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Abstract: Celiac disease is a gluten-sensitive immune-mediated enteropathy of the small intestine 
that occurs in genetically predisposed individuals. Abnormal immune response results in mucosal 
inflammation, villous atrophy, and crypt hyperplasia. This study was a proof-of-concept exercise 
that used a convolutional neural network to classify hematoxylin and eosin (H&E) histological 
images of celiac disease, normal small intestine control, and non-specified duodenal inflammation; 
7294, 11,642, and 5966 images, respectively. The trained network classified celiac disease images 
with high performance (accuracy 99.7%, precision 99.6%, recall 99.3%, F1-score 99.5%, and 
specificity 99.8%). Interestingly, when the same network (already trained for the 3 class images), 
analyzed duodenal adenocarcinoma (3723 images), the new images were classified as duodenal 
inflammation in 63.65%, small intestine control in 34.73%, and celiac disease in 1.61% of the cases. 
Finally, when the network was retrained using the 4 histological subtypes of images, all 
performance parameters were above 99% for celiac disease. In conclusion, the convolutional neural 
network (CNN)-based deep neural system was able to classify medical histological images with 
high performance. Narrow artificial intelligence (AI) is designed to perform tasks that typically 
require human intelligence, but it operates within limited constraints and is task specific. 

Keywords: artificial intelligence; convolutional neural network; computer vision; transfer learning; 
inflammatory bowel disease; celiac disease; machine learning; duodenum; inflammation; neoplasia; 
carcinoma 

 

1. Introduction 

Celiac disease is a gluten-sensitive immune-mediated enteropathy that occurs in genetically 
predisposed individuals [1]. Diagnosis of celiac disease is made by combining clinical data, 
serological tests, and histopathological features [1,2]. Although celiac disease is a disease of infants, 
its onset usually occurs in patients aged between 10 and 40 years, when the typical signs of 
malabsorption are often replaced by an atypical presentation [3–6]. 

The clinical presentation is variable and exhibits a continuum spectra [3–6], with several degrees 
of severity correlated with histological severity and levels of tissue transglutaminase [7,8]. The 
“classical” gastrointestinal symptoms include persistent diarrhea, abdominal distension, weight loss, 
abdominal pain, constipation, and vomiting [9]. Celiac disease is also associated with several non-
gastrointestinal manifestations, such as growth and development alterations, neurologic and 
behavioral symptoms, liver disease, iron deficiency, skin alterations (dermatitis herpetiformis), 
dental and metabolic bone diseases, arthritis, and cardiomyopathy [9,10] 

Histological characteristics of the small intestine (usually evaluated using duodenum biopsy) 
include mucosal inflammation, villous atrophy, and crypt hyperplasia that occur after exposure to 
dietary gluten; signs that improve after removing gluten from the diet [11]. These histological features 
are variable and range from mild alteration with only increased numbers of intraepithelial 
lymphocytes, to severe atrophy and epithelial apoptosis [12–16]. These alterations are assessed in 
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several classifications, including the Marsh [17], Marsh-Oberhuber [18], Corazza-Villanacci [19], Q-
Marsh scale [20], and Q-histology [2]. 

The pathogenesis of celiac disease includes genetic factors (HLA DR3-DQ2, DR4-DQ8, several 
non-HLA loci, and autoimmune disorders), adaptive immune response (gliadin reactive T 
lymphocytes), autoantibodies and intraepithelial lymphocytes (IELs), and innate immune response. 
In patients with celiac disease, the immune response to fractions of gliadin results in an abnormal 
inflammatory reaction characterized by infiltration of the lamina propria and epithelium by chronic 
inflammatory cells and villous atrophy [4]. A comprehensive review of the pathogenesis was 
conducted in our recent publication [21]. 

Primary treatment for celiac disease is a gluten-free diet. Persistent or recurring symptoms may 
be due to a lack of adherence to dietary protocol, an incorrect initial diagnosis, or complications of 
refractory celiac disease and lymphoma [1]. Among the different primary intestinal T-cell lymphomas, 
enteropathy-associated T-cell lymphoma (EATL) [22–25]. EATL may be preceded by refractory celiac 
disease [26]. 

The diagnosis of celiac disease is based on the combination of clinical data (enterologist), 
serology (clinical pathologist), and duodenal biopsy with histological evaluation performed by a 
certified anatomical pathologist [1]. Artificial intelligence technology allows computers to imitate 
human intellectual capacity and solve problems [27]. Modern computer vision systems exhibit 
extraordinary image recognition and analysis accuracy. However, these systems do not understand 
what they observe. Several machine learning and deep learning algorithms have been developed to 
construct models that make predictions on images. Convolutional neural networks are supervised 
algorithms that are mostly used for image recognition workloads [28]. This study used a 
convolutional neural network to classify images of celiac disease, small intestine control, duodenal 
inflammation and duodenal adenocarcinoma. 

2. Materials and Methods 

A script was written to create and train a deep learning network with 71 layers and 78 
connections (Figures 1 and 2). The script was run to create network layers (Appendix Table B), import 
training and validation data, and train the network. The code was created in MATLAB (R2023b 
Update 8 (23.2.0.25999560) 64-bit (win64) April 29, 2024) (MathWorks, Tokyo, Japan) and was based 
on transfer learning from the ResNet-18 (version 23.2.0) [29] (Figures 1 and 2). All analyses were 
performed using a desktop computer equipped with an AMD Ryzen 9 7950X CPU [30], 32 Gb of 
RAM, and an Nvidia GeForce RTX 4080 super-graphics card [31]. 

 
Figure 1. General design of the convolutional neural network. A convolutional neural network (CNN) 
is a deep learning algorithm that takes an input image, assigns weights/biases to different components 
of the image, and classifies all the image. There are three major components of the network: the 
convolutional layer, the pooling layer, and the fully connected layer. 
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Figure 2. Structure of the convolutional neural network of this study (based on ResNet-18). 

ResNet-18 is a pretrained model that was previously trained in a subset of images in the 
ImageNet database [32]. This database includes 1000 types of objects and contains more than 
1,000,000 images. ResNet-18 is a convolutional neural network with 18 layers. The input size is 224-
by-224 (224×224×3). Size: 44.0 MB. Parameters: 11.7 M. 

The analysis of the convolutional neural network (CNN) included the following steps: loading 
the pre-trained network, replacement of final layers, training of the network, prediction and 
assessment of network accuracy, and deployment of results. 

The diagnostic dataset included hematoxylin and eosin (H&E) staining of 16 celiac disease 
patients (57 biopsies), selected from the Department of Pathology, Hospital Clinic of Barcelona, Spain, 
as previously described [21]. The clinicopathological characteristics such as age, sex, biopsy location, 
anatomical pathology diagnosis, and the Marsh-Oberhuber histological grade [21,33,34] are shown 
in Appendix Table A.  

First, the input data for celiac disease included 7294 images, and the small intestine control 
included 11,642 images. The color images had three channels: red, green, and blue. An example is 
shown in Figures 3–5. The data (images) were split into three sets: a training set used for training the 
network (70%), a validation set used for testing its performance as it was trained (10%), and a test set 
used after training to assess how well the network performed on new data (20%). The order of the 
images was randomized to ensure that the network learned the classes at a more even rate. As transfer 
learning (adjustment of a pre-trained network) was performed on ResNet-18, the fully connected and 
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classification layers were removed and replaced with new layers with an output size of 2. 
Augmentation was not performed during training. To avoid overfitting, the initial learning rate was 
set to 0.001. The number of maximum epochs was set to five. 

Second, the analysis was repeated by adding a third histological subtype of nonspecific 
inflammation of the small intestine (duodenum). Therefore, in this analysis the input data included 
7294 images of celiac disease, 11,642 images of small intestine control, and 5966 images of the small 
intestine (duodenum) with chronic and acute inflammation (Figure 6). 

Third, a fourth histological subtype of 3723 images of duodenal adenocarcinoma (Figure 7) was 
added as test images of the previously trained convolutional neural network. The purpose of this 
analysis was to determine how the previously trained network, which was trained using celiac 
disease, small intestine control, and non-specific inflammation of the duodenum, could classify an 
unknown histological disease. 

Finally, a convolutional neural network was trained, including as input all the histological 
subtypes of celiac disease, small intestine control (both duodenum and ileum), non-specific 
inflammation of the duodenum, and duodenal adenocarcinoma (Figures 4–7). 

 
Figure 3. Characteristic histological images of the small intestine (duodenum). Duodenal control (A); 
celiac disease (C); inflammatory duodenum (D); duodenal adenocarcinoma (E). 
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Figure 4. Images of celiac disease. The input size is 224-by-224 (224×224×3). 
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Figure 5. Images of small intestine control. The input size is 224-by-224 (224×224×3). This figure shows 
images of the ileum. Additionally, images obtained from the duodenum were included in the dataset. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2024                   doi:10.20944/preprints202407.0329.v1

https://doi.org/10.20944/preprints202407.0329.v1


 7 

 

 
Figure 6. Images of inflammatory small intestine. The input size is 224-by-224 (224×224×3). 
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Figure 7. Images of duodenal adenocarcinoma. The input size is 224-by-224 (224×224×3). 

2. Results 

2.1. Celiac Disease vs. Small Intestine Control 

The progress of the convolutional neural network was satisfactory with a validation accuracy of 
100%. The training cycle included 5 epochs, 515 iterations, and 103 iterations per epoch. The 
validation cycle included 50 iterations. Within the first 100 iterations, the accuracy percentage reached 
100%, and the loss the 0 value (Figure 8). 
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Figure 8. Training progress of the convolutional neural network for the classification of celiac disease 
and small intestine control. 

The images in the test set were classified by the trained network. The results are shown as a 
confusion matrix (Figure 9). The performance parameters for celiac disease were as follows: accuracy, 
99.97%; precision, 99.93%; recall, 100%; F1-Score, 99.97%; specificity, 100%, and false positive rate 
(FPR), 0.04% (Table 1). 

  
Figure 9. Confusion matrix of celiac disease and small intestine control. This image shows the 
confusion matrix of the test set, which includes the analysis of images not previously used in the 
training and validation steps (i.e., the holdout data). The accuracy of predicting celiac disease was 
99.97%. 

Table 1. Performance parameters of the classification into 2 classes. 

Class Accuracy (%) Precision (%) Recall (%) F1-score (%) 
Specificity 

(%) 

False 
positive rate 

(%) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2024                   doi:10.20944/preprints202407.0329.v1

https://doi.org/10.20944/preprints202407.0329.v1


 10 

 

Celiac 
disease 

99.97 99.93 100 99.97 99.96 0.04 

Small 
intestine 
control 

99.97 100 99.96 99.96 100 0 

2.2. Celiac Disease vs. Small Intestine Control vs. Duodenal Inflammation 

The progress of the training of the convolutional neural network is shown in Appendix Figure 
C. The results are shown as a confusion matrix (Figure 10). 

  
Figure 10. Confusion matrix of celiac disease, duodenal inflammation, and small intestine control. 
This image shows the confusion matrix of the test set, which includes the analysis of images not 
previously used in the training and validation steps (i.e., the holdout data). 

The class-wise performance is summarized in Table 2. 

Table 2. Performance parameters of the classification into 3 classes. 

Class Accuracy (%) Precision (%) Recall (%) F1-score (%) 
Specificity 

(%) 

False 
positive rate 

(%) 
Celiac 

disease 
99.68  99.59  99.32  99.45  99.83  0.17  

Duodenal 
inflammation 

98.37  96.48  96.72  96.60  98.89  1.11  

Small 
intestine 
control 

98.41  98.28  98.32  98.30  98.49  1.51  

Recall is also referred as sensitivity and the true positive rate (TPR). False positive rate (FPR). 

2.3. Test for Duodenal Adenocarcinoma on Previously Trained Network 

Images of duodenal adenocarcinoma were tested directly on the previously trained network that 
had classified celiac disease, small intestine control, and duodenal inflammation. The analysis 
showed that the convolutional network classified duodenal adenocarcinoma as duodenal 
inflammation in 63.65% of images, small intestine control in 34.73%, and celiac disease in 1.61% of 
images. Therefore, a previously trained network can classify an unknown type of image but 
incorrectly diagnoses the image. 

2.4. Celiac Disease vs. Small Intestine Control vs. Duodenal Inflammation vs. Duodenal Adenocarcinoma 

The progress of training the convolutional neural network is shown in Appendix Figure D. The 
results are shown as a confusion matrix (Figure 11). 
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Figure 11. Confusion matrix of celiac disease, duodenal adenocarcinoma, duodenal inflammation, 
and small intestine control. This image shows the confusion matrix of the test set, which includes the 
analysis of images not previously used in the training and validation steps (i.e., the holdout data). 

The class-wise performance is summarized in Table 3. 

Table 3. Performance parameters of the classification into 4 classes. 

Class Accuracy (%) Precision (%) Recall (%) F1-score (%) 
Specificity 

(%) 

False 
positive rate 

(%) 
Celiac 

disease 
99.69  99.73  99.05  99.39  99.91  0.09  

Duodenal 
adenocarcino

ma 
97.41  85.64  93.96  89.61  97.88  2.12  

Duodenal 
inflammation 

96.42  94.05  89.33  91.63  98.41  1.59  

Small 
intestine 
control 

98.38  97.85  98.15  98.00  98.53  1.47  

Recall is also referred to sensitivity and true positive rate (TPR). False positive rate (FPR). 

3. Discussion 

Within the specialty of computer science, computer vision is a technique that allows computers 
to recognize observable world. In the field of artificial intelligence, there are several machine learning 
and deep learning algorithms that build models that make predictions from images or videos [35]. 
Convolution neural networks are a type of supervised deep learning algorithm that are used for 
image recognition. A simple convolutional network comprises several steps, including image channel, 
convolutions, pooling, convolutions, pooling, flattening, artificial neural network full connection, 
and prediction [35]. 

The ResNet-18 network was used in this study. This convolutional neural network was a 
pretrained model trained on a subset of the ImageNet database. The network is trained is more than 
a million images and managed to classify them into 1000 different categories [29]. In the medical field, 
this network has been used in several studies based on transfer learning, such as in the diagnosis of 
intracranial hemorrhage in CT scans [36], heartbeat classification of electrocardiogram (ECG) signals 
[37], dynamic gesture recognition [38], selective transplanting of leafy vegetable seedlings [39], 
automatic classification of malaria parasites on the blood smear [40], prostate imaging [41], 
classification of Alzheimer’s disease levels [42], and diabetic retinopathy [43], among others. 
Therefore, the ResNet-18 model is a useful network that can be applied to many types of studies, 
including our study of celiac disease. 

Convolutional neural networks and image recognition have also been applied to celiac disease 
research, including the analysis of whole slide images [44–48], and endoscopic images [49,50]. 
Therefore, computer vision is a useful tool in the field of histopathology. 
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Our group has published several papers on the use of artificial intelligence, including machine 
learning and artificial neural networks, in the field of lymphoma research [51–57]. In these 
publications, the focus was on data analysis of gene expression levels in the context of immuno-
oncology in lymphoma and other hematological neoplasia [51–57]. The most frequent lymphoma 
subtype that we analyzed was diffuse large b-cell lymphoma [52–55], which is one of the most 
frequent non-Hodgkin lymphomas [26]. In addition, we have also published data analysis-based 
studies on celiac disease in which we highlighted the importance of the B and T lymphocyte 
associated (BTLA) gene [21], and programed cell death 1 ligand 1 (CD274 antigen) in ulcerative colitis 
[58]. The subject of this article represented a switch from data analytics to computer vision. 

In this study, a confusion matrix was used to measure the performance of the trained network. 
The data (images) were split into three sets: a training set used for training (i.e., teaching) the network 
(70%), a validation set used for testing its performance as it was trained (10%), and a test set used 
after training to assess how well the network performed on new data (20%). The order of the images 
was randomized to ensure that the network learned the classes at a more even rate. In the results 
section, the confusion matrices of the test set were shown. Of note, if the data were imbalanced, the 
performance checking by accuracy could be deceptive. The confusion matrices of our study combined 
output data that was binary (Figure 9) and multiclass (Figures 10 and 11). All performance 
parameters were high, including accuracy (defined as the proportion of correct predictions), precision 
(used in information retrieval, pattern recognition), recall (what in medicine is called sensitivity), and 
F1-score (measure test of accuracy). The fundamentals of clinical data science and modeling 
methodology are well described in chapter 8 of the book written by Frank J.W.M. Dankers et al. [59]. 

This study focused on the identification and classification of celiac disease images compared 
with normal small intestine images obtained from the duodenum and ileum. The accuracy of the 
network was very high. The model could handle and properly classify 3 classes with the addition of 
non-specific acute and chronic duodenal inflammation. Interestingly, when the 3 classes trained 
network was tested with duodenal adenocarcinoma, the network failed to realize that those samples 
were a different type of disease. Therefore, the use of automated computer vision analysis for the 
evaluation of histopathological slides is not recommended without the supervision of a pathology 
specialist. However, when the network was trained with 4 classes of histological subtypes, the 
network managed to differentiate celiac disease, duodenal inflammation, small intestine control, and 
duodenal adenocarcinoma with good performance, proving the usefulness of convolutional neural 
network for classifying histological images. 

In conclusion, a convolutional neural network based on the transfer learning of ResNet-18 was 
able to classify celiac disease, other duodenal pathological diseases, and tissue control with good 
performance. However, all computer vision-based automated diagnoses should be supervised and 
validated by pathology medical specialist to identify other pathologies for which the network has not 
previously trained. 
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Appendix Table A 

Table A. Clinicopathological characteristics of celiac disease cases. 

Age Sex Biopsy location Diagnosis 
Marsh-Oberhuber 

Classification 
     

70 Male Duodenum Celiac Disease 3a 
62 Male Pylorus/duodenum Celiac Disease/Chronic gastritis 2 
62 Male Duodenum Celiac Disease 2 
78 Female Duodenum Celiac Disease 3b 
59 Male Duodenum Celiac Disease 3a 
44 Female Duodenum Celiac Disease 2 
17 Female Duodenum Celiac Disease 3b 
56 Female Duodenum Celiac Disease 3a 
54 Female Duodenum Celiac Disease 2 
58 Female Duodenum Celiac Disease 3b 
61 Female Duodenum Celiac Disease 3c 
45 Male Duodenum Celiac Disease 3a 
70 Female Duodenum Celiac Disease 2 
40 Female Duodenum Celiac Disease 3a 
61 Female Duodenum Celiac Disease 3c 
44 Female Duodenum Celiac Disease 3a 

Appendix Table B 

Table B. Design of trained network 

Trained Network Trained Network Connections 
Num. Layers 1 Source 2 Destination 

1 1x1 ImageInputLayer ‘data’ ‘conv1’ 
2 1x1 Convolution2DLayer ‘conv1’ ‘bn_conv1’ 
3 1x1 BatchNormalizationLayer ‘bn_conv1’ ‘conv1_relu’ 
4 1x1 ReLULayer ‘conv1_relu’ ‘pool1’ 
5 1x1 MaxPooling2DLayer ‘pool1’ ‘res2a_branch2a’ 
6 1x1 Convolution2DLayer ‘pool1’ ‘res2a/in2’ 
7 1x1 BatchNormalizationLayer ‘res2a_branch2a’ ‘bn2a_branch2a’ 
8 1x1 ReLULayer ‘bn2a_branch2a’ ‘res2a_branch2a_relu’ 
9 1x1 Convolution2DLayer ‘res2a_branch2a_relu’ ‘res2a_branch2b’ 
10 1x1 BatchNormalizationLayer ‘res2a_branch2b’ ‘bn2a_branch2b’ 
11 1x1 AdditionLayer ‘bn2a_branch2b’ ‘res2a/in1’ 
12 1x1 ReLULayer ‘res2a’ ‘res2a_relu’ 
13 1x1 Convolution2DLayer ‘res2a_relu’ ‘res2b_branch2a’ 
14 1x1 BatchNormalizationLayer ‘res2a_relu’ ‘res2b/in2’ 
15 1x1 ReLULayer ‘res2b_branch2a’ ‘bn2b_branch2a’ 
16 1x1 Convolution2DLayer ‘bn2b_branch2a’ ‘res2b_branch2a_relu’ 
17 1x1 BatchNormalizationLayer ‘res2b_branch2a_relu’ ‘res2b_branch2b’ 
18 1x1 AdditionLayer ‘res2b_branch2b’ ‘bn2b_branch2b’ 
19 1x1 ReLULayer ‘bn2b_branch2b’ ‘res2b/in1’ 
20 1x1 Convolution2DLayer ‘res2b’ ‘res2b_relu’ 
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21 1x1 BatchNormalizationLayer ‘res2b_relu’ ‘res3a_branch2a’ 
22 1x1 ReLULayer ‘res2b_relu’ ‘res3a_branch1’ 
23 1x1 Convolution2DLayer ‘res3a_branch2a’ ‘bn3a_branch2a’ 
24 1x1 BatchNormalizationLayer ‘bn3a_branch2a’ ‘res3a_branch2a_relu’ 
25 1x1 Convolution2DLayer ‘res3a_branch2a_relu’ ‘res3a_branch2b’ 
26 1x1 BatchNormalizationLayer ‘res3a_branch2b’ ‘bn3a_branch2b’ 
27 1x1 AdditionLayer ‘bn3a_branch2b’ ‘res3a/in1’ 
28 1x1 ReLULayer ‘res3a_branch1’ ‘bn3a_branch1’ 
29 1x1 Convolution2DLayer ‘bn3a_branch1’ ‘res3a/in2’ 
30 1x1 BatchNormalizationLayer ‘res3a’ ‘res3a_relu’ 
31 1x1 ReLULayer ‘res3a_relu’ ‘res3b_branch2a’ 
32 1x1 Convolution2DLayer ‘res3a_relu’ ‘res3b/in2’ 
33 1x1 BatchNormalizationLayer ‘res3b_branch2a’ ‘bn3b_branch2a’ 
34 1x1 AdditionLayer ‘bn3b_branch2a’ ‘res3b_branch2a_relu’ 
35 1x1 ReLULayer ‘res3b_branch2a_relu’ ‘res3b_branch2b’ 
36 1x1 Convolution2DLayer ‘res3b_branch2b’ ‘bn3b_branch2b’ 
37 1x1 BatchNormalizationLayer ‘bn3b_branch2b’ ‘res3b/in1’ 
38 1x1 ReLULayer ‘res3b’ ‘res3b_relu’ 
39 1x1 Convolution2DLayer ‘res3b_relu’ ‘res4a_branch2a’ 
40 1x1 BatchNormalizationLayer ‘res3b_relu’ ‘res4a_branch1’ 
41 1x1 Convolution2DLayer ‘res4a_branch2a’ ‘bn4a_branch2a’ 
42 1x1 BatchNormalizationLayer ‘bn4a_branch2a’ ‘res4a_branch2a_relu’ 
43 1x1 AdditionLayer ‘res4a_branch2a_relu’ ‘res4a_branch2b’ 
44 1x1 ReLULayer ‘res4a_branch2b’ ‘bn4a_branch2b’ 
45 1x1 Convolution2DLayer ‘bn4a_branch2b’ ‘res4a/in1’ 
46 1x1 BatchNormalizationLayer ‘res4a_branch1’ ‘bn4a_branch1’ 
47 1x1 ReLULayer ‘bn4a_branch1’ ‘res4a/in2’ 
48 1x1 Convolution2DLayer ‘res4a’ ‘res4a_relu’ 
49 1x1 BatchNormalizationLayer ‘res4a_relu’ ‘res4b_branch2a’ 
50 1x1 AdditionLayer ‘res4a_relu’ ‘res4b/in2’ 
51 1x1 ReLULayer ‘res4b_branch2a’ ‘bn4b_branch2a’ 
52 1x1 Convolution2DLayer ‘bn4b_branch2a’ ‘res4b_branch2a_relu’ 
53 1x1 BatchNormalizationLayer ‘res4b_branch2a_relu’ ‘res4b_branch2b’ 
54 1x1 ReLULayer ‘res4b_branch2b’ ‘bn4b_branch2b’ 
55 1x1 Convolution2DLayer ‘bn4b_branch2b’ ‘res4b/in1’ 
56 1x1 BatchNormalizationLayer ‘res4b’ ‘res4b_relu’ 
57 1x1 Convolution2DLayer ‘res4b_relu’ ‘res5a_branch2a’ 
58 1x1 BatchNormalizationLayer ‘res4b_relu’ ‘res5a_branch1’ 
59 1x1 AdditionLayer ‘res5a_branch2a’ ‘bn5a_branch2a’ 
60 1x1 ReLULayer ‘bn5a_branch2a’ ‘res5a_branch2a_relu’ 
61 1x1 Convolution2DLayer ‘res5a_branch2a_relu’ ‘res5a_branch2b’ 
62 1x1 BatchNormalizationLayer ‘res5a_branch2b’ ‘bn5a_branch2b’ 
63 1x1 ReLULayer ‘bn5a_branch2b’ ‘res5a/in1’ 
64 1x1 Convolution2DLayer ‘res5a_branch1’ ‘bn5a_branch1’ 
65 1x1 BatchNormalizationLayer ‘bn5a_branch1’ ‘res5a/in2’ 
66 1x1 AdditionLayer ‘res5a’ ‘res5a_relu’ 
67 1x1 ReLULayer ‘res5a_relu’ ‘res5b_branch2a’ 
68 1x1 GlobalAveragePooling2DLayer ‘res5a_relu’ ‘res5b/in2’ 
69 1x1 FullyConnectedLayer ‘res5b_branch2a’ ‘bn5b_branch2a’ 
70 1x1 SoftmaxLayer ‘bn5b_branch2a’ ‘res5b_branch2a_relu’ 
71 1x1 ClassificationOutputLayer ‘res5b_branch2a_relu’ ‘res5b_branch2b’ 
  ‘res5b_branch2b’ ‘bn5b_branch2b’ 
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  ‘bn5b_branch2b’ ‘res5b/in1’ 
  ‘res5b’ ‘res5b_relu’ 
  ‘res5b_relu’ ‘pool5’ 
  ‘pool5’ ‘fc’ 
  ‘fc’ ‘prob’ 
  ‘prob’ ‘classoutput’ 

Appendix Figure C 

 
Training progress of the convolutional neural network for the classification of celiac disease, small 
intestine control and duodenal inflammation. 

Appendix Figure D 
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Training progress of the convolutional neural network for the classification of celiac disease, small 
intestine control, duodenal inflammation and duodenal adenocarcinoma. 
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