphic chips.
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Figure 2. Neuromorphic architecture characterization diagram.

An analog device for neuromorphic computing is a more cost-effective approach compared to
digital design and can provide in memory computing but lacks flexibility. In a digital
implementation, data exchange is required between the Arithmetic Logic Unit (ALU) and memory
cells making its implementation at a large-scale challenging. However, a digital implementation has
the ability to implement almost any learning algorithm and allows for more customization and
flexibility [7]. A mixed design approach which includes the advantages of both analog and digital
implementation can overcome several limitations. Digital communication stored in the form of digital
spikes can be utilized for analog neuromorphic systems, increasing the duration of storage of the
synaptic weights and the reliability of the system [8].

Analog circuits for neuromorphic computing can be implemented using Memristors, CMOS or
Resistive RAM. Memristors are an emerging memory device with a memristive memory and have a
fast operation speed, low energy consumption and small feature size. They have a switching
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mechanism between states through programming pulses. They can be classified into nonvolatile and
volatile types, where the nonvolatile is capable in developing in-memory computing and the volatile
is typically utilized for synapse emulators, selectors, hardware security and artificial neurons [9,10].
Complementary metal oxide semiconductor (CMOS) transistors have been successfully used to
implement neurons and synapses for neuromorphic architecture. In addition, they are widely used
for large-scale spiking neural networks (SNNs) [11]. Lastly, resistive access memory (ReRAM) is a
two-terminal nanodevice that is promising for neuromorphic computing as it can enable highly
parallel, ultra-low-power computing in memory for Al algorithms. It is structurally simple and thus
can be easily integrated into the system at a low power consumption [12].

A digital implementation of neuromorphic architecture can be completed through the use of
FPGAs, ASIC or a heterogenous system composed of CPUs and GPUs. Field-programmable gate
arrays (FPGAs) provide several advantages for neuromorphic computing which include flexibility,
high performance and reconfiguration capability and excellent stability. In addition, they can
implement SNNs due to their parallel processing ability and sufficient size of local memory to restore
weights. Recent implementations of FPGA-based neuromorphic systems utilize random access
memory (RAM) to optimize the latency of memory access [6]. Application Specific Integrated Circuit
(ASIC) implementations of neuromorphic systems are less flexible, have a higher production cost
compared to FPGA and are limited to specific neuron models and algorithms [6,8]. However, ASIC
provides low power consumption and a high-density local memory which are attractive features for
neuromorphic systems development [13]. Modern ASICs include flash memory as they have a long
retention time (>10 years). Flash memory has a three-terminal structure, is charge-based and a
nonvolatile memory [5]. A heterogenous system architecture composed of both Central Processing
Units (CPUs) and Graphics Processing Units (GPUs) for neuromorphic computing can provide
flexibility in the programming due to the CPUs as well as parallel processing and accelerated
computing due to the GPUs [14]. However, they cannot be easily scaled due to their high energy
demands [13]. RAM or ReRAM can be utilized for the heterogenous system to store the weights [15].

As illustrated in Figure 3, there are three main different machine learning methods that are
commonly used: supervised learning, unsupervised learning, and reinforcement learning [6]. Non-
machine learning methods are less common but can also be used for neuromorphic computing for
applications that solve a particular task [4]. Learning mechanisms are an essential step for developing
neuromorphic systems as they are used to adapt to the specified application. On-chip training is
extremely desired for many applications and refers to learning in a neuromorphic chip. Off-chip
training is when learning is implemented externally through software for example and the weights
are then postprocessed and used to fabricate the neuromorphic system [6].

Neuromorphic
Computing Learning
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Figure 3. Neuromorphic computing learning methods characterization diagram.

Supervised learning is the training of data using labelled datasets and can be divided into
backpropagation and gradient descent algorithms. Unsupervised learning is the training of data with
an unlabeled dataset and can be divided into STDP and VDSP algorithms. Lastly, Reinforcement
learning is when the machine learning algorithm learns from experiences and feedback without any
labelled data. It is an iterative long-term process and can be divided into Q-learning and DQN
algorithms [16].

Neuromorphic computing can be used for various applications and industries which include
medical, large-scale operations and product customization, artificial intelligence, and imaging. Its
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design parameters ultimately depend on the desired application and several companies have
implemented a neuromorphic chip each with different architectures to solve different tasks [16] This
review focuses on the various possible neuromorphic chip architectures and their capabilities.

2. Background

Neuromorphic chips consist of artificial neurons and synapses to achieve similar functions to
the human brain. There are 10 — 10" neurons in the human brain that each have 10* synaptic
connections operating simultaneously and communicating with each other through spike signals.
The human brain inspired the development of this chip due to its ability to perform high-order
intelligence tasks at a low energy consumption rate [5]. Neuromorphic chips are defined as non-von
Neumann due to the governing of both processor and memory by neurons and synapses and
reception of inputs as spikes. They have a parallel operation and are asynchronous (event-driven).
Controversy, Von Neumann computers are composed of separate CPUs and memory units, and
information is encoded as numerical values. They perform sequential processing and are
synchronous (clock-driven) [4]. The main differences between Von Neumann architecture and
Neuromorphic architecture are illustrated in Figure 4.

Von Neumann Architecture

Binary Input Binary Output

VS

Neuromorphic Architecture

Spike Input Neural Network Spike Output

(Neurons and synapses for
both processing and memory)

Figure 4. Von Neumann architecture versus Neuromorphic architecture.

Neuromorphic chips provide various advantages over current Von Neumann computers due to
their operations properties which include:

e  Connectionism: is described using neural networks (NN) which consist of many simple units
(neurons) interconnected together with weights. Determining the appropriate weights results in
the NN ability to learn and solve a given problem [7].

e Parallelism: all neurons work in parallel to each other to simultaneously perform various
functions and ensure efficient and successful operation of neural networks [7].

e Asynchrony: to achieve parallelism, synchronization of all neurons is not required as each
neuron performs a specified task. Asynchrony reduces the power consumption that would
otherwise be required to achieve synchronization [7].

¢ Impulse nature of information transmission: the information encoded as spikes differs between
different pairs of neurons and does not occur instantly. A synapse is therefore characterized by
the weight and time delay and provides advantages over traditional neural networks. It is
asynchronous, allows the use of dynamic data due to its inclusion of the time component, it is a
complex non-linear dynamic system, and the neuron is only activated upon the receival of a
spike, reducing the power consumption as its inactive state does not consume a large amount of

energy [7].
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e  On-device learning; it has the ability to learn in a continuous and incremental manner which in
turn allows the customization and personalization of smart devices based on the user needs
while maintaining privacy through the avoidance of user data transmission to the cloud [7].

e Local learning: conventional neural networks use backpropagation algorithms which introduce
two problems: the weight transport problem and the update locking problem. The weight
transport problem is the system’s inability to exchange information about the weight value and
the update locking problem is the requirement of forward pass activation values to be stored for
backward pass. Local learning is an alternative to backpropagation and uses a Spike timing
Dependent Plasticity (STDP) model where the synapses are strengthened upon receival of a
spike before the neuron generated the spike or weekend if the spike was received after the
neuron generated the spike. As a result, local learning can train any size of network as it does
not require large amounts of global data transfer operations [7].

e  Sparsity: not all neurons are activated to perform a task. Neuromorphic chips have temporal,
spatial and structural sparsity. Temporal sparsity is the data sparse in time which is determined
by the transmission of only the changed part of a signal. Spatial sparsity is sparsity in data
streams resulted by neurons activated only upon reaching a certain threshold value. Structural
sparsity refers to the data flow with respect to the network topology, as each neuron has a limited
number of connections, and they are not all fully interconnected together [7].

e Analog computing: digital computing is limited due to its high costs. Analog circuits can be
used to model the dynamics of the membrane potential and to model synaptic operations.
Analog circuits provide a more time and energy efficient alternative.

e In-memory computing: each individual neuron has its own memory or stored state which
eliminates the need for transferring intermediate data or the competitive memory access [7].

2.1. Spiking Neural Networks (SNN)

Neuromorphic chips are programed using spiking neural networks (SNNs) rather than artificial
neural networks (ANNs) due to their biological functionalities and employment of biological neuron
models such as the integrate-and-fire model, leaky integrate-and-fire (LIF) model, and Izhikevich
model which all allow the communication between neurons through the generation of spike signals
[5]. SNNs provide a more energy efficient, computationally powerful network and fast and massively
parallel data processing for neuromorphic chips compared to ANNs. They are implemented using
differential equations and have memory while ANNSs are implemented using activations functions
and have no memory [6]. The spike signals sent to a neuron accumulate in the neuron membrane
potential and the signal is passed to other connected neurons only when the membrane potential
reaches a certain threshold [5]. A charge leakage that dissipated overtime can occur if the threshold
is not reached. In addition, outgoing synapses can be affected due to axonal delays which in turn
results in information delay. Figure 5 illustrates the pre-synaptic and post-synaptic neurons
connected by the synapses which carry the associated weight value. The weight value is excitatory if
positive or inhibitory if negative. The synapses are trained using the selected learning mechanisms
to alter the weights and activate the synapse only when needed. SNNs are organized into layers and
their capability to transmit information at different times is known as the asynchronous function of
neuromorphic chips which aids in reducing power consumption [4].
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Figure 5. Example of SNN and information transmission between neurons through synapses.

challenging to implement on classical von Neumann architecture (CPUs/GPUs) due to the large
demands of power and time. Hence, FPGA or ASICs which can offer a high-speed and low-power
hardware implementations of SNNs are a good alternative for large-scale implementations [6]. Other
implementations are completed using memristors combined with STDP [7].

2.2. Spiking Neuron Models

Four popular and widely used spiking neuron models include the Hodgkin-Huxley (HH)
model, Izhikevich model, integrate-and-fire (IF) model and spike response model (SRM). These
models closely exhibit biological neurons characteristics and behaviours. While ANN models include
sigmoid, rectified linear unit (ReLU) or tanh, which are computation units [6].

The first developed model of a spiking neuron is the HH model. It described the initiation and
propagation of action potentials of a neuron and describes the mathematical description of electric
current through the membrane potential. It is the most accurate model in terms of mimicking real
neurons; however, it is computationally expensive with a requirement of approximately 1200
floating-point computations (FLOPS) per 1 ms of simulation. Therefore, this model is hard to
implement for large-scale neural network simulations. The second proposed model is the Izhikevich
model which is two-dimensional, offering a good trade-off between biological plausibility and
computational efficiency. It requires only 13 FLOPs per 1 ms of simulation making it a better
alternative for implementing a large-scale neural network. The IF model is a simple model that
generates an output spike upon reaching a defined threshold. The LIF model is a type of IF neuron
model with an addition of a leak to the membrane potential. LIF requires only 5 FLOPS making it the
model with the lowest computational cost and widely used due to its added benefits of accuracy in
mimicking the spiking behaviour of biological neurons and simulation speed. It is extremely suitable
for large-scale network simulation and is commonly used for analog hardware implementations due
to its ease of integration and modeling using transistors and capacitors. However, they are
challenging to use for machine intelligence applications as the role of different firing patterns in
learning and cognition is unclear and additional adaptation variables increase the model’s
complexity [6,8]. Lastly, the SRM uses response kernels (filters) rather than differential equations to
achieve similar behaviours to the LIF model, where the output spike is generated upon internal
membrane potential reaching the threshold. It requires 50 FLOPS per 1 ms simulation which is higher
than the previous two models but is still considered as low computation cost. In addition, it provides
a less accurate representation of a neuron biologically compared to the HH model and is
computationally complex if implemented digitally. Analog implementations of the SRM are less
complex and can be done using charging and discharging RC circuits [6].
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2.3. SNN Testing

Neuromorphic computing is an emerging field with a limited number of datasets that can be
used to assess its performance. As each chip is designed for a specific application or task and it is not
widely versatile, assessing its overall performance can be a challenge. A study [17] developed an on-
line testing methodology for neuromorphic hardware that can detect real-time abnormal operations
due to hardware level faults. It can assess the confidence in the SNN prediction using a lightweight
and non-intrusive on-die symptom detector that operated in parallel with the SNN. It determines
whether the running input will be correctly predicted by the SNN using a system of two classifiers:
strict and lenient. If both classifiers agree then it outputs a high confidence decision, otherwise, the
test decision has low confidence. The algorithm was tested on an FPGA-based neuromorphic
hardware platform and achieved a trustworthy operation with zero-latency transparent decisions for
over 99.6% of the SNN inferences [17].

3. Neuromorphic Circuit Design
3.1. Analog Design

There are three main types of analog implementations of neuromorphic chips: memristors,
CMOS and resistive RAM. Memristors, also known as resistive memory devices apply the working
principle of causing a chance of resistance due to a modification of the material at the atomic level.
They can include resistive-switching random access memory (RRAM), phase-change memory (PCM),
magnetic random-access memory (MRAM) or the ferroelectric random access memory (FeRAM).
Their design depends on the required parameters of the application [13]. Memristors offer
characteristics similar to biological synapses that have various advantages for neuromorphic chips
such as in-memory computation, power efficiency, fast operational speed and small feature size
[10,18]. A single-layer configuration of a memristor includes a memory density of up to 4.5 terabits
per square inch. Memristors can be categorized into non-volatile memory switching (MS) and volatile
threshold switching (TS). Non-volatile MS offers high-density memory and in-memory computing.
While volatile TS is useful for synapse emulators, selectors, hardware security and artificial neurons.
Bifunctional memristors are optimal for neuromorphic chips. They include functions of both volatile
and non-volatile memristors to mimic functions of artificial synapses and neurons. However, the
downside is the large storage windows required which are not guaranteed, alongside the endurance
and simultaneous implementations of functions. Versatile memristors for multi-function circuits are
yet to be successfully developed. Memristors can implement the SNN using the LIF neuron model
due to its neuron-like threshold switching and artificial synapse properties [10].

Another method to implement analog circuits is the use of CMOS technology. CMOS-based
neuromorphic chips have successfully simulated functions of neurons and synapses but are limited
due to their insufficient on-chip memory that results in the inability of storing weights and
implementing a large-scale neural network. In addition, the DRAM off-chip storage used requires a
great amount of power consumption. However, CMOS technology and devices that CMOS
compatible are continuously being researched and developed as they are low in production cost,
computationally efficient and have a high-density integration. In addition, they are extremely reliable
and stable, allowing neuromorphic devices to operate for extended periods of time without
compromising their performance [11,12].

ReRAM device is a good alternative to tackle the limitations that are introduced by CMOS
devices. They offer advantages such as low programming voltage, fast switching speed, high
integration density and excellent performance scalability. However, they still experience inherent
sneak-path leakage, signal noise and limited conductance states which reduce computational
accuracy. ReRAM devices can achieve the synaptic function of STDP [12].

3.2. Digital Design

Digital design can be implemented using FPGAs, ASICs or heterogeneous system combining
CPUs and GPUs. Overall, digital implementations are more flexible and cost effective for processing
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large-scale SNN models compared to Analog implementations. Digital hardware represents all
variables of neurons using bits and the bit precision is influenced by the energy consumption and
memory requirements, thus indicating that the precision of variables is controllable and guaranteed.
FPGAs may be more suitable for the application compared to ASICs or CPUs/GPUs due to their
shorter design and implementation time and excellent stability. The possibility of utilizing a single
FPGA device to implement an SNN can result in speed enhancement and lower power consumption.
In addition, FPGAs support parallel processing which is essential for neuromorphic computing and
contain sufficient space in the local memory for weight storing. A study [6] demonstrated that FPGA
hardware using a complex network with a large number of filters and convolutional layers is able to
process one image per second by implementing SNNs in real-time. Whilst a CPU with a much simpler
network can process one image per minute. However, FPGA implementations remain to have some
limitations such as its time-consuming implementation of neural networks compared to CPUs and
GPUs. CPUs and GPUs are more widely used in neural networks due to their low programmability
[6]. Heterogenous systems are more beneficial than individually using CPUs or GPUs as CPUs
provide flexibility in programming but are unable to handle large-scale SNN computations, slowing
down their performance and requiring longer training periods. While GPUs excel in parallel
processing and can handle large-scale SNN computations at a high training speed and inference
processes. However, as stated above, their downside is their high energy consumption [14].

3.3. Mixed Design

Mixed design incorporating digital and analog implementations can overcome the limitations
that are introduced by analog hardware. Analog systems can be used for neuromorphic computing;
however, the synaptic weights are stored in a digital memory for reliability and longer duration. In
addition, digital communication can be utilized within the chip through the generation of digital
spikes [8].

4. Machine Learning Algorithms
4.1. Supervised Learning

Supervised learning trains data using well-labelled training datasets and can be divided into
two steps: regression and classification. Regression is the identification of the relationship between
the dependent and independent variables. While classification is categorizing the output variables
which is used to then predict the output’s label [16]. Implementation of supervised learning is less
commonly used for neuromorphic computing as it requires complex neurons and synaptic models
or floating-point values communication of gradients between layers and neural cores. As a result, its
hardware implementation is complex. Common supervised algorithms are backpropagation and
gradient descent. They are successful methods for traditional artificial neural networks, however, are
challenging when training SNNs due to the nondifferentiable nature of spike events. Both algorithms
provide less efficiency and stability when computing complex algorithms as they require adaptations
due to their lack of direct mapping to the SNNs [4,6]. Alternative approaches for using
backpropagation is mapping a pre-training deep neural network and then converting it into an SNN
which achieved substantial state-of-the-art performance [4]. In addition, Backpropagation is not
suitable for memristor-based hardware as they do not have the ideal device properties which include
limited endurance, non-linear conductance modulation and device variability. In addition,
continuous and incremental learning is not possible with back-propagation algorithms [13].
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Input Layer Hidden Layers Output Layer
Figure 6. Backpropagation algorithm network structure [4].

4.2. Unsupervised Learning

Unsupervised learning trains data without a labelled dataset and is typically used to identify
hidden patterns from the data. It can be divided into two steps: clustering and association. Clustering
is the grouping of similar entities together while association is the determining of relations between
the variables or features of the dataset [16]. Unsupervised learning algorithms include Spike-timing-
dependent plasticity (STDP) and Voltage-Dependent Synaptic Plasticity (VDSP).

STDP is the most implemented algorithm in spiking neuromorphic systems as it is inspired by
brain function and is straightforward to implement specially using analog hardware. It allows fast
real-time, online, and asynchronous learning without compromising its computational complexity
[3,6,18]. STDP operates by adjusting the weights on the relative spike timings from pre- and post-
synaptic neurons [4]. Synapses are strengthened upon receival of spikes before generation of neurons
and weakened if spikes are received after generation of neurons. STDP allows local learning which
reduces the amount of global data transfer operations and has the capability to train an unlimited
size of network [7]. A hybrid system consisting of CMOS neurons and memristive synapses to achieve
an STDP can result in accelerating neuromorphic computing and providing a high-density
connection and efficient implementation of matrix-vector multiplication [8].

Aw o< f{e(i}, t{jh)

Figure 7. Spike-timing dependent plasticity architecture where the weights are adjusted based on the
spike timings of the pre-synaptic neurons (i) and post-synaptic neurons (j) [4].

VDSP is proposed to overcome the two limitations of STDP where the first one is its requirement
of storing precise spike times and traces in memory and used at every update to the processor. The
added memory requirement in digital implementations of STDP is costly and is challenging in analog
implementations due to the circuit area and power spent. The second limitation of STDP is its fixed
time window which must include the spike time difference between post and pre-synaptic neurons
in order to update the weight accordingly. Good performance is achieved only upon optimizing the
region of the time windows based on the temporal dynamics of the spike signals. It is challenging to
choose the appropriate STDP time window as well as to design flexible circuits to accommodate the
time window. VDSP does not include a fixed time window to update the weights and can be easily
incorporated into in-memory computing hardware by preserving local computing. Rather than using
spike timings to evaluate the correlation between pre and post neurons, VDSP relies on the
membrane potential of a pre-synaptic neuron. Using the LIF SNN model for VDSP can exhibit


https://doi.org/10.20944/preprints202407.0130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 July 2024

d0i:10.20944/preprints202407.0130.v1

10

exponential decay from its membrane potential and relay information about the neuron’s spike time.
A high membrane potential indicates that a neuron is about to fire, while a low membrane potential
indicates that a neuron has already been fired [20].

4.3. Reinforcement Learning

Reinforcement learning is a long-term iterative algorithm that learns from previous experiences
or feedback without using any labelled datasets. Its accuracy increases with the amount of feedback
received. Implementing reinforcement learning for bio-inspired hardware such as neuromorphic
chips remain to be a challenge [16]. A study used reinforcement learning with Reward-Modulated
STDP (R-STDP) which is a three-factor learning rule that can achieve the same effect as STDP which
is identifying the correlations between pre and post-synaptic neurons, but it can also capture reward,
which represents the progress of learning in any given iteration [21]. Further development and
progress on R-STDP can be a beneficial algorithm and help realize the overall performance of the
system.

5. Neuromorphic Projects

There are various neuromorphic projects implemented in industry or in academia. They each
include different implementation methods, either digital or analog, include on-chip learning or
external learning and have different features. A study by Ivanov, et al. provided a summary of all
projects as demonstrated in Table 1 [7]. Comparing the properties of each project, it is observed that
in-memory computations has not been implemented using digital design as they require data
exchange between the arithmetic logic unit (ALU) and memory cells, introducing complexities and
added costs. This limitation can be resolved as done by Loihi and TrueNorth projects by using more
SRAM memory to move the memory closer to computing [7].

Table 1. Summary of neuromorphic project properties [7].

Property TrueNorth Loihi
In-memory Computation Near-memory Near-memory
Signal Spikes Spikes
Size neurons/synapses 1M/256M 128K/128M
On-device learning No STDP
Analog No No
Event-based Yes Yes
nm 28 14
First industrial neuromorphic First neuromorphic chip with
Features L . .
chip without training (IBM) training (Intel)
Property Loihi2 Tianjic
In-memory Computation Near-memory Near-memory
Signal Real numbers, Spikes Real numbers, Spikes
Size neurons/synapses 120K/1M 40K/10M
On-device learning STDP No
Analog No No
Event-based Yes Yes
nm 7 28
Features Non-binary spikes, neurons Hybrid chip
can be programmed
Property SpiNNaker Brain-ScaleS
In-memory Computation Near-memory Yes
Signal Real numbers, Spikes Real numbers, Spikes
Size neurons/synapses - 512/130K
On-device learning STDP STDP



https://doi.org/10.20944/preprints202407.0130.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 July 2024

d0i:10.20944/preprints202407.0130.v1

11
Analog No Yes
Event-based No Yes
nm 22 65
Scalable computer for SNN .
Features . _ Analog neurons, large size
simulation
Property GrAlIOne Akida
In-memory Computation Near-memory Near-memory
Signal Real numbers, Spikes Spikes
Size neurons/synapses 200K/- 1.2M/10B
On-device learning No STDP
Analog No No
Event-based Yes Yes
nm 28 28
NeuronFlow architecture,
Features effective support of sparse Incremental, one-shot and
. continuous learning for CNN
computations
Property Memristor (IBM)
In-memory Computation Yes
Signal Spikes
Size neurons/synapses 512/64K
On-device learning Yes
Analog Yes
Event-based Yes
nm 50
Features Allows each synaptic cell to

operate asynchronously

6. Proposed Method and Future Work

Designing a heterogenous quantum neuromorphic computing system can further enhance
performance and reduce energy consumption in artificial neurons. Quantum computing processes
information based on principles of quantum mechanics, allowing for simultaneous parallel
computations of different possibilities. Information is represented using quantum bits, also known
as qubits, which uses the principle of superposition, existing in multiple states (0 and 1). Use of
quantum computing and materials can leverage the excellent pattern recognition capabilities of
neuromorphic computing while reducing its overall power consumption. However, implementing
quantum neural networks directly in hardware poses a challenge due to the need for precise control
over connection strengths. Quantum coherence is susceptible to dissipation and dephasing, making
hardware implementation complex. In addition, large spatial variation in heating and temperature
can occur in this heterogenous system. Further research is required regarding these limitations to
enable the system to successfully operate [22,23].

In our previous work [24], we set out an architecture to achieve efficient processing of neural
networks through neuromorphic processing. The NeuroTower is effectively a 2D, mesh connected
network-on-chip integrated with stacks of DRAM integrated on top for 3D stacked memory. This
architecture employs programmable neurosequence generators, which act as a medium of
communication in the system to aid with the retrieval of data between the DRAM stacks and
processing elements. Our research introduces a pruning component to exploit sparsity and reduce
network-on-chip traffic, a significant source of power consumption in many hardware accelerators.
The pruning unit prevents ineffectual operations from being executed and leaves only the effectual
data required for processing.

In NeuroTower, the memory is integrated as a stack of multiple DRAM chips each separated
into 16 partitions. Along one column of partitions is a vault as shown in Figure 8 below. Each of these
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vaults has an associated vault controller which controls data movement in and out of the vaults to
other elements of the NeuroTower. Each vault is connected to one processing element to allow for
parallel processing and these connections are realized by using high speed through silicon vias
(TSVs) [25]. The DRAM stack is crucial to the operation of the system as all the information for
processing is contained here. Every layer of the neural network, their states, and connectivity weights
are stored in the vaults of the DRAM. This implies that the data movement paths are known before
beginning processing. To make use of this, the paths are compiled into finite state machine
descriptions which drive the programmable neurosequence generators (PNG) [6]. To initiate
processing the host must load these state machine descriptions into the PNG which begins the data-
driven processing of each layer of the neural network.

DRAM
Layers
Vault

Figure 8. NeuroTower architecture with depiction of stacked memory.

7. Conclusions

With further advancements in neuromorphic computing which include large-scale
implementations and on-chip learning, they have the potential to replace current Von-Neumann
computers for running complex algorithms. Their power efficiency and learning capabilities allow
them to drastically enhance the performance of a system. Future research needs to be completed
regarding optimizing neuromorphic chip properties and learning techniques and using them for a
wide range of applications, rather than only one specified application. Adopting a digital or mixed-
design hardware approach for running complex Al algorithms with a NeuroTower architecture
coupled with quantum computing can result in a flexible computing system with large memory,
enhanced performance and speed, while reducing energy consumption.
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