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Abstract: In this paper, we present a multi-task model that predicts disparities and confidence levels in deep
stereo matching simultaneously. We do this by combining its successful model for each separate task and
obtaining a multitask model that can be trained with a proposed loss function. We show the advantages of
this model compared to training and predicting disparity and confidence sequentially. This method enables an
improvement of 15% to 30% in the area under the curve (AUC) metric when trained parallel rather than sequential.
In addition, the effect of weighting the components in the loss function on the stereo and confidence performance
is investigated. By improving the confidence estimate, the practicality of stereo estimators for creating distance

images is increased.

Keywords: stereo vision; confidence; multi-task learning; uncertainty

1. Introduction

Stereo vision is a technology to determine the distance with two RGB cameras. A very high
accuracy can be achieved by a precise correspondence search between the two images. Reconstructing
the geometric configuration of a 3D environment is one of the fundamental and essential problems in
computer vision fields [1]. Over the years, researchers have developed a multitude of approaches to
tackle the task of stereo matching. These methods have encompassed both handcrafted techniques
[2-5] and machine learning-based approaches [6,7]. However, the complexity of the problem arises
from several challenging factors, including reflective surfaces, textureless regions, regions with re-
peated patterns, occlusions [8-10], as well as photometric deformations resulting from variations in
illumination and camera specifications [11,12]. However, an incorrect correspondence estimation can
result in a large error in distance determination, making it difficult to use stereo vision in practice.

In response to these challenges, there are two different points of view for recognizing errors in
stereo vision. The first is to consider a confidence interval, which indicates the probability that the
result is correct. In the second, the uncertainty can be considered as the expected error magnitude.
Both views are equally valid, we use the confidence view however, which is widely used in stereo
vision.[13] Methods for estimating confidence have been developed in parallel with stereo algorithms.
There are classical approaches [14-16] as well as those that employ neural networks for estimating the
confidence values. However, due to the focus on confidence estimation, stereo vision algorithms based
on neural networks are not used to evaluate the confidence methods.Today, deep end-to-end networks
outperform classical stereo methods for deriving dense disparity maps, so confidence estimation
should also be tested on stereo vision methods using neural networks rather than classical methods.

In this paper, a neural network is presented that combines the state of the art in stereo vision and
the confidence estimation of stereo vision. This network is capable of identifying stereo disparity and
the corresponding confidence maps. The combined training results is a significant improvement in the
confidence estimation compared to training the two parts separately. This is common practice in the use
of confidence networks such as the LAF-Net[17]. This method offers an advantage, as the component
of the network employed to estimate the disparity values is trained in a way to allow for a subsequent,
more accurate estimation of confidence. The network consists of already successfully tested network
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components from the AANet [18] as stereo part and from the LAF-Net for the confidence estimation.
The proposed network has high potential to advance the field of stereo vision and paving the way for
more robust and reliable applications.

2. Related Works

This section provides an overview of the most important related work in the field of stereo vision
and stereo confidence estimation.

2.1. Stereo Vision

In computer vision, stereo vision has made significant progress with the adoption of neural
networks. Initially, traditional algorithms were partly replaced with learning methods to enhance
the effectiveness of the widely used SGM (Semi Global Matching)[5] algorithm. One approach to
improve matching costs involves using neural networks to evaluate the matching score between a
pair of image matches. Notable examples of such networks are SGM-Net[19] and SGM-Forest[20].
DNet [21] was one of the first approaches that used the 2D architecture of U-Net [22] for stereo vision
inspired by the well-known segmentation networks. There are also later approaches [23,24] that
use a 2D architecture. Other stereo networks take their inspiration from the classic stereo pipeline.
Numerous works [25-28] used a 3D convolutional layer architecture. GC-Net [25] was one of the first
approaches to use continuous stereo adaptation with 3D convolutional layers. These frameworks first
map the images through a 2D convolution network to obtain dense representations of the features.
A 3D cost volume is then constructed over the 2D feature maps, either by concatenation [25] or
correlation [29]. After that, the cost volume is filtered through a series of 3D convolutional layers
before being mapped to a point-wise depth estimate by a differentiable argument of the minimum
(arg-min) operator. There are many variations of this approach, such as using a 3D stacked hourglass
to process the cost volume [29] or developing new aggregation layers [30] to improve accuracy. Unlike
classical filtering algorithms such as SGM, 3D convolution is a differentiable approximation. The neural
networks outperformed traditional methods on datasets such as KITTI [31] and Scene Flow Datasets
[32]. The primary drawback of 3D convolutions is their intensive memory and computing requirements.
However, to address this issue, certain methods [18,30] have opted to entirely replace the commonly
used 3D convolutions with new components, achieving faster inference speeds while maintaining
comparable accuracy. One of the works [18] proposed using an intra-scale cost aggregation method
based on sparse points with AANet. In addition, the traditional cross-scale cost aggregation algorithm
is approximated with neural network layers to handle large texture-free regions. The recent methods
try to reduce the impact of erroneous rectification in stereo vision. RAFT-Stereo [33] takes advantage
of the iterative refinement of the RAFT optical flow network [34] to develop a network suitable for
stereo matching. Li et al. [35] propose CREStereo network with an adaptive group correlation layer
(AGCL) because it can happen that the matching points are not perfect in a line. This can be caused by
the fact that the images in the real world are not perfectly rectified.

2.2. Confidence Estimation

In parallel with the further development of stereo algorithms, methods for estimating the confi-
dence in the estimated disparity maps are also advancing. Confidence methods attempt to improve
classical stereo methods by identifying erroneous pixels. There are purely classical approaches [14—
16,36], which were later combined by a random forest [37,38] to estimate the reliability of each pixel.

In later works, the Convolutional Neural Network (CNN) was also used to estimate confidence,
but it must be distinguished which data the network receives as input. Some work only on the basis
of the disparity map and the RGB image [39,40]; others [17,41], additionally use the cost volume to
estimate a confidence level. Because of this additional data, not all stereo methods can be used for
evaluation, so classical stereo algorithms such as SGM or AD-Census are often used. Alternatively,
neural networks are used, which are similar to classical methods. These neural networks [42] construct
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a cost volume by deriving a probability value for each disparity hypothesis. Therefore, the method is
very similar to classical stereo methods and can easily be used for confidence estimation. The focus of
the confidence methods is on a good confidence estimate, which is why the stereo performance is not
so important. An optimal scenario includes the integration of an excellent stereo assessment together
with a simultaneous confidence assessment. The work [13] by Poggi et al. is one of the first to apply
confidence methods to end-to-end stereo networks. They determine the confidence with different
methods from the results of the Guided Aggregation Net (GANet) [30]. GANet is a stereo network
and uses a 3D architecture that generates a feature volume that resembles the usual cost volume.
The similarity of this feature volume to the cost volume allows for the application of ready-to-exist
confidence methods. They showed the effectiveness of confidence estimation through feature volume
analysis using an end-to-end stereo network. However, for this, it is necessary that the stereo network
has a feature volume that is as large as the resolution of the input. However, this is not the case for all
modern stereo networks. For example, AANet uses only 1/3 of the input resolution mapped as feature
volume. In this case, the stereo confidence method must be adjusted. Mehltretter [43] used a Bayesian
Neural Network to predict both uncertainty and stereo vision based on GCNet[25] stereo network.
Chen et al.[44] use the Group-wise Correlation Stereo Network (GwcNet) [29] as base stereo network
and create an uncertainty estimation subnetwork that extracts information from the intermediate
multi-resolution. The networks are trained with a new loss function based on KL divergence applied
on obtained histograms.

3. Method

The objective of this work is to demonstrate how confidence estimation can be improved using
a new multitask network. The network is provided with a rectified image pair, and simultaneously
estimates the disparity and the confidence value for each pixel. The network consists of two main
components, each with a specific task. The first component handles the correspondence search and
predicts the disparity, while the second component is responsible for the confidence estimation of the
stereo results. These components are interconnected and allow simultaneous training. The information
exchange between the components is unidirectional. This means that the output of certain layers of the
stereo image component provides the input for the confidence estimate, but not the other way around.

3.1. Stereo Vision Component

The stereo component is based on the structure of AANet [18]. AANet aims to achieve high
performance and high speed simultaneously. To accomplish this, the use of complex 3D CNNss is
avoided. Instead, the authors employ a scale-internal cost aggregation based on sparse points, which
resolves the well-known issue of edge-fattening at disparity discontinuities. Moreover, the traditional
cross-scale cost aggregation algorithm is approximated by using a neural network architecture to
handle large textural regions. These modules are lightweight and can be integrated into existing archi-
tectures, significantly increasing their speed while maintaining accuracy. In this network, different cost
function volumes are generated and subsequently merged. The fast response time, while maintaining
high accuracy, makes the networks interesting for practical applications.
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Figure 1. Proposed network structure, which consists of a combination of the AANet stereo network
and the LAF-Net confidence network. A stereo pair is provided in the AANet to predict the disparity
map. The output disparity in full resolution, the output tensor from the CSA with 1/3 resolution and
the left input images serve as inputs for the LAF-Net component to predict the confidence. Due to the
different resolutions, an interpolation layer must be included in the LAF-Net.

3.2. Confidence Estimation Component

The confidence component is inspired by LAF-Net [17]. LAF-Net takes the disparity map from the
stereo component, the cost volume, and the left color image as input, and produces a confidence map
as output. However, instead of using all the total cost rates, only the k lowest values of the cost rates
are used. These k cost rates represent the most likely correct hypotheses with the highest probability.
The value of k is set to 7, as it was found to perform effectively by the authors of the network. The
LAF-Net is specifically designed for classic stereo methods, where cost volume is the most important
factor. Many stereo networks, including AANet, also provide some form of cost volume. In AANet,
however, the cost volume is available in three different resolutions: 1/3, 1/6, and 1/12. For confidence
estimation, the full resolution cost volume is required and adjustments need to be made. In addition,
we do not use the cost volumes directly after correlation, but after the Cross-Scale Aggregation (CSA)
layer. This approach gives the network more flexibility to optimize the cost variables for confidence
estimation. The selection of a 1/3 resolution was motivated by its proximity to the desired resolution.
However, to suit the specified resolution, the LAF-Net architecture requires adjustments. To achieve
this, an interpolation layer is introduced following the second convolution block while extracting
features from the cost volume. The network with the two components and their connections to each
other is shown in Figure 1.

3.3. Training

Our network is trained on the Scene Flow dataset, a large synthetic dataset that provides dense
ground truth disparity maps. This dataset comprises more than 39,000 image pairs. Due to the high
number of available data, real data is not used for training. Evaluation is also based on real data,
without the need to fine-tune the network on real data. For the training we create a loss function, which
is a combination of the loss function of the stereo component (¢g.,) and the LAF-Net component
(Cconf), defined as follows:
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L = lstereo(D, Dgr) + A % gConf(CGTr C) ey

Where D and C are the predicted disparity and confidence maps. Dgr and Cgr are the respective
ground truth values, which serve as labels. The new loss function is a weighted combination of the
individual loss functions of the two network components. The weight is determined by the factor A.
The higher its value, the more emphasis is placed on optimizing the confidence estimate. The loss
function of stereo is taken from AANet. It is calculated on the different disparity maps with different
resolutions. A smooth L1 loss is generated for each disparity. A weighted sum is formed over the
individual losses. The original implementation of the LAF-Net network used a classification loss.
This means that the network should predict a value of 1 for a pixel if the error is below a threshold,
otherwise it should predict 0. To achieve better coordination between the two loss functions. We use a
regression loss function instead of a classification. This will minimize the MSE between the Csr and C.
Note that the label Csr for this loss function can only be created after the prediction of the disparity
map. The label Cgr is determined as follows:

Cor = e |Per—Dl )

This ensures that the value is always between 0 and 1, where 1 corresponds to high confidence
and a value close to 0 corresponds to low confidence.

4. Experiments

To demonstrate the benefits of training stereo and confidence in parallel, we initially conducted
separate training for each network component, focusing on the Scene Flow datasets. This approach
aligns with the traditional methodology employed by most confidence methods. By treating stereo
and confidence networks as separate networks, we aimed to establish a comparative baseline.

To assess the benefits of simultaneous training under real conditions without the need for re-
training, we evaluate our network using a combination of synthetic and real datasets. Specifically, we
utilize Scene Flow [21], a synthetic dataset comprising over 39,000 stereo frames with a resolution of
960x540 pixels, for both training and testing our network. Additionally, we employ the widely used
KITTI2015 [45] stereo dataset, to further test our network’s performance. Notably, we do not train our
network but use the official training set of KITTI2015 for our evaluation, allowing for an unbiased
evaluation. Furthermore, we incorporate the RWU3D [46] dataset, a novel dataset is designed for
the fusion of stereo and Time-of-Flight (ToF) sensors, capturing indoor industrial environments. The
dataset includes images with a different resolution, in this work the resolution 960 x 560 pixels is used.
For testing purposes, we have selected a subset of 32 images, excluding the calibration scene and
scenes intended for characterizing the ToF camera.

4.1. Metrics

To evaluate our network, we employ a variety of evaluation metrics. In this regard, we have
adopted the evaluation methodology of LAF-Net, which exhibits subtle differences from the evaluation
approach utilized in SEDNet. We prioritize the perspective of trust over uncertainty and have therefore
opted for evaluation approach. First, we use the training metrics. These include the Mean Squared
Error (MSE) between the ground truth disparity and the predicted disparity, as well as the difference
between the predicted confidence and the label for confidence. Second, we use additional evaluation
metrics. We employ the Bad3 metric to evaluate the stereo part and use the Area Under the Curve
(AUC) to evaluate the confidence part.
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4.1.1. Bad3 (Bad Pixels Rate):

The Bad3 metric provides an assessment of the accuracy of our stereo model in estimating
disparities. It measures the percentage of pixels for which the disparity error exceeds a threshold of 3.
A lower Bad3 value indicates better performance, as it signifies a smaller proportion of pixels with
large disparity errors.

4.1.2. Area under the Curve (AUC):

An optimal confidence algorithm produces a value for each pixel that is inverse to its error.
The lower the error level, the higher the confidence should be. To evaluate the performance of each
confidence measure in identifying correct matches, as outlined in [16], we sort the pixels in a disparity
map in descending order of confidence and calculate the error rate (Bad3) on sparse maps generated
through iterative sampling (e.g., 5% of pixels at a time) from the density map. This means that first
the error of 5% of pixels with the highest confidence is calculated. Next, the error of the 10% of pixels
with the highest confidence is calculated and so on. The plot of error rates produces a sparsification
curve, which allows us to quantitatively measure the effectiveness of the confidence measure through
its AUC. The lower the AUC, the better the performance of the confidence measure. The optimal AUC
is achieved when the confidence measure is able to identify all correct matches first and is equal to:

AUCpy; = /1 (126 gy et (1—e)in(1 —e) 3)

1—e X

with € being the Bad3 computed over the disparity map. Looking at the ROC curve, one can tell
how high the error is, for example, if 80% of the pixels with the highest confidence are observed.

4.2. Implementation Details

We implemented the network in PyTorch and trained it with an Nvidia RTX 4090 GPU. For
training, we used 35454 stereo pairs from the training set of the Scene Flow dataset. Before input, the
raw images are randomly cropped to a size of 288 x 576. Adam [47] (81 = 0.9, B> = 0.999) is used as
the optimizer. We started with a learning rate of 0.001, which is gradually halved every 10 epochs
after 20 epochs. Each configuration is trained for 70 epochs, with a batch size of 4. Firstly, the stereo
and confidence parts were trained sequentially, which corresponds to the results of the AANet and
LAF-Net, whereby only the 1/3 resolution of the cost function could be used, as the AANet does not
have a total cost function.

Secondly, the network is trained in parallel using the proposed loss function. The loss function is
used with A values of 5, 10, and 20. For each training configuration, the network is randomly initialized.
It should be noted that the values for A should be significantly greater than 1, as the values for stereo
loss are much greater than those for the condensation loss function. This is due to the fact that the
predicted value for the disparity is between 0 and 192, while the predicted value for confidence is only
between 0 and 1.
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5. Results

Table 1. Evaluation results with different training configurations for Scene Flow, KITTI2015 and
RWU3D datasets. Parallel(A) is our network with the different A values (5, 10, and 20) for the loss

function.
Network MSE MSE Bad3 [%] AUC AUC,pt
Disparity Confidence
Scene Flow
SEDNet[44] 0.835 - 4.31 0.36 0.19
Sequential 0.680 0.0280 3.21 0.37 0.19
Parallel(5) 0.674 0.0236 3.34 0.32 0.20
Parallel(10) 0.695 0.0220 3.47 0.32 0.21
Parallel(20) 0.720 0.0203 3.71 0.33 0.21
KITTI2015
SEDNet[44] 10.828 - 35.33 9.55 4.61
Sequential 1.858 0.2705 10.70 3.71 1.23
Parallel(5) 1.878 0.2579 11.20 3.32 1.31
Parallel(10) 1.738 0.2921 10.36 2.76 1.20
Parallel(15) 1.852 0.2679 10.82 2.89 1.27
RWU3D
SEDNet[44] 11.835 - 39.07 13.47 7.10
Sequential 2.445 0.1547 17.30 6.77 2.32
Parallel(5) 2.681 0.0860 18.65 6.17 2.85
Parallel(10) 2.571 0.0824 17.89 5.22 2.46
Parallel(15) 2.613 0.0657 18.85 5.42 2.71

Table 1 presents the comparison metrics of different settings against SEDNEet. Overall, our
networks outperform the SED network, primarily due to the use of AANet as the backbone for stereo
matching, which already demonstrates superior stereo performance. However, it’s noteworthy how
much better our approach generalizes to real data compared to the SED network, without requiring re-
training. The results in Table 1 also show that the combination of training confidence and stereo leads
to an improved performance in terms of confidence. The results depend on the values used for A in the
loss function. With a small value of 5, the stereo results do not suffer, and the confidence performance
is still better. Increasing the value of A increases the MSE and Bad3 of the stereo, but decreases the
MSE of confidence. This clear trend can be seen particularly well with Scene Flow. In principle, this
observation can also be made with the other data sets, although this trend sometimes shows outliers.
Several factors can explain this phenomenon. Overweighting the confidence components can result in
overfitting, which may worsen performance on a new data set. However, adjusting the confidence level
slightly can prevent overfitting the stereo and improve, or at the very least maintain, the stereo score.
Alternatively, the smaller real test dataset may have introduced some normal noise. To summarize,
parallel training leads to a better overall result, which can be easily determined using the AUC value.
When the stereo and confidence components are trained together, the AUC values are closer to the
AUCqp; value than when they are trained separately. The AUCpy; value is the lower bound and is
the value that can be theoretically achieved with optimal confidence estimation. The AUC value is
influenced by both the stereo performance and the confidence performance. Therefore, this will be a
good indication of which A value is most appropriate. With the Scene Flow dataset, itis A = 5, with
KITTI2015 and RWU3D it is A = 10 where the lowest AUC is found. Therefore, we can deduce that an
optimal value lies between 5 and 10.
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Figure 2. The sparsification curve show the rate of bad pixels at threshold 3 when a certain percentage
of pixels with the lowest prediction confidence are excluded.

As mentioned above, the AUC is the most interesting value. So let us look at the underlying
sparsification curve shown in the figure 2. The curves show the advantage of parallel training with
A = 10 even more clearly than the figures in the table. The curve shows bad pixels rate when looking
at the pixels with the highest confidence. The sparsification indicates the percentage of pixels with
low confidence that are ignored. Especially for the two real test data sets RWU3D and KITTI2015,
the improvement is even more visible than for the test data from Scene Flow. Therefore, we can
assume that our training approach has even led to an increase in generalization ability or, at least,
that no overfitting has taken place. In particular, the generalization to a new real dataset is evident
when compared to SENet. This improvement is mainly due to the stereo component of the network,
which has a strong influence on the AUC curve. Upon detailed examination of the sparsification
curve 2, it is possible to identify the bad pixels rate that are reached when only considering the pixels
with the highest confidence values. By ignoring 20% of the low confidence pixels identified through
sequential training, the error rate of the remaining pixels in the KITTI2015 dataset is reduced to 0.05.
With parallel training and improved confidence estimation, this error rate could be further reduced to
0.035. This shows that by masking pixels with a low confidence, the total error of the overlaid pixels is
smaller. However, for an application, it is important that the masked pixels are as evenly distributed
as possible, which is the case with our confidence estimate, as can be seen in the example image in
Figure 3. It is evident that the application of confidence estimation allows the removal of erroneous
pixels. By establishing a threshold value of 0.3, any pixel with a confidence estimate lower than this
threshold is excluded. This observation aligns with the AUC values, indicating that the filtered pixels
are distributed throughout the image and do not signify a substantial loss of critical information.

The strong correlation between error and lower confidence prediction is evident in Figure 4,
particularly within the highlighted example region. Regions with height errors often also have a
lower confidence, this correlation can be used to obtain a higher confidence for the stereo image in the
application.

5.1. Computational Performance and Efficiency

The computational complexity of the proposed network is evaluated by measuring the time
required for a single stereo and confidence prediction on a 960x540 image using an Nvidia RTX 4090
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GPU. With a processing time of 98 ms, the network achieves a frame rate of more than 10 frames per
second, which makes our network interesting for real-time applications. The stereo computer is the
most complex of the networks and by using the AANet’s computing power instead of other popular
stereo networks such as GwcNet [29], a very high response time is still achieved. Additionally, the
number of parameters shown in Table 2 is significantly lower than the number of parameters in the

SEDNet.

Table 2. Number of parameters.

Architecture Parameters (M)
SEDNet 6.91
Our Network
Stereo Component 3.93
Confidence Component 0.54
Total 4.47

Let R

Confidence Disparity after removal

of pixels

Error after removal
of pixels

Figure 3. The example shows the left RGB images with the predicted disparity. In the error map, the

black pixels have an error of more than 3 disparity values. Using the predicted confidence, 20% of the

pixels with the lowest confidence were removed, resulting in the disparity map shown in the middle

of the second row. The corresponding error map for this disparity map is shown next. Note that the

number of black pixels is now lower, indicating that the predicted confidence has removed pixels

appropriately.
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S B 3 =

|

Disparity Error Map Confidence
Figure 4. Example scene from the RWU3D dataset. In the left column the disparity map is visualized, in
the center the corresponding error map, and on the right the predicted confidence with whites showing
high confidence. The green rectangles show some areas where the confidence is correctly low, as there
is also a larger error there.

6. Conclusions

We have demonstrated the feasibility of combining deep stereo networks with a confidence
estimation network. In contrast to the stereo techniques employed in evaluating LAF-Net, the stereo
output produced by AANet exhibits minimal inconsistencies. However, our network successfully
attains a robust confidence estimate. Training the stereo and confidence components simultaneously
improves the overall results compared to training them sequentially. This can improve the AUC
values by about 15% for the synthetic data sets. When using real data sets, an improvement of about
30% can be observed. It is therefore clear that parallel training offers benefits and is a potential form
of multi-task learning. Additionally, our findings reveal that synergizing the training of stereo and
confidence networks yields even more promising results. Through the judicious exclusion of pixels
with lower confidence scores, we can generate stereo depth images that are notably more reliable.
However, there is still scope for improvement to achieve the optimal confidence estimate.
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AUC  Area Under the Curve
Bad3 Bad Pixels Rate with threshold of 3
MSE  Mean Squared Error
CSA  Cross-Scale Aggregation
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