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Abstract: This paper represents the first investigation into the consensus problem of linear time-varying multi-

agent systems utilizing an event-triggered communication scheme. First, a general event-triggered consensus

control scheme is proposed for a general category of linear time-varying multi-agent systems. Under some

suitable assumptions, it is demonstrated that all agents’ states will converge exponentially, with Zeno behaviour

being ruled out. Second, the consensus problem in a network of linear time-varying multi-agent systems with a

spanning tree is investigated using the proposed control strategy. It demonstrates that the consensus issue for

the specified system can be reformulated as a stabilization problem for an error system through a time-varying

linear transformation. Then, the event-triggered consensus problem is just a special instance of the general

event-triggered consensus problem mentioned above. Finally, to illustrate the efficacy of the event-triggered

method proposed in this study, simulation results are shown.

Keywords: consensus; time-varying linear multi-agent systems; event-triggered communication; exponential

convergence; Zeno behavior; distributed cooperative adaptation

1. Introduction

The event-triggered communication and control strategy requires systems to communicate each
other and then update the control law only at the necessary instants instead of continuously. This
strategy has been the subject of increasing interest among researchers and engineers due to its advan-
tages in saving the energy or reducing the computation loads [1,2]. Recently, this approach has quickly
become a main point of attention within the multi-agent systems field and is used to overcome the
consensus problem in multi-agent systems. However, from our understanding, almost all controllers
that are triggered by events are made to handle the time-invariant multi-agent systems. This work
aims to address the consensus problem in linear time-varying multi-agent systems by means of an
event-triggered communication strategy. It is not a simple extension and needs some novel analysis
method developed by us.

In the early stage of control theory, analog control equipments require that controllers are executed
continuously. Thus, the field of control systems design and analysis is primarily concerned with the
continuous-time systems [3]. As computer technologies advance swiftly, the implement manner of
controllers are changed to be in digital platforms instead of analog platforms, where the controller is
executed periodically at fixed sampling instants. A significant challenge is to identify an appropriate
sampling period. In general, as stated in [4], the selection of such a period is predicated on a worst-
case scenario, with the objective of ensuring the efficacy of the control task across the full range of
operational conditions. Consequently, the control task is executed at a uniform rate, irrespective of
the state of the plant. This control scheme is called as a time-triggered control scheme. Its merit lies
in the simplicity in analysis and design, but its drawback is also obvious, that is, this results in the
unnecessary consumption of energy and the accelerated wear and tear of the actuators since frequent
changes of the actuator state.

To overcome the above disadvantage of time-triggered control, as an alternative approach, there
exist certain known strategies for event-trigger control [5–17]. In contrast to the time-triggered control
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strategy, the event-triggered control strategy engage the actuators only under specific conditions.
Thus, one notable benefit of these schemes is their capacity to ensure both reliable operation and
improve energy utilization efficiency across the target systems. Specifically, in [5], Tabuada proposes
an event-triggered stabilizer based on Lyapunov for a particular category of nonlinear systems, where
the continuous and centralized monitoring is needed but the inter-section time is more than a constant.
Then, the continuous and decentralized monitoring scheme is further addressed in [6] and [7]. The
findings of [5] are further extended upon in [4] to encompass the self-triggered case, and in [8] to
address the tracking problem. For linear systems with continuous time, an event-trigger control
approach that occurs periodically is displayed in [9], and in [10], discrete-time systems as a means of
reducing the frequency of monitoring. To mitigate the impact of network characteristics like delay and
quantization, networked systems are regulated using the event-triggered control technique in [11–14].
The discussion of deterministic equivalence within event-triggered control systems is addressed in
[15]. The estimate of states and parameters is studied based on event-triggered scheme in [16] and [17],
respectively. Up to now, the event-triggered control scheme is currently a focal point of interest within
the control field. It have been extended to a variety of area, and lots of interesting results are emerging.
Because multi-agent systems have so many applications in the military and business, there has been
a lot of interest in this field. Up until this point, there have been many noteworthy achievements,
see, e.g, [18–23], simply to mention a few. In general, multi-agent systems are characterized as
distributed networks of interconnected agents. Thus, two issues should be considered, i.e., control and
communication.

The study of the event-triggered consensus problem in multi-agent systems has been spurred
due to the applicability of applying event-triggered techniques to networked systems, and numerous
intriguing findings have been made [24–44]. In [24], authors study the centralized/distributed event-
triggered consensus problem for first-order multi-agent systems, in scenarios where distributed event-
triggered is implemented, it is guaranteed that no Zero behavior occurs for a minimum of one agent.
The issue of consensus in distributed event-triggered systems is further explored in [25], specifically for
multi-agent systems utilizing combinational measurements, with each agent autonomously deciding
the moment of its event, and the Zeno behavior cannot appear before each agent reaches consensus.
In [26,27], for a category of general linear multi-agent systems, two consensus protocols utilizing
distributed event-triggered are presented, and it is assured that the bounded consensus error can rule
out the Zeno behavior.

The event-triggered scheme in [27] has been expanded upon to the case of leader-following
in [28]. In the context of general linear multi-agent systems, reference [29] presents a distributed
observer-driven output-feedback event-triggered consensus framework. Furthermore, the output-
feedback event-triggered consensus technique tailed for a passive multi-agent systems is also explored
in reference [30]. To naturally prevent the Zeno behavior, the papers [31] and [32] present distributed
event-triggered consensus schemes utilizing a sampling technique for both first-order multi-agent
systems and general linear multi-agent systems. The similar idea is used in [33]. Different from [31–33],
a decentralised event-triggered consensus scheme is formulated in [34] for first/second-order systems
where the time between events is limited by a positive constant. The study presented in paper [42]
examines the consensus problem among high-order multi-agent systems, focusing particularly on the
impact of event-triggered control. Recently, the event-triggered consensus/synchronization scheme is
further designed for nonlinear multi-agent systems in [31,45–49] and discrete-time multi-agent systems
in [35–38,50]. However, the emphasis of these studies is on multi-agent systems that are not subject to
time variation.

In practice, the system parameters or models might vary with different setting. Unfortunately, up
to now, a limited number of studies have addressed the consensus issue in multi-agent systems that
vary over time. The reason lies in that there are fewer methods and tools can be used to deal with such
systems comparing with the linear time-invariant systems. The synchronization of outputs among a
collection of linear and time-varying multi-agent systems is the subject of inquiry in [39]. However,
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the requirement of continuous communication limits its execution in practice. Thus, motivated by
this observation and the development of event-triggered consensus of time-invariant multi-agent
systems, we are particularly interested in researching the event-triggered consensus problem within a
category of generic linear time-varying multi-agent systems. The main highlights of our contributions
are outlined subsequently.

(i) We establish a general framework of event-triggered consensus control that is applicable to a
broad category of linear time-varying multi-agent systems over networks. Exponential convergence
of consensus errors is demonstrated, along with the prevention of any Zeno behavior within the
system. Despite the existence of several studies concerning event-triggered consensus schemes of
linear time-invariant multi-agent systems [24–33,35–37,39,51], in light of the information we have, this
study marks the first instance of examining the event-triggered scheme within linear time-varying
multi-agent systems.

(ii) We further apply the established general results to analyze the event-triggered consensus
among a group of specific linear time-varying multi-agent systems by using the system transformation
matrix that under assumption of the network with a spanning tree structure. It is assured that the
consensus error of the systems will exponentially converge to zero.

This work’s remaining content is presented in the following manner. A few introductions to the
algebra of graph theory, linear time-varying systems and two essential lemmas are given in Section II.
The scheme to consensus using event-triggered control for a general category of linear time-varying
multi-agent systems is discussed in Section III. we discuss our proposed scheme to tackle the event-
triggered consensus problem among a collection of linear time-varying multi-agent systems in Section
IV. In Section V, we provide a summary of the research findings.

Notations: Throughout this paper, R is used to represented the collection of real numbers; Rn

stands for the set of n × 1 real vectors; Rn×n refers to the set of n × n real matrices; 1N represents an
N × 1 column vector filled with ones; I denotes the identity matrix with the appropriate dimensions;
AT refers to the transpose of a matrix A; max{· · · } indicates the maximum value among the elements;
sup(·) stands for the supremum, which refers to the least upper bound of a set; ⊗ represents the
Kronecker product; σmax(P) and σmin(P) refer to the biggest and lowest eigenvalue of a positive definite
matrix P; diag{A1, · · · , Am}, where Ai, i = 1, 2, · · · , m, are pi × qi matrices, is a Σm

i=1 pi × Σm
i=1qi block

diagonal matrix; The symbol |z| indicates the modulus of a real number z; ∥ · ∥ denotes the Euclidean
norm; A ≥ B means that A − B is a positive semi-definite matrix.

2. Preliminary

In this section, we give some knowledge on algebraic graph theory, linear time-varying systems,
and some important lemmas. The subsequent research will be bulit upon these foundational elements.

2.1. Algebraic Graph Theory

We model a communication network among agents by means of a graph in this research. A
digraph of order N is specified as a pair G = (V , E), where V = {1, 2, · · · , N} signifies a finite and
nonempty set of agents and a collection of ordered pairs of agents comprising the edges is indicated
with E ⊆ V × V . It is important to motion that G is considered undirected if (i, j) ∈ E implies (j, i) ∈ E
for arbitrary i ∈ V and j ∈ V . The neighbors of agent i are indicated with Ni = {j ∈ V : (j, i) ∈ E}, and
j ∈ Ni signifies that node i has the ability to directly obtain the information from agent j. A sequence
i0, i1, · · · , il forms a path in a digraph. In a directed tree inside a digraph, every node except the root
has precisely one parent, which is the only node without a parent and is connected to every other node
directly through pathways. A graph’s directed spanning tree is a tree structure that uses its directed
edges to span every node. The graph is considered to contain a directed spanning tree if a portion of a
graph’s edges can form one.

In the adjacency matrix B =
[
bij
]

N×N of the digraph G, each entry bij is assigned a positive
weight if the

(
vj, vi

)
belongs to the edge set E ; and bij = 0, otherwise. Assume that each node doesn’t
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have its own edge, i.e., bii = 0. The Laplacian matrix, represented by L :=
[
dij
]
∈ RN×N , is defined

with elements such that dij = −bij when i ̸= j and dii = ∑N
j=1 bij;L is a zero row sum matrix, that is,

L1N = 0. Let r ∈ RN×1 satisfy rTL = 0 and rT1N = 1, then for a diagraph having a spanning tree, r
exists and is unique. For the Laplacian matrix of a network having a spanning tree, the subsequent
lemma is introduced to support our discussion.

Lemma 1. [39]: Given that a graph G possesses a spanning tree. It can be seen that there is a symmetric positive
definite matrix P that meets the condition of(

−L− 1NrT
)T

P + P
(
−L− 1NrT

)
= −I.

The proof of this Lemma is similar to that of Lemma 1 in [37], and omitted here.

2.2. Linear Time-Varying System

We will analyze a linear time-varying system

ẋ = A(t)x + B(t)u, x(t0) = x0, (1)

in this scenario, x ∈ Rn denotes the state and u ∈ Rm represents the control input; The matrices
A(t) ∈ Rn×n and B(t) ∈ Rn×m are system matrices that depends on time t, t0 is the initial time and
x0 ∈ Rn is the initial state vector.

We define ΦA(t0, t) as the state transition matrix associated with system (1), this represents the
sole solution to the matrix differential equation Φ̇A(t, t0) = A(t)ΦA(t, t0) with ΦA(t0, t0) = In. The
controllability syntax of pair (A(t), B(t)) is defined as

Wc(t0, t) :=
∫ t

t0

ΦA(t0, υ)B(υ)B(υ)TΦA(t0, υ)Tdυ.

Definition 1. [52]: A pair (A(t), B(t)) is classified as uniformly controllable if it is possible to find a positive
pair (ε, T) such that σmin(Wc(t, t + T)) ≥ ε for all t ≥ 0.

In the realm of time-varying systems, the persistently exciting (PE) condition is a pivotal element
in stability analysis, defined as detailed below.

Definition 2. (PE condition)[52]: To characterize a time-varying symmetric matrix ∆(t) as PE, it must satisfy
the following condition: two positive constants T and ε, are presented such that

∫ t+T

t
∆(υ)dυ ≥ εI, ∀t ∈ [t0,+∞).

By adhering to the argumentation outlined in the proof of Theorem 1 from reference [37], we
arrive at the lemma.

Lemma 2. Given that (A(t), B(t)) is uniformly controllable, then ΦA(t0, t)B(t)B(υ)TΦA(t0, t)T exhibits PE,
implying the existence of a pair (T, ε) such that

σmin

(∫ t+T

t
ΦA(t0, υ)B(υ)B(υ)TΦA(t0, υ)Tdυ

)
≥ ε.

The cooperative PE is also an important concept which is used in DCA system identification
shown in [39].

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2024                   doi:10.20944/preprints202407.0331.v1

https://doi.org/10.20944/preprints202407.0331.v1


5 of 22

Definition 3. [53]: A series of matrix-valued functions ∆i(t), i = 1, 2, · · · , N, is identified as satisfying the
cooperative PE condition provided that two positive constants T and ε can be located to satisfy

∫ t+T

t

N

∑
i=1

∆i(υ)dυ ≥ εI.

According to definition 3, the subsequent lemma is demonstrated within [53].

Lemma 3. Let ∆(t) = diag{∆1, · · · , ∆N}. If ∆i(t) is cooperative PE, and L corresponds to the Laplacian
matrix of a graph that is both undirected and connected, then there exists a pair (T, ε) such that

∫ t+T

t
[∆(υ) + L]dυ ≥ εI.

2.3. Several Inequalities

The subsequent inequalities are instrument in establishing the proof of primary theorems within
this paper.

Lemma 4. [54]: Given any two vectors m ∈ Rn, n ∈ Rn, along with a positive constant µ > 0, we can
establish that

∥m + n∥2 ≥ µ

1 + µ
∥m∥2 − µ∥n∥2.

Lemma 5. [54]: (Cauchy-Schwartz inequality): For any pair of integrable vector-valued functions f (t) ∈ Rn

and g(t) ∈ Rn, the subsequent inequality is valid:(∫ t+T

t
f (υ)Tg(υ)dυ

)2

≤
∫ t+T

t
∥ f (υ)∥2dυ

∫ t+T

t
∥g(υ)∥2dυ.

Lemma 6. Given that the function φ(t) : [t0,+∞) → [0,+∞) is non-negative and that t0 ≥ 0. Assume the
following conditions hold for a real number 0 < σ < 1 and positive constants T, ν, and γ:

φ(t) ≤ ν, t ∈ [t0, t0 + T] (2)

φ(t + T) ≤ σφ(t) + γe−αt, t ∈ [t0,+∞) (3)

with α ∈
(

0,− ln σ
T

)
, then

φ(t) ≤ b1e−βt + b2e−αt

where β = − ln σ
T , b1 = max

{
νeβ(t0+T), ν

σ eβt0
}

and b2 = γeαT

1−σeαT .

Proof. See Appendix A.

3. Event-Triggered Consensus for General Linear Time-Varying Multi-Agent Systems

This section will give the overall framework for event-triggered control design methods. It may
be applied to a collection of identical linear time-varying multi-agent systems, and the convergence of
their consensus error systems will be analyzed.

3.1. Event-Triggered Consensus Control

Consider a team of linear time-varying multi-agent systems in the following form

χ̇i = Λ(t)χi + Ξ(t)ui, t ∈ [0, ∞), i = 1, 2, · · · , N (4)
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where the control input is represented by ui ∈ Rm and the state of the ith agent is indicated by χi ∈ Rn;
Λ : [0, ∞) → Rn×n and Ξ : [0,+∞) → Rn×m are two time-varying matrices.

To optimize the use of communication resources, the paper adopts an event-triggered communication
scheme among agents. To particularize, we set a decentralized function, termed Hi

(
t, χi(t), ti

ki
, χi

(
ti
ki

))
, to

act as the trigger function for agent i, i = 1, 2, · · · , N, where ti
ki

is the ki th communication instant of agent i.
After ti

ki
, agent i continuously monitors its own state χi(t) to see if the trigger condition

Hi

(
t, χi(t), ti

ki
, χi

(
ti
ki

))
> 0 (5)

is satisfied. If satisfied, the current instant is denoted by ti+1
ki+1

, and agent i transmits ti+1
ki+1

and χi

(
ti+1
ki+1

)
to its neighboring agents immediately. At this time instant, it is said that an event occurs for agent i.
Note that ti

ki
, i = 1, · · · , N, are characterised by being independent with respect to all nodes, and does

not need to be synchronized.

Definition 4. The Zeno behavior is confirmed to be present in the system if an event happens in an infinite
times over some finite time interval.

We aim to design a distributed control ui = ν
(

t,∪j∈{i}∪Ni

(
tj
kj

, χj

(
tj
kj

)))
based on the event-

triggered communication described above, where tj
kj

is the time instant of the most recent event

occurring for agent i prior to the current time t, such that χi(t) − χj(t) → 0 for all agents while
avoiding the Zeno behavior.

Considering the information above, the event-triggered control law can be generally expressed as

ui =K(t) ∑
i∈Ni

aij

[
ψ
(

tj
kj

)
χj

(
tj
kj

)
− ψ

(
ti
ki

)
χi

(
ti
ki

)]
t ∈

[
ti
ki

, ti
ki+1

) (6)

where aij refers to the elements of the adjacent matrix A within network topology; K(t) and ψ(t) are
two bounded time-varying matrices which need to be designed. The trigger function is defined as

Hi

(
t, χi(t), ti

ki
, χi

(
ti
ki

))
= ∥eχi (t)∥

2 − ce−αt, t > ti
ki

(7)

where eχi (t) = ψ(t)χi(t)− ψ
(

ti
ki

)
χi

(
ti
ki

)
, and c, α > 0 are two positive design parameters.

Remark 1. The consensus control law (6) is different from that in general linear time-invariant systems such as
[55]. First, the control gain matrix is time-varying. Second, an extra term ψi(t) appears in the consensus term.
Thus, how to design K(t) and ψ(t) is a key issue. Moreover, the trigger function (7) is inspired by that in [32],
where c and α are two design parameters. To achieve the objective, K(t), ψ(t) and α are designed by following
the conditions of the Theorem 1 next.

For convenience of denotations, let χ =
[
χT

1 , · · · , χT
N
]

and eχ(t) =
[
eT

χ1
(t), · · · , eT

χN
(t)
]T

. The
closed-loop system is given by

χ̇ = [IN ⊗ Λ(t) + L⊗ (Ξ(t)K(t))]χ + L⊗ (Ξ(t)K(t))eχ(t). (8)

The following consensus analysis will be based on this closed loop system.
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3.2. Consensus Analysis

In the consensus analysis, to tackle the consensus problem, it is usually transformed into a stabi-
lization issue through a fitting nonsingular transformation. As a result, we establish the subsequent
assumptions regrading the system (8).

Assumption 1. Under the nonsingular transformation zi(t) = ψ(t)χi(t) + ζ, there are two time-varying
matrices Υ(t) and Θ(t), a positive semi-definite matrix Ψ(t), and a constant vector ζ that satisfy the described
conditions:

ż(t) = Υ(t)Ψ(t)z(t) + Θ(t)ez(t) (9)

z =
[
zT

1 , · · · , zT
N
]T, and ez(t) = eχ(t) with ezi(t) = zi(t)− zi

(
ti
ki

)
= [ψ(t)χi(t) + ζ]−

[
ψ
(

ti
ki

)
χi

(
ti
ki

)
+ ζ
]
=

eχi (t). Furthermore,
∥∥ψ−1(t)

∥∥ is uniformly bounded.

Assumption 2. There exists a function V(x) such that κ1zTz ≤ V(z) ≤ κ2zTz and dV(z)
dt ≤ −zTΩ(t)z +

ϱe−αt where Ω(t) is a positive semi-definite matrix, ϱ and κ are two constants.

Assumption 3. There exist constants ϖΥ, ϖΨ, ϖΘ and ϖΩ such that ∥Υ(t)∥ ≤ ϖΥ, ∥Ψ(t)∥ ≤ ϖΨ, ∥Θ(t)∥ ≤
ϖΘ, and ∥Ω(t)∥ ≤ ϖΩ for all t ≥ 0. Moreover, assume that Ω(t) ≥ Ψ(t) and Ω(t) is PE, implying the
existence of two constants T and ε such that σmin

(∫ t+T
t Ω(υ)dυ

)
≥ ε is valid.

With the preliminaries out of the way, we can now introduce our foremost result.

Theorem 1. Take into consideration the closed-loop system given by equation (8), which integrates the system
(4), operates under the event-triggered control law presented in (6) and is governed by the triggered condition
stated in (7). Under Assumptions 1-3, if α is designed such that α ∈ (0, β) with

β = − 1
T

ln

(
1 − ε2

(ε + κ2)
(
ε + 2κ2ϖΩT2ϖ2

ΥϖΨ
)),

then we have:
(i) the existence of two positive constants ζ1 and ζ2, ensuring ∑N

i=1
∥∥xi(t) + ψ−1(t)ζ

∥∥2 ≤ ζ1e−βt +

ζ2e−αt;
(ii) Zeno behavior is absent.

Proof of Theorem 1: (i) In accordance with Assumption 2, we derive that

dV(t)
dt

≤ −zTΩ(t)z + ϱe−αt. (10)

Then, by performing integration on both sides of (10) from t to t + T, one gets

V(t + T)− V(t)

≤−
∫ t+T

t

∥∥∥Ω
1
2 (υ)z(υ)

∥∥∥2
dυ +

ϱ

α

(
e−αt − e−α(t+T)

) (11)

where Ω
1
2 is derived from the decomposition of the positive semi-definite matrix Ω, i.e., Ω = Ω

1
2 Ω

1
2 ,

and based on (9), it is concluded that

z(υ) = z(t) +
∫ υ

t
(Υ(s)Ψ(s)z(s) + Θ(s)ez(s))ds. (12)
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Substituting (12) in (11) yields

V(t + T)− V(t)

≤−
∫ t+T

t
∥Ω

1
2 (υ)

(
z(t) +

∫ υ

t
(Υ(s)Ψ(s)z(s)

+Θ(s)ez(s))ds)∥2dυ +
ϱ

α

(
e−αt − e−α(t+T)

)
.

(13)

According to Lemma 4 with m = Ω
1
2 (υ)z(t) and n = Ω

1
2 (υ)

∫ υ
t (Υ(s)Ψ(s)z(s) + Θ(s)ez(s))ds, we have

V(t + T)− V(t)

≤− µ

1 + µ

∫ t+T

t

∥∥∥Ω
1
2 (υ)z(t)

∥∥∥2
dυ

+ µ
∫ t+T

t
∥Ω

1
2 (υ)

∫ υ

t
(Υ(s)Ψ(s)z(s)

+Θ(s)ez(s))ds∥2dυ +
ϱ

α

(
e−αt − e−α(t+T)

)
(14)

where µ is an arbitrary positive constant. From Assumption 3, one gets

V(t + T)− V(t)

≤− µε

1 + µ
∥z(t)∥2

+ µϖΩ

∫ t+T

t

∥∥∥∥∫ υ

t
Υ(s)Ψ(s)z(s) + Θ(s)ez(s)ds

∥∥∥∥2
dυ

+
ϱ

α

(
e−αt − e−α(t+T)

)
≤− µε

1 + µ
∥z(t)∥2

+ µϖΩ

∫ t+T

t

(∫ υ

t
∥Υ(s)Ψ(s)z(s)

+Θ(s)ez(s)∥2ds
)2

dυ +
ϱ

α

(
e−αt − e−α(t+T)

)

(15)

Using Lemma 5 with f (s) = 1 and g(s) = ∥Υ(s)Ψ(s)z(s)+ Θ(s)ez(s)∥, combining with υ − t ≤ T, we
conclude that

V(t + T)− V(t)

≤− µε

1 + µ
∥z(t)∥2 + µϖΩT

∫ t+T

t

∫ υ

t
∥Υ(s)Ψ(s)z(s)

+ Θ(s)ez(s)∥2dsdυ +
ϱ

α

(
e−αt − e−α(t+T)

) (16)
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After altering the integration order for the second term in inequality (16), in conjunction with t + T −
s ≤ T, we derive

V(t + T)− V(t)

≤− µε

1 + µ
∥z(t)∥2 + µϖΩT2

∫ t+T

t
∥Υ(υ)Ψ(υ)z(υ)

+ Θ(υ)ez(υ)∥2dυ +
ϱ

α

(
e−αt − e−α(t+T)

)
≤− µε

1 + µ
∥z(t)∥2 + 2µϖΩT2ϖ2

ΥϖΨ

∫ t+T

t
z(υ)T

· Ψ(υ)z(υ)dυ + 2µϖΩT2ϖ2
Θ

∫ t+T

t
ez(υ)

Tez(υ)dυ

+
ϱ

α

(
e−αt − e−α(t+T)

)

(17)

where the known inequality ∥m + n∥2 ≤ 2∥m∥2 + 2∥n∥2 to vectors m and n is applied to generate the
final inequality. From ez(t)Tez(t) ≤ Nce−αt, it implies that

V(t + T)− V(t)

≤− µε

1 + µ
∥z(t)∥2 + 2µϖΩT2ϖ2

ΥϖΨ

∫ t+T

t
z(υ)T

·Ψ(υ)z(υ)dυ +
2µϖΩT2ϖ2

ΘNc
α

(
e−αt − e−α(t+T)

)
+

ϱ

α

(
e−αt − e−α(t+T)

)
.

(18)

According to Assumptions 2 and 3, we have −∥z(t)∥2 ≤ −κ−1
2 V(t) and Ψ(t) ≤ Ω(t). Then,

V(t + T)− V(t)

≤− µε

(1 + µ)κ2
V(t) + 2µϖΩT2ϖ2

ΥϖΨ

∫ t+T

t
z(υ)T

·Ω(υ)z(υ)dυ +
2µϖΩT2ϖ2

ΘNc
α

(
e−αt − e−α(t+T)

)
+

ϱ

α

(
e−αt − e−α(t+T)

)
.

(19)

By substituting (11) into (19) leads to

V(t + T)− V(t)

≤− µε

(1 + µ)κ2
V(t) + 2µϖΩT2ϖ2

ΥϖΨ(V(t)

− V(t + T)) +
2µϖΩT2ϖ2

ΥϖΨϱ

α

(
e−αt − e−α(t+T)

)
+

2µϖΩT2ϖ2
ΘNc

α

(
e−αt − e−α(t+T)

)
+

ϱ

α

(
e−αt − e−α(t+T)

)
.

(20)

After that, one receives
V(t + T) ≤ κ3V(t) + κ4e−αt (21)
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where
κ3 := 1 − µε

κ2(1 + µ)
(
1 + 2µϖΩT2ϖ2

ΥϖΨ
) ,

κ4 :=
2µϖΩT2(ϖ2

ΥϖΨϱ + ϖ2
ΘNc

)
+ ϱ

α
(
1 + 2µϖΩT2ϖ2

ΥϖΨ
) .

Let µ be κ2
ε , and then we have

κ3 = 1 − ε2

(ε + κ2)
(
ε + 2κ2ϖΩT2ϖ2

ΥϖΨ
) ∈ (0, 1),

κ4 =
2κ2ϖΩT2(ϖ2

ΥϖΨϱ + ϖ2
ΘNc

)
+ ϱε

α
(
ε + 2κ2ϖΩT2ϖ2

ΥϖΨ
) .

Based on equation (10), this implies that V(t) ≤ ϱT + V(0), t ∈ [0, T). Thus, utilizing Lemma 6, we
can conclude

V(t) ≤ η1e−βt + η2e−αt (22)

if α ∈ (0, β), where β = − ln κ3
T , η1 = max{(ϱT+ V(0))eβT , ρT+V(0)

κ3

}
, and η2 = κ4eαT

1−κ3eαT .

(i) From zi(t) = ψ(t)χi(t) + ζ and κ1zTz ≤ V(t), it is simple to ascertain

N

∑
i=1

∥∥∥xi(t) + ψ−1(t)ζ
∥∥∥2

≤ V(t)
ψ2

0κ1
(23)

where ψ0 as the upper bound of ψ−1(t). Substituting (22) in (23), it results in

N

∑
i=1

∥∥∥χi(t) + ψ−1(t)ζ
∥∥∥2

≤ ζ1e−βt + ζ2e−αt (24)

where ζ1 = η1
ψ2

0κ1
and ζ2 = η2

ψ2
0κ1

.

(ii) Starting with eχi (t) = ezi(t) = zi(t) − zi

(
ti
ki

)
, it is discovered that ėzi(t) = żi(t) for t ∈[

ti
ki

, ti
ki+1

)
, and ezi

(
ti
ki

)
= 0. Thus, based on (9), we conclude that

∥eχi (t)∥ ≤
∫ t

ti
ki

∥żi(υ)∥dυ

≤
∫ t

ti
ki

∥Υ(υ)Ψ(υ)z(υ) + Θ(υ)ez(υ)∥dυ.
(25)

Based on κ1zTz ≤ V(t) and (22), we have

∥z(t)∥ ≤
√

η1

κ1
e−

β
2 ti

ki +

√
η2

κ1
e
−α
2 ti

ki . (26)

From (5) and (7), we obtain that

∥e(t)∥ ≤
√

Nce−
α
2 ti

ki . (27)

Substituting (26) and (27) back into (25), together with Assumption 3, leads to

∥eχi (t)∥ ≤
(

µ1e−βti
ki + µ2e−αti

ki

)(
t − ti

ki

)
(28)
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where µ1 = ϖΥϖΨ

√
η1
κ1

and µ2 = ϖΥϖΨ

√
η2
κ1

+ ϖΘ
√

Nc. The subsequent event will occur once

∥ei(t)∥2 = ce−αt. Therefore, the value of υ = t − ti
ki

that satisfies equation(
µ1e

(
α
2 −

β
2

)
ti
ki + µ2

)
υ =

√
Nce−

α
2 υ (29)

serves as a minimum limit for the time intervals between events. Because of 0 < α < β, the inequality

µ2 ≤ µ1e
(

α
2 −

β
2

)
ti
ki + µ2 ≤ µ1 + µ2 holds. For all ti

ki
≥ 0, the solution υ

(
ti
ki

)
is the greater or equal to υ

given by (µ1 + µ2)υ =
√

Nce−
αi
2 υ, which is strictly positive. Consequently, it is clear that the system is

free from Zeno behavior.

Remark 2. Assumptions 1-3 are crucial elements in establishing the proof of Theorem 1. In applications, how to
choose the transformation and the Lyapunov function is key for the event-triggered consensus analysis. In the
next section, we will illustrate how to identify a proper transformation and Lyapunov function for a specific
linear time-varying multi-agent system within a network that includes a spanning tree.

4. Applications to Event-Triggered Consensus of Linear Time-Varying Multi-Agent Systems
Having a Spanning Tree

This section utilizes the findings from Section III to engineer an event-triggered consensus control
strategy for a collective of identical linear time-varying multi-agent systems over a network having a
spanning tree.

4.1. Event-Triggered Control Design

Take into account a collective of identical multi-agent systems

ẋi = A(t)xi + B(t)ui, t ∈ [0, ∞), i = 1, 2, · · · , N (30)

that are linear and change over time, where the control input is represented by ui ∈ Rm and the state of
the ith agent is indicated by xi ∈ Rn; A : [0, ∞) → Rn×n and B : [0,+∞) → Rn×m are two time-varying
matrices.

Based on the control law (6), we design K(t) = B(t)TΦA(0, t)T and ψ
(

tj
kj

)
= ΦA

(
0, tj

kj

)
. Then,

the detailed control law for agent i is expressed by

ui =B(t)TΦA(0, t)T ∑
j∈Ni

γij

(
ΦA

(
0, tj

kj

)
xj

(
tj
kj

)
−ΦA

(
0, ti

ki

)
xi

(
ti
ki

)) (31)

where γi,j are the entries of the adjacency matrix Γ corresponding to the graph G, and ΦA(·, ·) is the
state transformation matrix for A(t). The design of trigger function is as

Hi

(
t, xi(t), ti

ki
, xi

(
ti
ki

))
= eT

xi(t)exi(t)− ce−αt, t > ti
ki

(32)

where exi(t) = ΦA(0, t)xi(t)− ΦA

(
0, ti

ki

)
xi

(
ti
ki

)
, and c, α > 0 are two positive design parameters.

To provide context of our main result, we must first detail the subsequent assumptions.

Assumption 4. There exist m̄ ≥ 1 and n̄ ≥ 1 such that ∥ΦA(t1, t2)∥ ≤ m̄ and ∥B(t)∥ ≤ n̄ for all t1, t2, t ≥ 0.

Assumption 5. The pair (A(t), B(t)) is uniformly controllable meaning a pair of positive numbers (ε, T) can
be found to ensure σmin(Wc(t, t + T)) ≥ ε for all t ≥ 0.
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Now that the foundation has been laid, we are prepared to introduce our primary result.

Theorem 2. Given that Assumptions 4 and 5 are met and the graph under consideration features a spanning
tree. If the constant α satisfies 0 < α < β with

β = − 1
T

ln
(

1 − ε2

(ε + σmax(P))(ε + 2σmax(P)m̄4n̄4l2T2)

)
where l is sup

{∥∥L+ 1NrT
∥∥}. Then,

(i) there exist two positive constants ζ1 and ζ2 such that

∥x − x̄∥ ≤ ζ1e
−β
2 t + ζ2e−

α
2 t (33)

i.e., all agents reach consensus;
(ii) Zeno behavior is absent in the linear time-varying system, which implies that there is a fixed positive

constant that severs as a lower bound for all time intervals ti+1
ki

− ti
ki

, i = 1, · · · , N, ki = 1, 2, · · · . The complete
proof is scheduled to be detailed in the next section.

4.2. Proof of Theorem 2

The problem of consensus is altered into a stabilization problem through the introduction of a
new variable z =

[
z1(t)T, · · · , zN(t)T]T with zi = ΦA(0, t)xi(t)− ∑N

i=1 rixi(0), where ri > 0 is defined
as in subsection 2.1. We also let ex(t) = [ex1(t), · · · , exN(t)]

T. Then, we have the following lemma
which gives the dynamic of z(t).

Lemma 7. The dynamic of the variable z(t) is governed by

ż(t) =
((

−L− 1NrT
)
⊗ G(t)

)
z(t)− (L⊗ G(t))ex(t) (34)

where G(t) = ΦA(0, t)B(t)B(t)TΦA(0, t)T, and L is the Lapalacian matrix of graph G.

Proof. See Appendix B.

Proof of Theorem 2: To employ Theorem 1, we need to check Assumptions 1-3.
1) Let Υ(t) =

(
−L− 1NrT)⊗ I, Ψ(t) = I ⊗ G(t), Θ(t) = −(L ⊗ G(t)), and ζ = −∑N

i=1 rixi(0).
Obviously, Ψ(t) is a positive semi-definite matrix and under a nonsingular transition zi(t) = ψ(t)xi(t)+
ζ = ΦA(0, t)xi(t)− ∑N

i=1 rixi(0), the dynamic described in (34) suggests that Assumption 1 is satisfied.
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2) As the network includes a spanning tree, a positive matrix P that meets the Lemma 1 can be
determined. With the Lyapunov function defined as V = zT(P ⊗ In)z,

dV
dt

=ż(t)T(P ⊗ In)z(t) + z(t)T(P ⊗ In)ż(t)

=zT
((

−L− 1NrT
)
⊗ Ψ(t)

)T
(P ⊗ In)z

+ zT(P ⊗ In)
((

−L− 1NrT
)
⊗ Ψ(t)

)
z

+ 2zT(P ⊗ In)((−L)⊗ Ψ(t))ex(t)

=− 2zT(In ⊗ Ψ(t))z

− 2ex(t)T
(

PL⊗ Ψ
1
2 (t)

)(
In ⊗ Ψ

1
2 (t)

)
z

≤− zT(In ⊗ Ψ(t))z

+ eT
x (t)

(
PL(PL)T ⊗ Ψ(t)

)
ex(t)

≤− zT(In ⊗ Ψ(t))z + ρNce−αt

(35)

where ρ = σ2
max(PL)m̄2n̄2. Let κ1 = σmin(P), κ2 = σmax(P), ϱ = ρNc and Ω(t) = In ⊗ G(t). Obviously,

Assumption 2 holds.
3) Let ϖΥ = l, ϖΨ = m̄2n̄2, ϖΘ = ∥L∥m̄2n̄2 and ϖΩ = m̄2n̄2. It can be seen from Assumptions 4

and 5 that Assumption 3 holds.
The proof has been completed according to Theorem 1.

4.3. Simulation Example

In this section, We consider an example to demonstrate the efficacy of our consensus control
method. Consider the subsequent agent model (30) with i = 1, 2, 3, 4, where

A(t) =

[
0 1
−1 0

]
, B(t) =

[
cos(t)
sin(t)

]

The transmition matrix for A(t) is

Φ(0, t) =

[
cos(t) − sin(t)
sin(t) cos(t)

]
(36)

It is easily shown that Assumptions 4 and 5 hold, where m̄ = 1, n̄ = 1, T = 2π and ε = 1.2. Moreover,
the network configuration is illustrated in Figure 1.

2

34

1

(a)

Figure 1. The network topology
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It is evident that a spanning tree exists, and the adjacency matrix is given by

Γ =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 (37)

In the simulation, we use the control law (31) along with the trigger function (32), and set the
design parameter c = 1 and α = 0.5 ∈ (0, 0.68), and the initial states are given by x1 = [1.4, 1], x2 =

[0.3, 0], x3 = [−1.2,−0.5], x4 = [−0.5,−1]. Figures 2–4 display the outcomes of the simulation. The
states of all agents presented in Figure 2 confirm the achievement of state consensus. The curves of the
supervised errors and the threshold function are shown in Figure 3, and the time vs event interval is
shown in Figure 4. It is evident that there is no occurrence of Zeno behavior in the closed-loop system.
This also accords with the results that presented in Theorem 2.
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Figure 2. (a) Curves of states x11(t); x21(t); x31(t) and x41(t);(b) Curves of states x12(t); x22(t); x32(t)
and x42(t).
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Figure 3. Supervised error ||e1(t)||2, ||e2(t)||2, ||e3(t)||2, ||e4(t)||2 and threshold ceαt.
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Fig. 4:Figure 4. Time vs event interval.
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5. Conclusions

Our goal in this study is to establish a general framework for the design of consensus control in
a set of linear time-varying multi-agent systems using an event-triggered communication approach.
Based on certain assumptions, we proved the exponential convergence of all states of systems, and the
occurrence of Zeno behavior is also precluded. The event-triggered scheme is used in communication
process. Thus, our scheme can save the communication resource. Moreover, we implement the
proposed event-triggered scheme to address the issue of event-triggered consensus within specific
linear time-varying multi-agent systems.
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Appendix A. PROOF OF LEMMA 6

For all t ≥ t0, consider N to be the positive number that satisfies t0 + (N − 1)T ≤ t ≤ t0 + NT.
Then,

Case (i) : t ≥ t0 + T. From (3), it can be inferred that

φ(t) ≤σφ(t − T) + γe−α(t−T)

≤σ2 φ(t − 2T) + σγe−α(t−2T) + γe−α(t−T)

...

≤σN−1 φ(t − (N − 1)T) + σN−2γe−α(t−(N−1)T)

+ · · ·+ γe−α(t−T)

≤σN−1 φ(t − (N − 1)T) +
[
σN−2e(N−1)αT

+ · · ·+ σe2αT + eαT
]
γe−αt.

(A1)

It follows from t0 + NT ≥ t that N ≥ t−t0
T and t − (N − 1)T ∈ [t0, t0 + T). Together with (2), we

have
σN−1 φ(t − (N − 1)T) ≤ ν

σ
σ

t−t0
T

=
ν

σ
e−(−

ln σ
T )(t−t0)

=
ν

σ
e−β(t−t0)

(A2)

where β = − ln σ
T . For 0 < α < − ln σ

T , the inequality σeαT < 1 holds. Therefore,[
σN−2e(N−1)αT + · · ·+ σe2αT + eαT

]
γe−αt

≤γe−αt
eαT
(

1 −
(
σeαT)N−1

)
1 − σeαT

≤ γeαT

1 − σeαT e−αt.

(A3)
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Substituting (A1) and (A2) into (A3) yields

φ(t) ≤ ν

σ
eβt0 e−βt +

γeαT

1 − σeαT e−αt (A4)

Case (ii): t0 ≤ t ≤ t0 + T. It is easy to get

φ(t) ≤ ν ≤ νeβ(t0+T)

eβt (A5)

Definite b1 := max
{

νeβ(t0+T), ν
σ eβt0

}
and b2 := γ1eαT

1−σeαT . Then, from (A4) and (A5), one gets

φ(t) ≤ b1e−βt + b2e−αt, t ∈ [t0,+∞). (A6)

This complete this proof.

Appendix B. PROOF OF LEMMA 7

Differentiating both sides of ΦA(0, t)ΦA(t, 0) = In results into

Φ̇A(0, t) = −ΦA(0, t)Φ̇A(t, 0)ΦA(0, t)

= −ΦA(0, t)A(t).
(A7)

Then, one gets
żi(t) =Φ̇A(0, t)xi(t) + ΦA(0, t)ẋi(t)

=ΦA(0, t)B(t)B(t)TΦA(0, t)T

× ∑
j∈Ni

rij

(
ΦA

(
0, tj

kj

)
xj

(
tj
kj

)
−ΦA

(
0, ti

ki

)
xi

(
ti
ki

))
.

(A8)

Considering exi = ΦA

(
0, ti

ki

)
xi

(
ti
ki

)
− ΦA(0, t)xi(t) and zi(t) = ΦA(0, t)xi(t)− ∑N

i=1 rixi(0), we fur-
ther have

żi(t) =ΦA(0, t)B(t)B(t)TΦA(0, t)T

× ∑
j∈Ni

rij
(
zj(t)− zi(t)

)
+ ΦA(0, t)B(t)B(t)TΦA(0, t)T

× ∑
j∈Ni

rij
(
exj(t)− exi(t)

) (A9)

ż(t) = ((−L)⊗ G(t))(z(t) + ex(t)). (A10)

Observe that
(
1NrT ⊗ In

)
ż(t) = 0 and

(
1NrT ⊗ In

)
z(0) = 0. From this, we deduce that

ż(t) =
((

−L− 1NrT
)
⊗ G(t)

)
z(t)− (L⊗ G(t))ex(t).

The proof comes to an end.
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