Preprint
Article

Affine Type Aq Functional Equation In Various Banach Spaces

Altmetrics

Downloads

114

Views

28

Comments

0

Submitted:

01 July 2024

Posted:

04 July 2024

You are already at the latest version

Alerts
Abstract
In this paper, we analyze the generalized Ulam-Hyers stability of affine type AQ Functional Equation in various Banach Spaces using Direct and Fixed Methods
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis

1. Introduction

A inspirational and popular talk presented by S.M Ulam [37] in 1940, refreshed the reading of stability problems for various functional equations. He gave a wide range of talk before a Mathematical Colloquium at the University of Wisconsin in which he presented a list of unsolved problems.
The first assertive answer to Ulam’s question concerning the problem of stability of functional equations was given by D.H. Hyers [20] for the case of additive mappings in Banach spaces. In growth of time, the theorem delivered by Hyers was generalized by T. Aoki [3], Th.M Rassias [30], J.M. Rassias [28], P. Gavruta [19] for additive mappings and K. Ravi [32] for quadratic mappings.
The famous additive and quadratic functional equations are
F ( w 1 + w 2 ) = F ( w 1 ) + F ( w 2 ) ,
and
F ( w 1 + w 2 ) + F ( w 1 w 2 ) = 2 F ( w 1 ) + 2 F ( w 2 ) .
The general solution and generalized Ulam - Hyers stability of several types of functional equations in various normed spaces were discussed by many authors one can see [2,16,18,21,22,31] and references there in.
Also, the general solution and Hyers-Ulam-Rassias stability of the several affine functional equations are discussed by L. Lucht, C. Methfessel [23], L. Cadariu, L. Gavruta, P. Gavruta [15], Md. Nasiruzzaman [26], M. Mursaleen, KJ. Ansari[25].
Infact, the general solution and generalized Hyers-Ulam stability of the several AQ functional equations are established in [4,5,6,7,8,9,10,11,12,14,29].
In this paper, the we analyze the generalized Ulam-Hyers stability of affine type AQ Functional Equation of the form
F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) = 6 F ψ = 1 3 w ψ + 1 2 F ψ = 1 3 w ψ + F ψ = 1 3 w ψ ψ = 1 3 F ( w ψ ) 5 2 F ( w ψ ) + F ( w ψ )
in various Banach Spaces using Direct and Fixed Methods .
Lemma 1.1. 
[26] Let A and B be real vector spaces. Suppose F : A B be an odd mapping satisfies (3) then F is additive.
Lemma 1.2. 
[17] Let A and B be real vector spaces. Suppose F : A B be an even mapping satisfies (3) then F is quadratic.
Now, we present the result due to Margolis, Diaz [24] and Radu [27] for fixed point theory.
Theorem 1.3. 
[24,27] Suppose that for a complete generalized metric space ( Ω , δ ) and a strictly contractive mapping T : Ω Ω with Lipschitz constant L. Then, for each given x Ω , either
d ( T n x , T n + 1 x ) = n 0 ,
or there exists a natural number n 0 such that
  • (FPC1) d ( T n x , T n + 1 x ) < for all n n 0 ;
  • (FPC2) The sequence ( T n x ) is convergent to a fixed point y * of T
  • (FPC3) y * is the unique fixed point of T in the set Δ = { y Ω : d ( T n 0 x , y ) < } ;
  • (FPC4) d ( y * , y ) 1 1 L d ( y , T y ) for all y Δ .

2. Stability In Banach Space of (3)

In this section, we explore the generalized Ulam - Hyers stability of the functional equation (3) in Banach space. To prove stability results, let us take W 1 be a normed space and W 2 be a Banach space. Suppose that F : W 1 W 2 and Ψ : W 1 3 [ 0 , ) satisfying the following functional inequalities
F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 6 F ψ = 1 3 w ψ 1 2 F ψ = 1 3 w ψ + F ψ = 1 3 w ψ + ψ = 1 3 F ( w ψ ) 5 2 F ( w ψ ) + F ( w ψ ) Ψ w 1 , w 2 , w 3 ,
and
F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 6 F ψ = 1 3 w ψ 1 2 F ψ = 1 3 w ψ + F ψ = 1 3 w ψ + ψ = 1 3 F ( w ψ ) 5 2 F ( w ψ ) + F ( w ψ ) δ , δ ψ = 1 3 w ψ φ , δ ψ = 1 3 w ψ φ   ψ , δ ψ = 1 3 w ψ φ , δ ψ = 1 3 w ψ φ   ψ , δ ψ = 1 3 w ψ 3 φ + ψ = 1 3 w ψ φ ,
for all w 1 , w 2 , w 3 W 1 and δ be a positive constant.

2.1. Oddness of F : Additive Case Stability Results : Direct Method

Theorem 2.1. 
Suppose that an odd function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the condition
lim Ψ 5 μ w 1 , 5 μ w 2 , 5 μ w 3 5 μ = 0 ; μ = ± 1
for all w 1 , w 2 , w 3 W 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
F ( w 1 ) A ( w 1 ) 1 5 η = 1 μ 2 1 5 η μ Ψ A 5 η μ w 1
= 1 5 η = 1 μ 2 1 5 η μ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1
and the mapping A ( w 1 ) is obtained by
A ( w 1 ) = lim 1 5 μ F 5 μ w 1
for all w 1 W 1 .
Proof. 
Using oddness of F in (1), we get
F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 6 F ψ = 1 3 w ψ + ψ = 1 3 F ( w ψ ) Ψ w 1 , w 2 , w 3 , w 1 , w 2 , w 3 W 1 .
Interchanging w 1 , w 2 , w 3 by w 1 , w 1 , w 1 in (7), we obtain
3 F ( 5 w 1 ) 6 F 3 w 1 + 3 F ( w 1 ) Ψ w 1 , w 1 , w 1 , w 1 W 1 .
Again interchanging w 1 , w 2 , w 3 by w 1 , w 1 , w 1 in (7), we have
2 F ( 3 w 1 ) 6 F w 1 Ψ w 1 , w 1 , w 1 6 F ( 3 w 1 ) 18 F w 1 3 Ψ w 1 , w 1 , w 1 , w 1 W 1 .
Combining (8) and (9), we arrive
3 F ( 5 w 1 ) 15 F ( w 1 ) 3 F ( 5 w 1 ) 6 F 3 w 1 + 3 F ( w 1 ) + 6 F ( 3 w 1 ) 18 F w 1 Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1 , w 1 W 1 .
One can see from (10) that
F ( 5 w 1 ) 5 F ( w 1 ) 1 3 Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1 = Ψ A w 1 , w 1 W 1 .
It follows from (11) that
1 5 F ( 5 w 1 ) F ( w 1 ) 1 5 Ψ A w 1 , w 1 W 1 .
Generalizing for a positive integer , we get
1 5 F ( 5 w 1 ) F ( w 1 ) 1 5 η = 0 1 5 η Ψ A 5 η w 1 , w 1 W 1 .
Now, changing w 1 by 5 1 w 1 in (13), we obtain
1 5 + 1 F ( 5 + 1 w 1 ) 1 5 1 F ( 5 1 w 1 ) = 1 5 1 1 5 F ( 5 + 1 w 1 ) F ( 5 1 w 1 ) 1 5 η = 0 1 5 η + 1 Ψ A 5 η + 1 w 1 0 a s 1 , w 1 W 1 .
Therefore, the sequence
1 5 F ( 5 w 1 ) ,
is a Cauchy sequence and it converges to A ( w 1 ) in W 2 . So, we define
A ( w 1 ) = lim 1 5 F 5 w 1 , w 1 W 1 .
Taking limit in (13), we have
A ( w 1 ) F ( w 1 ) 1 5 η = 0 1 5 η Ψ A 5 η w 1 , w 1 W 1 .
Thus, (4) and (5) holds for μ = 1 . Interchanging
w 1 , w 2 , w 3 = 5 w 1 , 5 w 2 , 5 w 3 ,
we arrive
1 5 F ( 5 ( 3 w 1 + w 2 + w 3 ) ) + F ( 5 ( w 1 + 3 w 2 + w 3 ) ) + F ( 5 ( w 1 + w 2 + 3 w 3 ) ) 6 F ψ = 1 3 5 w ψ 1 2 F ψ = 1 3 5 w ψ + F ψ = 1 3 5 w ψ + ψ = 1 3 F ( 5 w ψ ) 5 2 F ( 5 w ψ ) + F ( 5 w ψ ) 1 5 Ψ 5 w 1 , 5 w 2 , 5 w 3 , w 1 , w 2 , w 3 W 1 .
Taking limit in (17), using (15) and (3), we get
A ( 3 w 1 + w 2 + w 3 ) + A ( w 1 + 3 w 2 + w 3 ) + A ( w 1 + w 2 + 3 w 3 ) = 6 A ψ = 1 3 w ψ + 1 2 A ψ = 1 3 w ψ + A ψ = 1 3 w ψ ψ = 1 3 A ( w ψ ) 5 2 A ( w ψ ) + A ( w ψ )
for all w 1 , w 2 , w 3 W 1 . So, A ( w 1 ) satisfies (3). In order to confirm that A ( w 1 ) is unique, suppose B ( w 1 ) be another mapping (3), (15) and (16), we obtain
A ( w 1 ) B ( w 1 ) = 1 5 A 5 w 1 1 5 B 5 w 1 1 5 A 5 w 1 F 5 w 1 + 1 5 F 5 w 1 B 5 w 1 2 5 η = 0 1 5 η + Ψ A 5 η + w 1 0 a s 1 ,
for all w 1 W 1 . Therefore A ( w 1 ) is unique. So, the Theorem holds for μ = 1 .
Changing w 1 = w 1 5 in (11), we have
F ( w 1 ) 5 F w 1 5 Ψ A w 1 5 , w 1 W 1 .
Generalizing for a positive integer , we get
F ( w 1 ) 5 F w 1 5 η 1 5 η = 1 5 η Ψ A w 1 5 η , w 1 W 1 .
The rest of the proof is similar to that of above case. So, the Theorem holds for μ = 1 . Hence the proof is complete □
Corollary 2.2. 
Suppose that an odd function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
F ( w 1 ) A ( w 1 ) δ | 3 | , 4 δ | w 1 | φ | 5 5 φ | ; φ 1 , 4 δ 3 ψ = 1 3 | w ψ | φ   ψ | 5 5 φ   ψ | ; φ 1 , φ 2 , φ 3 1 , 4 δ | w 1 | 3 φ 3 | 5 5 3 φ | ; 3 φ 1 , 4 δ | w ψ | ψ = 1 3 φ   ψ 3 | 5 5 ψ = 1 3 φ   ψ | ; ψ = 1 3 φ   ψ 1 , 16 δ | w 1 | 3 φ 3 | 5 5 3 φ | ; 3 φ 1 ,
for all w 1 W 1 .

2.2. Evenness of F : Quadratic Case Stability Results : Direct Method

Theorem 2.3. 
Suppose that an even function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the condition
lim Ψ 5 μ w 1 , 5 μ w 2 , 5 μ w 3 25 μ = 0 ; μ = ± 1
for all w 1 , w 2 , w 3 W 1 . Then there exists a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
F ( w 1 ) Q ( w 1 ) 1 25 η = 1 μ 2 1 25 η μ Ψ Q 5 η μ w 1
= 1 25 η = 1 μ 2 1 25 η μ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 7 2 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1
and the mapping Q ( w 1 ) is obtained by
Q ( w 1 ) = lim 1 25 μ F 5 μ w 1
for all w 1 W 1 .
Proof. 
Using evenness of F in (1), we get
F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 7 F ψ = 1 3 w ψ 4 ψ = 1 3 F ( w ψ ) Ψ w 1 , w 2 , w 3 , w 1 , w 2 , w 3 W 1 .
Interchanging w 1 , w 2 , w 3 by w 1 , w 1 , w 1 in (25), we obtain
3 F ( 5 w 1 ) 7 F 3 w 1 12 F ( w 1 ) Ψ w 1 , w 1 , w 1 , w 1 W 1 .
Again interchanging w 1 , w 2 , w 3 by w 1 , w 1 , w 1 in (25), we have
2 F ( 3 w 1 ) 18 F w 1 Ψ w 1 , w 1 , w 1 7 F ( 3 w 1 ) 63 F w 1 7 2 Ψ w 1 , w 1 , w 1 , w 1 W 1 .
Combining 26 and (27), we arrive
3 F ( 5 w 1 ) 75 F ( w 1 ) 3 F ( 5 w 1 ) 7 F 3 w 1 12 F ( w 1 ) + 7 F ( 3 w 1 ) 63 F w 1 Ψ w 1 , w 1 , w 1 + 7 2 Ψ w 1 , w 1 , w 1 , w 1 W 1 .
One can see from (28) that
F ( 5 w 1 ) 25 F ( w 1 ) 1 3 Ψ w 1 , w 1 , w 1 + 7 2 Ψ w 1 , w 1 , w 1 = Ψ Q w 1 , w 1 W 1 .
It follows from (29) that
1 25 F ( 5 w 1 ) F ( w 1 ) 1 25 Ψ Q w 1 , w 1 W 1 .
The rest of the proof is similar to that of Theorem 2.1. Hence the proof is complete. □
Corollary 2.4. 
Suppose that an even function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
F ( w 1 ) Q ( w 1 ) 3 δ 2 | 24 | , 27 δ | w 1 | φ 6 | 25 5 φ | ; φ 2 , 9 δ 6 ψ = 1 3 | w ψ | φ   ψ | 25 5 φ   ψ | ; φ 1 , φ 2 , φ 3 2 , 9 δ | w 1 | 3 φ 6 | 25 5 3 φ | ; 3 φ 2 , 9 δ | w ψ | ψ = 1 3 φ   ψ 6 | 25 5 ψ = 1 3 φ   ψ | ; ψ = 1 3 φ   ψ 2 , 36 δ | w 1 | 3 φ 6 | 25 5 3 φ | ; 3 φ 2 ,
for all w 1 W 1 .

2.3. Oddness and Evenness of F : Additive Quadratic Case Stability Results : Direct Method

Theorem 2.5. 
Suppose that a function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the conditions (3) and (21) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 and a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
F ( w 1 ) A ( w 1 ) Q ( w 1 ) 1 2 1 5 η = 1 μ 2 1 5 η μ Ψ A 5 η μ w 1 + Ψ A 5 η μ w 1 + 1 25 η = 1 μ 2 1 25 η μ Ψ Q 5 η μ w 1 + Ψ Q 5 η μ w 1 1 2 1 5 η = 1 μ 2 1 5 η μ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 1 25 η = 1 μ 2 1 25 η μ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 7 2 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 7 2 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1
and the mapping A ( w 1 ) and Q ( w 1 ) are given in (6) and (24) for all w 1 W 1 .
Proof. 
Consider a function F o d d ( w 1 ) by
F o d d ( w 1 ) = 1 2 F ( w 1 ) F ( w 1 ) , w 1 W 1 ,
which gives
F o d d ( 0 ) = 0 ; F o d d ( w 1 ) = F o d d ( w 1 ) , w 1 W 1 .
By Theorem 2.1, it follows from (33), (1), (5) and (6), we arrive
F o d d ( w 1 ) A ( w 1 )
1 2 · 1 5 η = 1 μ 2 1 5 η μ Ψ A 5 η μ w 1 + Ψ A 5 η μ w 1 = 1 2 · 1 5 η = 1 μ 2 1 5 η μ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1
+ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1
for all w 1 , w 2 , w 3 W 1 . Consider a function F e v e n ( w 1 ) by
F e v e n ( w 1 ) = 1 2 F ( w 1 ) + F ( w 1 ) , w 1 W 1 ,
which gives
F e v e n ( 0 ) = 0 ; F e v e n ( w 1 ) = F e v e n ( w 1 ) , w 1 W 1 .
By Theorem 2.3, it follows from (37), (1), (22) and (23), we see
F e v e n ( w 1 ) Q ( w 1 )
1 2 · 1 25 η = 1 μ 2 1 25 η μ Ψ Q 5 η μ w 1 + Ψ Q 5 η μ w 1 = 1 2 · 1 25 η = 1 μ 2 1 25 η μ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 7 2 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1
+ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 7 2 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1
for all w 1 , w 2 , w 3 W 1 . Assume a function F ( w 1 ) by
F ( w 1 ) = F o d d ( w 1 ) + F e v e n ( w 1 ) , w 1 W 1 .
Now, it follows from (35), (36), (39), (40) and (41), we have
F ( w 1 ) A ( w 1 ) Q ( w 1 ) F o d d ( w 1 ) A ( w 1 ) + F e v e n ( w 1 ) Q ( w 1 ) 1 2 1 5 η = 1 μ 2 1 5 η μ Ψ A 5 η μ w 1 + Ψ A 5 η μ w 1 + 1 25 η = 1 μ 2 1 25 η μ Ψ Q 5 η μ w 1 + Ψ Q 5 η μ w 1 1 2 1 5 η = 1 μ 2 1 5 η μ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 1 25 η = 1 μ 2 1 25 η μ 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 7 2 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 1 3 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1 + 7 2 Ψ 5 η μ w 1 , 5 η μ w 1 , 5 η μ w 1
for all w 1 , w 2 , w 3 W 1 . □
Corollary 2.6. 
Suppose that a function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 and a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
F ( w 1 ) A ( w 1 ) Q ( w 1 ) δ | 3 | + 3 δ 2 | 24 | , 4 δ | w 1 | φ | 5 5 φ | + 27 δ | w 1 | φ 6 | 25 5 φ | ; φ 1 , 2 , 4 δ 3 ψ = 1 3 | w ψ | φ   ψ | 5 5 φ   ψ | + 9 δ 6 ψ = 1 3 | w ψ | φ   ψ | 25 5 φ   ψ | ; φ 1 , φ 2 , φ 3 1 , 2 , 4 δ | w 1 | 3 φ 3 | 5 5 3 φ | + 9 δ | w 1 | 3 φ 6 | 25 5 3 φ | ; 3 φ 1 , 2 , 4 δ | w ψ | ψ = 1 3 φ   ψ 3 | 5 5 ψ = 1 3 φ   ψ | + 9 δ | w ψ | ψ = 1 3 φ   ψ 6 | 25 5 ψ = 1 3 φ   ψ | ; ψ = 1 3 φ   ψ 1 , 2 , 16 δ | w 1 | 3 φ 3 | 5 5 3 φ | + 36 δ | w 1 | 3 φ 6 | 25 5 3 φ | ; 3 φ 1 , 2 ,
for all w 1 W 1 .

2.4. Oddness of F : Additive Case Stability Results : Fixed Method

Theorem 2.7. 
Suppose that an odd function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the condition
lim Ψ τ ν w 1 , τ ν w 2 , τ ν w 3 τ ν = 0 ; τ ν = 5 ; ν = 0 1 5 ; ν = 1 , w 1 , w 2 , w 3 W 1 .
If there exists L = L ( ν ) be a function have the property
Ψ A ( w 1 ) = Ψ A w 1 5 a n d 1 τ ν Ψ A τ ν w 1 = L Ψ A ( w 1 ) , w 1 W 1 .
Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
F ( w 1 ) A ( w 1 ) L 1 ν 1 L Ψ A w 1
= L 1 ν 1 L 1 3 Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1
and the mapping A ( w 1 ) is obtained by
A ( w 1 ) = lim 1 τ ν F τ ν w 1
for all w 1 W 1 .
Proof. 
Assume a set
G = { F / F : W 1 W 2 , F ( 0 ) = 0 }
and introduce the generalized metric on the above set G as
d ( F , F 1 ) = inf { K ( 0 , ) : F ( w 1 ) F 1 ( w 1 ) K Ψ ( w 1 , w 1 , w 1 ) , w 1 W 1 } .
It is easy to see that ( G , d ) is complete. Define a function H : G G by
H F ( w 1 ) = 1 τ ν F ( τ ν w 1 ) , f o r a l l w 1 W 1 .
Now F , F 1 G and w 1 W 1 , we see
d ( F , F 1 ) K F ( w 1 ) F 1 ( w 1 ) K Ψ ( w 1 , w 1 , w 1 ) , 1 τ ν F ( τ ν w 1 ) 1 τ ν F 1 ( τ ν w 1 ) 1 τ ν K Ψ ( τ ν w 1 , τ ν w 1 , τ ν w 1 ) , H F ( w 1 ) H F 1 ( w 1 ) L K Ψ ( w 1 , w 1 , w 1 ) , d ( H F , H F 1 ) L K ,
i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]).
For the case ν = 0 , it follows from (12) and with the help of (44), (50), (49), we get
1 5 F ( 5 w 1 ) F ( w 1 ) 1 5 Ψ A w 1 , d ( H F , F ) L = L 1 ν , w 1 W 1 .
For the case ν = 1 , it follows from (18) and with the help of (44), (50), (49), we obtain
F ( w 1 ) 5 F w 1 5 Ψ A w 1 5 , d ( F , H F ) 1 = L 1 ν , w 1 W 1 .
Combining (51) and (52), we have
d ( F , H F ) 1 = L 1 ν .
Therefore ( F P C 1 ) of Theorem 1.3 holds. The rest of the proof follows by Theorem 1.3. Hence the proof is complete. □
Corollary 2.8. 
Suppose that an odd function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality (20) for all w 1 W 1 .
Proof. 
If we take
Ψ w 1 , w 2 , w 3 = δ , δ ψ = 1 3 w ψ φ , δ ψ = 1 3 w ψ φ   ψ , δ ψ = 1 3 w ψ φ , δ ψ = 1 3 w ψ φ   ψ , δ ψ = 1 3 w ψ 3 φ + ψ = 1 3 w ψ φ ,
in Theorem 2.7 and changing w 1 , w 2 , w 3 by τ ν w 1 , τ ν w 2 , τ ν w 3 and dividing by τ ν in (54), one can see
1 τ ν Ψ τ ν w 1 , τ ν w 2 , τ ν w 3 = δ τ ν 0 a s t o , δ τ ν ψ = 1 3 τ ν w ψ φ , 0 a s t o , δ τ ν ψ = 1 3 τ ν w ψ φ   ψ , 0 a s t o , δ τ ν ψ = 1 3 τ ν w ψ φ , 0 a s t o , δ τ ν ψ = 1 3 τ ν w ψ φ   ψ , 0 a s t o , δ τ ν ψ = 1 3 τ ν w ψ 3 φ + ψ = 1 3 τ ν w ψ φ , 0 a s t o .
Therefore (43) holds for all w 1 , w 2 , w 3 W 1 . Now, from (44), we have
Ψ A ( w 1 ) = Ψ A w 1 5 = 1 3 Ψ w 1 5 , w 1 5 , w 1 5 + 3 Ψ w 1 5 , w 1 5 , w 1 5 = 4 δ 3 , 12 | w 1 5 | φ 3 , 4 δ 3 ψ = 1 3 w 1 5 φ   ψ , 4 δ | w 1 5 | 3 φ 3 , 4 δ | w 1 5 | ψ = 1 3 φ   ψ 3 , 16 δ | w 1 5 | 3 φ 3 ,
1 τ ν Ψ A τ ν w 1 = 1 τ ν 1 3 Ψ τ ν w 1 , τ ν w 1 , τ ν w 1 + 3 Ψ τ ν w 1 , τ ν w 1 , τ ν w 1 = 4 δ τ ν · 3 , 12 δ | τ ν w 1 | φ τ ν · 3 , 4 δ τ ν · 3 ψ = 1 3 τ ν w ψ φ   ψ , 4 δ | τ ν w 1 | 3 φ τ ν · 3 , 4 δ | τ ν w 1 | ψ = 1 3 φ   ψ τ ν · 3 , 16 δ | τ ν w 1 | 3 φ τ ν · 3 , = τ ν 1 Ψ A ( w 1 ) , τ ν φ 1 Ψ A ( w 1 ) , ψ = 1 3 τ ν φ   ψ 1 Ψ A ( w 1 ) , τ ν 3 φ 1 Ψ A ( w 1 ) , τ ν ψ = 1 3 φ   ψ 1 Ψ A ( w 1 ) , τ ν 3 φ 1 Ψ A ( w 1 ) , = L Ψ A ( w 1 ) L Ψ A ( w 1 ) L Ψ A ( w 1 ) L Ψ A ( w 1 ) L Ψ A ( w 1 ) L Ψ A ( w 1 )
for all w 1 W 1 .
For the case ν = 0 , we have L = τ 0 1 = 5 1 and from (46), we arrive
F ( w 1 ) A ( w 1 ) L 1 ν 1 L Ψ A w 1 = L 1 ν 1 L 1 3 Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1 = ( 5 1 ) 1 0 1 5 1 4 δ 3 = δ 3 .
For the case ν = 1 , we have L = τ 1 1 = ( 1 5 ) 1 = 5 and from (46), we obtain
F ( w 1 ) A ( w 1 ) L 1 ν 1 L Ψ A w 1 = L 1 ν 1 L 1 3 Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1 = ( 5 ) 1 1 1 5 4 δ 3 = δ 3 .
For the case ν = 0 , we have L = τ 0 φ 1 = 5 φ 1 and from (46), we arrive
F ( w 1 ) A ( w 1 ) L 1 ν 1 L Ψ A w 1 = L 1 ν 1 L 1 3 Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1 = ( 5 φ 1 ) 1 0 1 5 φ 1 12 δ | w 1 5 | φ 3 = 4 δ 5 5 φ .
For the case ν = 1 , we have L = τ 1 φ 1 = ( 1 5 ) φ 1 = 5 1 φ and from (46), we get
F ( w 1 ) A ( w 1 ) L 1 ν 1 L Ψ A w 1 = L 1 ν 1 L 1 3 Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1 = ( 5 1 φ ) 1 1 1 5 1 φ 12 δ | w 1 5 | φ 3 = 4 δ 5 φ 5 .
For the case ν = 0 , we have L = τ 0 3 φ 1 = 5 3 φ 1 and from (46), we arrive
F ( w 1 ) A ( w 1 ) L 1 ν 1 L Ψ A w 1 = L 1 ν 1 L 1 3 Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1 = ( 5 3 φ 1 ) 1 0 1 5 3 φ 1 4 δ | w 1 5 | 3 φ 3 = 4 δ | w 1 | 3 φ 3 ( 5 5 3 φ ) .
For the case ν = 1 , we have L = τ 1 3 φ 1 = ( 1 5 ) 3 φ 1 = 5 1 3 φ and from (46), we obtain
F ( w 1 ) A ( w 1 ) L 1 ν 1 L Ψ A w 1 = L 1 ν 1 L 1 3 Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1 = ( 5 1 3 φ ) 1 1 1 5 1 3 φ 4 δ | w 1 5 | 3 φ 3 = 4 δ | w 1 | 3 φ 3 ( 5 3 φ 5 ) .
Similarly, we can prove for rest of the cases. □

2.5. Evenness of F : Quadratic Case Stability Results : Fixed Method

Theorem 2.9. 
Suppose that an even function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the condition
lim Ψ τ ν w 1 , τ ν w 2 , τ ν w 3 τ ν 2 = 0 ; τ ν = 5 ; ν = 0 1 5 ; ν = 1 , w 1 , w 2 , w 3 W 1 .
If there exists L = L ( ν ) be a function have the property
Ψ Q ( w 1 ) = Ψ Q w 1 5 a n d 1 τ ν 2 Ψ Q τ ν w 1 = L Ψ Q ( w 1 ) , w 1 W 1 .
for all w 1 , w 2 , w 3 W 1 . Then there exists a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
F ( w 1 ) Q ( w 1 ) L 1 ν 1 L Ψ Q w 1
= L 1 ν 1 L 1 3 Ψ w 1 , w 1 , w 1 + 7 2 Ψ w 1 , w 1 , w 1
and the mapping Q ( w 1 ) is obtained by
Q ( w 1 ) = lim 1 τ ν 2 F τ ν w 1
for all w 1 W 1 .
Proof. 
By Theorem 2.7, define a function H : G G by
H F ( w 1 ) = 1 τ ν 2 F ( τ ν w 1 ) , f o r a l l w 1 W 1 .
Now F , F 1 G and w 1 W 1 , we see
d ( F , F 1 ) K F ( w 1 ) F 1 ( w 1 ) K Ψ ( w 1 , w 1 , w 1 ) , 1 τ ν 2 F ( τ ν w 1 ) 1 τ ν 2 F 1 ( τ ν w 1 ) 1 τ ν 2 K Ψ ( τ ν w 1 , τ ν w 1 , τ ν w 1 ) , H F ( w 1 ) H F 1 ( w 1 ) L K Ψ ( w 1 , w 1 , w 1 ) , d ( H F , H F 1 ) L K ,
i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]). The rest of the proof is similar to that of Theorem 2.7. Hence the proof is complete. □
Corollary 2.10. 
Suppose that an even function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality (31) for all w 1 W 1 .

2.6. Oddness and Evenness of F : Additive Quadratic Case Stability Results : Fixed Method

Theorem 2.11. 
Suppose that a function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the conditions (43) and (57) for all w 1 , w 2 , w 3 W 1 . If there exists L = L ( ν ) be function have the properties (44) and (58) Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 and a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
F ( w 1 ) A ( w 1 ) Q ( w 1 )
1 2 · L 1 ν 1 L Ψ A w 1 + Ψ A w 1 + Ψ Q w 1 + Ψ Q w 1 = 1 2 · L 1 ν 1 L 1 3 { Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1 + Ψ w 1 , w 1 , w 1 + 3 Ψ w 1 , w 1 , w 1
+ Ψ w 1 , w 1 , w 1 + 7 2 Ψ w 1 , w 1 , w 1 + Ψ w 1 , w 1 , w 1 + 7 2 Ψ w 1 , w 1 , w 1 }
and the mapping A ( w 1 ) and Q ( w 1 ) are given in (47) and (61) for all w 1 W 1 .
Proof. 
The proof is similar ideas to that of Theorem 2.5. □
Corollary 2.12. 
Suppose that a function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 and a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality (42) for all w 1 W 1 .

3. Stability In Intuitionistic Fuzzy Banach Space of (3)

In this section, we explore the generalized Ulam - Hyers stability of the functional equations (3) in Intuitionistic Fuzzy Banach Space.
In order to prove stability results, assume W 1 , μ , ν and W 2 , μ , ν are Intuitionistic Fuzzy normed space and Intuitionistic Fuzzy Banach space respectively. Suppose that F : W 1 W 2 and Ψ : W 1 3 [ 0 , ) satisfying the following functional inequalities
μ F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 6 F ψ = 1 3 w ψ 1 2 F ψ = 1 3 w ψ + F ψ = 1 3 w ψ + ψ = 1 3 F ( w ψ ) 5 2 F ( w ψ ) + F ( w ψ ) , Λ μ Ψ w 1 , w 2 , w 3 , Λ ν F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 6 F ψ = 1 3 w ψ 1 2 F ψ = 1 3 w ψ + F ψ = 1 3 w ψ + ψ = 1 3 F ( w ψ ) 5 2 F ( w ψ ) + F ( w ψ ) , Λ ν Ψ w 1 , w 2 , w 3 , Λ
and
μ F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 6 F ψ = 1 3 w ψ 1 2 F ψ = 1 3 w ψ + F ψ = 1 3 w ψ + ψ = 1 3 F ( w ψ ) 5 2 F ( w ψ ) + F ( w ψ ) , Λ μ δ , Λ , μ δ ψ = 1 3 w ψ φ , Λ , μ δ ψ = 1 3 w ψ φ   ψ , Λ , μ δ ψ = 1 3 w ψ φ , Λ , μ δ ψ = 1 3 w ψ φ   ψ , Λ , μ δ ψ = 1 3 w ψ 3 φ + ψ = 1 3 w ψ φ , Λ , ν F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 6 F ψ = 1 3 w ψ 1 2 F ψ = 1 3 w ψ + F ψ = 1 3 w ψ + ψ = 1 3 F ( w ψ ) 5 2 F ( w ψ ) + F ( w ψ ) , Λ ν δ , Λ , ν δ ψ = 1 3 w ψ φ , Λ , ν δ ψ = 1 3 w ψ φ   ψ , Λ , ν δ ψ = 1 3 w ψ φ , Λ , ν δ ψ = 1 3 w ψ φ   ψ , Λ , ν δ ψ = 1 3 w ψ 3 φ + ψ = 1 3 w ψ φ , Λ ,
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 with δ be a positive constant.

3.1. Definitions and Notations of Intuitionistic Fuzzy Banach Space

Now, we recall the basic definitions and notations in the setting of intuitionistic fuzzy normed space given in [33].
Definition 3.1. 
[33] A binary operation * : 0 , 1 × 0 , 1 0 , 1 is said to be continuous t-norm if * satisfies the following conditions:
(*1) 
* is commutative and associative;
(*2) 
* is continuous;
(*3) 
a * 1 = a for all a 0 , 1 ;
(*4) 
a * b c * d whenever a c and b d for all a , b , c , d 0 , 1 .
Definition 3.2. 
[33] A binary operation : 0 , 1 × 0 , 1 0 , 1 is said to be continuous t-conorm if ⋄ satisfies the following conditions:
(⋄1) 
⋄ is commutative and associative;
(⋄2) 
⋄ is continuous;
(⋄3) 
a 0 = a for all a 0 , 1 ;
(⋄4) 
a b c d whenever a c and b d for all a , b , c , d 0 , 1 .
Definition 3.3. 
[33] The five-tuple ( X , μ , ν , * , ) is said to be an intuitionistic fuzzy normed space (for short, IFNS) if X is a vector space, * is a continuous t-norm, ⋄ is a continuous t conorm, and μ , ν are fuzzy sets on X × ( 0 , ) satisfying the following conditions. For every x , y X and s , t > 0
(IFN1) 
μ ( x , t ) + ν ( x , t ) 1 ;
(IFN2) 
μ ( x , t ) > 0 ;
(IFN3) 
μ ( x , t ) = 1 , if and only if x = 0 ;
(IFN4) 
μ ( d x , t ) = μ x , t d for each d 0 ;
(IFN5) 
μ ( x , t ) * μ ( y , s ) μ ( x + y , t + s ) ;
(IFN6) 
μ ( x , · ) : ( 0 , ) [ 0 , 1 ] is continuous;
(IFN7) 
lim t μ ( x , t ) = 1 and lim t 0 μ ( x , t ) = 0 ;
(IFN8) 
ν ( x , t ) < 1 ;
(IFN9) 
ν ( x , t ) = 0 , if and only if x = 0 ;
(IFN10) 
ν ( d x , t ) = ν x , t d for each d 0 ;
(IFN11) 
ν ( x , t ) ν ( y , s ) ν ( x + y , t + s ) ;
(IFN12) 
ν ( x , · ) : ( 0 , ) [ 0 , 1 ] is continuous;
(IFN13) 
lim t ν ( x , t ) = 0 and lim t 0 ν ( x , t ) = 1 .
In this case, ( μ , ν ) is called an intuitionistic fuzzy norm.
Example 3.4. 
[33] Let X , · be a normed space. Let a * b = a b and a d = min a + b , 1 for all a , b [ 0 , 1 ] . For all x X and every t > 0 , consider
μ ( x , t ) = t t + x i f t > 0 ; 0 i f t 0 ; a n d ν ( x , t ) = x t + x i f t > 0 ; 0 i f t 0 .
Then X , μ , ν , * , is an IFN-space.
Definition 3.5. 
[33] Let X , μ , ν , * , be an IFNS. Then, a sequence x = { x k } is said to be intuitionistic fuzzy convergent to a point L X if
lim μ ( x k L , t ) = 1 a n d lim ν ( x k L , t ) = 0
for all ρ > 0 . In this case, we write
x k I F L a s k
Definition 3.6. 
[33] Let X , μ , ν , * , be an IFN-space. Then, x = { x k } is said to be intuitionistic fuzzy Cauchy sequence if
μ x k + p x k , t = 1 a n d ν x k + p x k , t = 0
for all ρ > 0 , and p = 1 , 2 .
Definition 3.7. 
[33] Let X , μ , ν , * , be an IFN-space. Then X , μ , ν , * , is said to be complete if every intuitionistic fuzzy Cauchy sequence in X , μ , ν , * , is intuitionistic fuzzy convergent X , μ , ν , * , .

3.2. Oddness of F : Additive Case Stability Results : Direct Method

Theorem 3.8. 
Suppose that an odd function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the conditions
μ Ψ 5 μ w 1 , 5 μ w 2 , 5 μ w 3 , Λ μ I μ Ψ w 1 , w 2 , w 3 , Λ ν Ψ 5 μ w 1 , 5 μ w 2 , 5 μ w 3 , Λ ν I μ Ψ w 1 , w 2 , w 3 , Λ
and
lim μ Ψ 5 μ w 1 , 5 μ w 2 , 5 μ w 3 , 5 μ Λ = 1 lim ν Ψ 5 μ w 1 , 5 μ w 2 , 5 μ w 3 , 5 μ Λ = 0
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 with μ = ± 1 and 0 < I 5 μ < 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
μ A ( w 1 ) F ( w 1 ) , Λ μ Ψ A w 1 , 3 Λ 4 | 5 I | = μ Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | * μ Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | ν A ( w 1 ) F ( w 1 ) , Λ ν Ψ A w 1 , 3 Λ 4 ( 5 I ) = ν Ψ w 1 , w 1 , w 1 , 3 Λ 4 ( 5 I ) ν Ψ w 1 , w 1 , w 1 , 3 Λ 4 ( 5 I )
and the mapping A ( w 1 ) is obtained by
lim μ 1 5 μ F 5 μ w 1 A ( w 1 ) , Λ = 1 lim ν 1 5 μ F 5 μ w 1 A ( w 1 ) , Λ = 0
for all w 1 W 1 and all Λ > 0 .
Proof. 
Using oddness of F in (1), we get
μ F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 6 F ψ = 1 3 w ψ + ψ = 1 3 F ( w ψ ) , Λ μ Ψ w 1 , w 2 , w 3 , Λ ν F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 6 F ψ = 1 3 w ψ + ψ = 1 3 F ( w ψ ) , Λ ν Ψ w 1 , w 2 , w 3 , Λ
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 . Interchanging w 1 , w 2 , w 3 by w 1 , w 1 , w 1 in (7), we obtain
μ 3 F ( 5 w 1 ) 6 F 3 w 1 + 3 F ( w 1 ) , Λ μ Ψ w 1 , w 1 , w 1 , Λ ν 3 F ( 5 w 1 ) 6 F 3 w 1 + 3 F ( w 1 ) , Λ ν Ψ w 1 , w 1 , w 1 , Λ
for all w 1 W 1 and all Λ > 0 . Again interchanging w 1 , w 2 , w 3 by w 1 , w 1 , w 1 in (7) and using (IFN4), (IFN10), we have
μ 2 F ( 3 w 1 ) 6 F w 1 , Λ μ Ψ w 1 , w 1 , w 1 , Λ ν 2 F ( 3 w 1 ) 6 F w 1 , Λ ν Ψ w 1 , w 1 , w 1 , Λ μ 6 F ( 3 w 1 ) 18 F w 1 , 3 Λ μ Ψ w 1 , w 1 , w 1 , Λ ν 6 F ( 3 w 1 ) 18 F w 1 , 3 Λ ν Ψ w 1 , w 1 , w 1 , Λ
for all w 1 W 1 and all Λ > 0 . Combining (8) and (9) using (IFN5), (IFN11), we arrive
μ 3 F ( 5 w 1 ) 15 F ( w 1 ) , 4 Λ μ 3 F ( 5 w 1 ) 6 F 3 w 1 + 3 F ( w 1 ) , Λ * μ 6 F ( 3 w 1 ) 18 F w 1 , 3 Λ μ Ψ w 1 , w 1 , w 1 , Λ * μ Ψ w 1 , w 1 , w 1 , Λ = μ Ψ A w 1 , Λ ν 3 F ( 5 w 1 ) 15 F ( w 1 ) , 4 Λ ν 3 F ( 5 w 1 ) 6 F 3 w 1 + 3 F ( w 1 ) , Λ ν 6 F ( 3 w 1 ) 18 F w 1 , 3 Λ ν Ψ w 1 , w 1 , w 1 , Λ ν Ψ w 1 , w 1 , w 1 , Λ = ν Ψ A w 1 , Λ
for all w 1 W 1 and all Λ > 0 . Using (IFN4), (IFN10), one can see from (10) that
μ 1 5 F ( 5 w 1 ) F ( w 1 ) , 4 3 · 1 5 Λ μ Ψ A w 1 , Λ ν 1 5 F ( 5 w 1 ) F ( w 1 ) , 4 3 · 1 5 Λ ν Ψ A w 1 , Λ
for all w 1 W 1 and all Λ > 0 . Changing w 1 by 5 w 1 in (11), and using (IFN4), (IFN10), (3), we get
μ 1 5 + 1 F ( 5 + 1 w 1 ) 1 5 F ( 5 w 1 ) , 4 3 · 5 · 1 5 Λ μ Ψ A 5 w 1 , Λ μ I Ψ A w 1 , Λ = μ Ψ A w 1 , 1 I Λ ν 1 5 + 1 F ( 5 + 1 w 1 ) 1 5 F ( 5 w 1 ) , 4 3 · 5 · 1 5 Λ ν Ψ A 5 w 1 , Λ ν I Ψ A w 1 , Λ = ν Ψ A w 1 , 1 I Λ
for all w 1 W 1 and all Λ > 0 also > 0 . Changing Λ by I Λ in (112), we see
μ 1 5 + 1 F ( 5 + 1 w 1 ) 1 5 F ( 5 w 1 ) , 4 3 · 5 · I 5 Λ μ Ψ A w 1 , Λ ν 1 5 + 1 F ( 5 + 1 w 1 ) 1 5 F ( 5 w 1 ) , 4 3 · 5 · I 5 Λ ν Ψ A w 1 , Λ
for all w 1 W 1 and all Λ > 0 . It is easy to check that
1 5 F ( 5 w 1 ) F ( w 1 ) = η = 0 1 1 5 η + 1 F ( 5 η + 1 w 1 ) 1 5 η F ( 5 η w 1 )
for all w 1 W 1 . Using (IFN5), (IFN11), it follows from (13) and (14), we obtain
μ 1 5 F ( 5 w 1 ) F ( w 1 ) , η = 0 1 4 3 · 5 · I 5 η Λ = μ η = 0 1 1 5 η + 1 F ( 5 η + 1 w 1 ) 1 5 η F ( 5 η w 1 ) , η = 0 1 4 3 · 5 · I 5 η Λ η = 0 1 μ 1 5 η + 1 F ( 5 η + 1 w 1 ) 1 5 η F ( 5 η w 1 ) , 4 3 · 5 · I 5 η Λ η = 0 1 μ Ψ A w 1 , Λ = μ Ψ A w 1 , Λ ν 1 5 F ( 5 w 1 ) F ( w 1 ) , η = 0 1 4 3 · 5 · I 5 η Λ = ν η = 0 1 1 5 η + 1 F ( 5 η + 1 w 1 ) 1 5 η F ( 5 η w 1 ) , η = 0 1 4 3 · 5 · I 5 η Λ η = 0 1 ν 1 5 η + 1 F ( 5 η + 1 w 1 ) 1 5 η F ( 5 η w 1 ) , 4 3 · 5 · I 5 η Λ η = 0 1 ν Ψ A w 1 , Λ = ν Ψ A w 1 , Λ
where
η = 0 1 μ = μ * μ * μ * . . . a n d η = 0 1 ν = ν ν ν . . .
for all w 1 W 1 and all Λ > 0 . Again changing w 1 by 5 1 w 1 in (15), and using (IFN4), (IFN10), (3) in that changing Λ by I 1 Λ , we have
μ 1 5 + 1 F ( 5 + 1 w 1 ) 1 5 1 F ( 1 w 1 ) , η = 0 1 4 3 · 5 · I 5 η + 1 Λ μ Ψ A w 1 , Λ ν 1 5 + 1 F ( 5 + 1 w 1 ) 1 5 1 F ( 1 w 1 ) , η = 0 1 4 3 · 5 · I 5 η + 1 Λ ν Ψ A w 1 , Λ
for all w 1 W 1 and all Λ > 0 also , 1 > 0 . It follows from (16) that
μ 1 5 + 1 F ( 5 + 1 w 1 ) 1 5 1 F ( 1 w 1 ) , Λ μ Ψ A w 1 , Λ η = 0 1 4 3 · 5 · I 5 η + 1 ν 1 5 + 1 F ( 5 + 1 w 1 ) 1 5 1 F ( 1 w 1 ) , Λ ν Ψ A w 1 , Λ η = 0 1 4 3 · 5 · I 5 η + 1
for all w 1 W 1 and all Λ > 0 . By data, the Cauchy criterion for convergence in Intuitionistic Fuzzy normed space gives that the sequence 1 5 F ( 5 w 1 ) , is Cauchy in W 2 , μ , ν and it is a complete Intuitionistic Fuzzy normed space, this sequence converges to some point A ( w 1 ) in W 2 , μ , ν for all w 1 W 1 . So, by notation, we write
lim μ 1 5 F 5 w 1 A ( w 1 ) , Λ = 1 lim ν 1 5 F 5 w 1 A ( w 1 ) , Λ = 0
for all w 1 W 1 and all Λ > 0 . Letting 1 = 0 and in (17) and using (18), we arrive
μ A ( w 1 ) F ( w 1 ) , Λ μ Ψ A w 1 , 3 Λ 4 ( 5 I ) = μ Ψ w 1 , w 1 , w 1 , 3 Λ 4 ( 5 I ) * μ Ψ w 1 , w 1 , w 1 , 3 Λ 4 ( 5 I ) ν A ( w 1 ) F ( w 1 ) , Λ ν Ψ A w 1 , 3 Λ 4 ( 5 I ) = ν Ψ w 1 , w 1 , w 1 , 3 Λ 4 ( 5 I ) ν Ψ w 1 , w 1 , w 1 , 3 Λ 4 ( 5 I )
for all w 1 W 1 and all Λ > 0 . Thus, (5) and (6) holds for μ = 1 . Interchanging
w 1 , w 2 , w 3 = 5 w 1 , 5 w 2 , 5 w 3 ,
in (1) and using (IFN4), (IFN10), we have
μ 1 5 { F ( 5 ( 3 w 1 + w 2 + w 3 ) ) + F ( 5 ( w 1 + 3 w 2 + w 3 ) ) + F ( 5 ( w 1 + w 2 + 3 w 3 ) ) 6 F ψ = 1 3 5 w ψ 1 2 F ψ = 1 3 5 w ψ + F ψ = 1 3 5 w ψ + ψ = 1 3 F ( 5 w ψ ) 5 2 F ( 5 w ψ ) + F ( 5 w ψ ) } , Λ μ Ψ 5 w 1 , 5 w 2 , 5 w 3 , 5 Λ ν 1 5 { F ( 5 ( 3 w 1 + w 2 + w 3 ) ) + F ( 5 ( w 1 + 3 w 2 + w 3 ) ) + F ( 5 ( w 1 + w 2 + 3 w 3 ) ) 6 F ψ = 1 3 5 w ψ 1 2 F ψ = 1 3 5 w ψ + F ψ = 1 3 5 w ψ + ψ = 1 3 F ( 5 w ψ ) 5 2 F ( 5 w ψ ) + F ( 5 w ψ ) } , Λ ν Ψ 5 w 1 , 5 w 2 , 5 w 3 , 5 Λ
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 . Now,
μ A ( 3 w 1 + w 2 + w 3 ) + A ( w 1 + 3 w 2 + w 3 ) + A ( w 1 + w 2 + 3 w 3 ) 6 A ψ = 1 3 w ψ 1 2 A ψ = 1 3 w ψ A ψ = 1 3 w ψ + ψ = 1 3 A ( w ψ ) 5 2 A ( w ψ ) + A ( w ψ ) , Λ μ A ( 3 w 1 + w 2 + w 3 ) 1 5 F ( 5 ( 3 w 1 + w 2 + w 3 ) ) , Λ 7 * μ A ( w 1 + 3 w 2 + w 3 ) 1 5 F ( 5 ( w 1 + 3 w 2 + w 3 ) ) , Λ 7 * μ A ( w 1 + w 2 + 3 w 3 ) 1 5 F ( 5 ( w 1 + w 2 + 3 w 3 ) ) , Λ 7 * μ 6 A ψ = 1 3 w ψ + 1 5 6 F ψ = 1 3 5 w ψ , Λ 7 * μ 1 2 A ψ = 1 3 w ψ + A ψ = 1 3 w ψ 1 5 1 2 F ψ = 1 3 5 w ψ + F ψ = 1 3 5 w ψ , Λ 7 * μ ψ = 1 3 A ( w ψ ) 5 2 A ( w ψ ) + A ( w ψ ) 1 5 ψ = 1 3 F ( 5 w ψ ) 5 2 F ( 5 w ψ ) + F ( 5 w ψ ) , Λ 7 * μ 1 5 { F ( 5 ( 3 w 1 + w 2 + w 3 ) ) + F ( 5 ( w 1 + 3 w 2 + w 3 ) ) + F ( 5 ( w 1 + w 2 + 3 w 3 ) ) 6 F ψ = 1 3 5 w ψ 1 2 F ψ = 1 3 5 w ψ + F ψ = 1 3 5 w ψ + ψ = 1 3 F ( 5 w ψ ) 5 2 F ( 5 w ψ ) + F ( 5 w ψ ) } , Λ 7 ν A ( 3 w 1 + w 2 + w 3 ) + A ( w 1 + 3 w 2 + w 3 ) + A ( w 1 + w 2 + 3 w 3 ) 6 A ψ = 1 3 w ψ 1 2 A ψ = 1 3 w ψ A ψ = 1 3 w ψ + ψ = 1 3 A ( w ψ ) 5 2 A ( w ψ ) + A ( w ψ ) , Λ ν A ( 3 w 1 + w 2 + w 3 ) 1 5 F ( 5 ( 3 w 1 + w 2 + w 3 ) ) , Λ 7 ν A ( w 1 + 3 w 2 + w 3 ) 1 5 F ( 5 ( w 1 + 3 w 2 + w 3 ) ) , Λ 7 ν A ( w 1 + w 2 + 3 w 3 ) 1 5 F ( 5 ( w 1 + w 2 + 3 w 3 ) ) , Λ 7 ν 6 A ψ = 1 3 w ψ + 1 5 6 F ψ = 1 3 5 w ψ , Λ 7 ν 1 2 A ψ = 1 3 w ψ + A ψ = 1 3 w ψ 1 5 1 2 F ψ = 1 3 5 w ψ + F ψ = 1 3 5 w ψ , Λ 7 ν ψ = 1 3 A ( w ψ ) 5 2 A ( w ψ ) + A ( w ψ ) 1 5 ψ = 1 3 F ( 5 w ψ ) 5 2 F ( 5 w ψ ) + F ( 5 w ψ ) , Λ 7 ν 1 5 { F ( 5 ( 3 w 1 + w 2 + w 3 ) ) + F ( 5 ( w 1 + 3 w 2 + w 3 ) ) + F ( 5 ( w 1 + w 2 + 3 w 3 ) ) 6 F ψ = 1 3 5 w ψ 1 2 F ψ = 1 3 5 w ψ + F ψ = 1 3 5 w ψ + ψ = 1 3 F ( 5 w ψ ) 5 2 F ( 5 w ψ ) + F ( 5 w ψ ) } , Λ 7
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 . Taking limit in (21), using (18) and (20), we get
μ A ( 3 w 1 + w 2 + w 3 ) + A ( w 1 + 3 w 2 + w 3 ) + A ( w 1 + w 2 + 3 w 3 ) 6 A ψ = 1 3 w ψ 1 2 A ψ = 1 3 w ψ + A ψ = 1 3 w ψ + ψ = 1 3 A ( w ψ ) 5 2 A ( w ψ ) + A ( w ψ ) , Λ = 1 ν A ( 3 w 1 + w 2 + w 3 ) + A ( w 1 + 3 w 2 + w 3 ) + A ( w 1 + w 2 + 3 w 3 ) 6 A ψ = 1 3 w ψ 1 2 A ψ = 1 3 w ψ + A ψ = 1 3 w ψ + ψ = 1 3 A ( w ψ ) 5 2 A ( w ψ ) + A ( w ψ ) , Λ = 0
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 . Using (IFN3), (IFN9) in (22), we see, A ( w 1 ) satisfies (3). In order to confirm that A ( w 1 ) is unique, suppose B ( w 1 ) be another mapping (3), (18) and (19), we obtain
μ A ( w 1 ) B ( w 1 ) , 2 Λ = μ A 5 w 1 B 5 w 1 , 5 2 Λ μ A 5 w 1 F 5 w 1 , 5 Λ * μ F 5 w 1 B 5 w 1 , 5 Λ μ Ψ A 5 w 1 , 3 Λ 4 5 ( 5 I ) * μ Ψ A 5 w 1 , 3 Λ 4 5 ( 5 I ) μ Ψ A w 1 , 3 Λ 4 5 I ( 5 I ) ν A ( w 1 ) B ( w 1 ) , 2 Λ = ν A 5 w 1 B 5 w 1 , 5 2 Λ ν A 5 w 1 F 5 w 1 , 5 Λ ν F 5 w 1 B 5 w 1 , 5 Λ ν Ψ A 5 w 1 , 3 Λ 4 5 ( 5 I ) ν Ψ A 5 w 1 , 3 Λ 4 5 ( 5 I ) ν Ψ A w 1 , 3 Λ 4 5 I ( 5 I )
for all w 1 W 1 and all Λ > 0 . Taking limit in (23), and using (IFN7), (IFN13), we arrive
μ A ( w 1 ) B ( w 1 ) , 2 Λ = 1 ν A ( w 1 ) B ( w 1 ) , 2 Λ = 0
for all w 1 W 1 and all Λ > 0 . By (IFN4) and (IFN10), we get A ( w 1 ) is unique. So, the Theorem holds for μ = 1 .
Changing w 1 = w 1 5 in (10) and using (IFN4), (IFN10), (3), in that changing Λ by Λ I , we have
μ F ( w 1 ) 5 F w 1 5 , 4 3 · I Λ μ Ψ A w 1 , Λ ν F ( w 1 ) 5 F w 1 5 , 4 3 · I Λ ν Ψ A w 1 , Λ
for all w 1 W 1 and all Λ > 0 . Changing w 1 by w 1 5 in (25), and using (IFN4), (IFN10), (3) in that changing Λ by Λ I , we get
μ 5 F w 1 5 5 + 1 F w 1 5 + 1 , 4 3 · I 5 I Λ μ Ψ A w 1 , Λ ν 5 F w 1 5 5 + 1 F w 1 5 + 1 , 4 3 · I 5 I Λ ν Ψ A w 1 , Λ
for all w 1 W 1 and all Λ > 0 also > 0 . It is easy to check that
F ( w 1 ) 5 F w 1 5 = η = 0 1 5 η F w 1 5 η 5 η + 1 F w 1 5 η + 1
for all w 1 W 1 . The rest of the proof is similar to that of above case. So, the Theorem holds for μ = 1 . Hence the proof is complete □
Corollary 3.9. 
Suppose that an odd function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
μ A ( w 1 ) F ( w 1 ) , Λ μ δ , | 3 | Λ , μ δ | w 1 | φ , Λ 4 | 5 5 φ | , φ 1 , μ δ ψ = 1 3 | w 1 | φ   ψ , 3 Λ 4 ψ = 1 3 | 5 5 φ   ψ | , φ 1 , φ 2 , φ 3 1 , μ δ | w 1 | 3 φ , 3 Λ 4 | 5 5 3 φ | , 3 φ 1 , μ δ | w ψ | ψ = 1 3 φ   ψ , 3 Λ 4 | 5 5 ψ = 1 3 φ   ψ | , ψ = 1 3 φ   ψ 1 , μ 2 δ | w 1 | 3 φ , 3 Λ 4 | 5 5 3 φ | , 3 φ 1 , ν A ( w 1 ) F ( w 1 ) , Λ ν δ , | 3 | Λ , ν δ | w 1 | φ , Λ 4 | 5 5 φ | , φ 1 , ν δ ψ = 1 3 | w 1 | φ   ψ , 3 Λ 4 ψ = 1 3 | 5 5 φ   ψ | , φ 1 , φ 2 , φ 3 1 , ν δ | w 1 | 3 φ , 3 Λ 4 | 5 5 3 φ | , 3 φ 1 , ν δ | w ψ | ψ = 1 3 φ   ψ , 3 Λ 4 | 5 5 ψ = 1 3 φ   ψ | , ψ = 1 3 φ   ψ 1 , ν 2 δ | w 1 | 3 φ , 3 Λ 4 | 5 5 3 φ | , 3 φ 1 ,
for all w 1 W 1 .

3.3. Evenness of F : Quadratic Case Stability Results : Direct Method

Theorem 3.10. 
Suppose that an even function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the conditions (3) and
lim μ Ψ 5 μ w 1 , 5 μ w 2 , 5 μ w 3 , 25 μ Λ = 1 lim ν Ψ 5 μ w 1 , 5 μ w 2 , 5 μ w 3 , 25 μ Λ = 0
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 with μ = ± 1 and 0 < I 25 μ < 1 . Then there exists a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
μ Q ( w 1 ) F ( w 1 ) , Λ μ Ψ Q w 1 , 7 Λ 3 | 25 I | = μ Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 25 I | * μ Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 25 I | ν Q ( w 1 ) F ( w 1 ) , Λ ν Ψ Q w 1 , 7 Λ 3 ( 25 I ) = ν Ψ w 1 , w 1 , w 1 , 7 Λ 3 ( 25 I ) ν Ψ w 1 , w 1 , w 1 , 7 Λ 3 ( 25 I )
and the mapping Q ( w 1 ) is obtained by
lim μ 1 25 μ F 5 μ w 1 Q ( w 1 ) , Λ = 1 lim ν 1 25 μ F 5 μ w 1 Q ( w 1 ) , Λ = 0
for all w 1 W 1 and all Λ > 0 .
Proof. 
Using evenness of F in (1), we get
μ F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 7 F ψ = 1 3 w ψ 4 ψ = 1 3 F ( w ψ ) , Λ μ Ψ w 1 , w 2 , w 3 , Λ ν F ( 3 w 1 + w 2 + w 3 ) + F ( w 1 + 3 w 2 + w 3 ) + F ( w 1 + w 2 + 3 w 3 ) 7 F ψ = 1 3 w ψ 4 ψ = 1 3 F ( w ψ ) , Λ ν Ψ w 1 , w 2 , w 3 , Λ
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 . Interchanging w 1 , w 2 , w 3 by w 1 , w 1 , w 1 in (32), we obtain
μ 3 F ( 5 w 1 ) 7 F 3 w 1 12 F ( w 1 ) , Λ μ Ψ w 1 , w 1 , w 1 , Λ ν 3 F ( 5 w 1 ) 7 F 3 w 1 12 F ( w 1 ) , Λ ν Ψ w 1 , w 1 , w 1 , Λ
for all w 1 W 1 and all Λ > 0 . Again interchanging w 1 , w 2 , w 3 by w 1 , w 1 , w 1 in (32) and using (IFN4), (IFN10), we have
μ 2 F ( 3 w 1 ) 18 F w 1 , Λ μ Ψ w 1 , w 1 , w 1 , Λ ν 2 F ( 3 w 1 ) 18 F w 1 , Λ ν Ψ w 1 , w 1 , w 1 , Λ μ 7 F ( 3 w 1 ) 63 F w 1 , 2 7 Λ μ Ψ w 1 , w 1 , w 1 , Λ ν 7 F ( 3 w 1 ) 63 F w 1 , 2 7 Λ ν Ψ w 1 , w 1 , w 1 , Λ
for all w 1 W 1 and all Λ > 0 . Combining (33) and (34) using (IFN5), (IFN11), we arrive
μ 3 F ( 5 w 1 ) 75 F ( w 1 ) , 9 7 Λ μ 3 F ( 5 w 1 ) 7 F 3 w 1 12 F ( w 1 ) , Λ * μ 7 F ( 3 w 1 ) 63 F w 1 , 2 7 Λ μ Ψ w 1 , w 1 , w 1 , Λ * μ Ψ w 1 , w 1 , w 1 , Λ = μ Ψ Q w 1 , Λ ν 3 F ( 5 w 1 ) 15 F ( w 1 ) , 9 7 Λ ν 3 F ( 5 w 1 ) 7 F 3 w 1 12 F ( w 1 ) , Λ ν 7 F ( 3 w 1 ) 63 F w 1 , 2 7 Λ ν Ψ w 1 , w 1 , w 1 , Λ ν Ψ w 1 , w 1 , w 1 , Λ = ν Ψ Q w 1 , Λ
for all w 1 W 1 and all Λ > 0 . Using (IFN4), (IFN10), one can see from (35) that
μ 1 25 F ( 5 w 1 ) F ( w 1 ) , 9 7 · 3 · 1 25 Λ μ Ψ Q w 1 , Λ ν 1 25 F ( 5 w 1 ) F ( w 1 ) , 9 7 · 3 · 1 25 Λ ν Ψ Q w 1 , Λ
for all w 1 W 1 and all Λ > 0 . The rest of the proof is similar to that of Theorem 3.8. Hence the proof is complete. □
Corollary 3.11. 
Suppose that an even function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 and all Λ > 0 . Then there exists a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
μ Q ( w 1 ) F ( w 1 ) , Λ μ δ , | 8 | 7 Λ , μ δ | w 1 | φ , 7 Λ 9 | 25 5 φ | , φ 2 , μ δ ψ = 1 3 | w 1 | φ   ψ , 7 Λ 3 ψ = 1 3 | 25 5 φ   ψ | , φ 1 , φ 2 , φ 3 2 , μ δ | w 1 | 3 φ , 7 Λ 3 | 25 5 3 φ | , 3 φ 2 , μ δ | w ψ | ψ = 1 3 φ   ψ , 7 Λ 3 | 25 5 ψ = 1 3 φ   ψ | , ψ = 1 3 φ   ψ 2 , μ 2 δ | w 1 | 3 φ , 7 Λ 3 | 25 5 3 φ | , 3 φ 2 , ν Q ( w 1 ) F ( w 1 ) , Λ ν δ , | 8 | 7 Λ , ν δ | w 1 | φ , 7 Λ 9 | 25 5 φ | , φ 2 , ν δ ψ = 1 3 | w 1 | φ   ψ , 7 Λ 3 ψ = 1 3 | 25 5 φ   ψ | , φ 1 , φ 2 , φ 3 2 , ν δ | w 1 | 3 φ , 7 Λ 3 | 25 5 3 φ | , 3 φ 2 , ν δ | w ψ | ψ = 1 3 φ   ψ , 7 Λ 3 | 25 5 ψ = 1 3 φ   ψ | , ψ = 1 3 φ   ψ 2 , ν 2 δ | w 1 | 3 φ , 7 Λ 3 | 25 5 3 φ | , 3 φ 2 ,
for all w 1 W 1 and all Λ > 0 .

3.4. Oddness and Evenness of F : Additive Quadratic Case Stability Results : Direct Method

Theorem 3.12. 
Suppose that a function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the conditions (3), (4), and (29) for all w 1 , w 2 , w 3 W 1 and all Λ > 0 with μ = ± 1 and 0 < I 5 μ < 1 , 0 < I 25 μ < 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 and a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
μ F ( w 1 ) A ( w 1 ) Q ( w 1 ) , 4 Λ μ Ψ A w 1 , 3 Λ 4 | 5 I | * μ Ψ A w 1 , 3 Λ 4 | 5 I | * μ Ψ Q w 1 , 7 Λ 3 | 25 I | * μ Ψ Q w 1 , 7 Λ 3 | 25 I | = μ Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | * μ Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | * μ Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | * μ Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | * μ Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 5 I | * μ Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 5 I | * μ Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 5 I | * μ Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 5 I | ν F ( w 1 ) A ( w 1 ) Q ( w 1 ) , 4 Λ ν Ψ A w 1 , 3 Λ 4 | 5 I | ν Ψ A w 1 , 3 Λ 4 | 5 I | ν Ψ Q w 1 , 7 Λ 3 | 25 I | ν Ψ Q w 1 , 7 Λ 3 | 25 I | = ν Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | ν Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | ν Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | ν Ψ w 1 , w 1 , w 1 , 3 Λ 4 | 5 I | ν Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 5 I | ν Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 5 I | ν Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 5 I | ν Ψ w 1 , w 1 , w 1 , 7 Λ 3 | 5 I |
and the mapping A ( w 1 ) and Q ( w 1 ) are given in (6) and (31) for all w 1 W 1 .
Proof. 
By Theorem 3.8, it follows from (33), (1) and (5), we arrive
μ A ( w 1 ) F o d d ( w 1 ) , 2 Λ μ Ψ A w 1 , 3 Λ 4 | 5 I | * μ Ψ A w 1 , 3 Λ 4 | 5 I | ν A ( w 1 ) F o d d ( w 1 ) , 2 Λ ν Ψ A w 1 , 3 Λ 4 | 5 I | ν Ψ A w 1 , 3 Λ 4 | 5 I |
for all w 1 W 1 and all Λ > 0 . By Theorem 3.10, it follows from (37), (1), and (30), we see
μ Q ( w 1 ) F e v e n ( w 1 ) , 2 Λ μ Ψ Q w 1 , 7 Λ 3 | 25 I | * μ Ψ Q w 1 , 7 Λ 3 | 25 I | ν Q ( w 1 ) F e v e n ( w 1 ) , 2 Λ ν Ψ Q w 1 , 7 Λ 3 | 25 I | ν Ψ Q w 1 , 7 Λ 3 | 25 I |
for all w 1 W 1 and all Λ > 0 . Now, it follows from (39), (40) and (40), we have
μ F ( w 1 ) A ( w 1 ) Q ( w 1 ) , 4 Λ μ A ( w 1 ) F o d d ( w 1 ) , 2 Λ * μ Q ( w 1 ) F e v e n ( w 1 ) , 2 Λ μ Ψ A w 1 , 3 Λ 4 | 5 I | * μ Ψ A w 1 , 3 Λ 4 | 5 I | * μ Ψ Q w 1 , 7 Λ 3 | 25 I | * μ Ψ Q w 1 , 7 Λ 3 | 25 I | ν F ( w 1 ) A ( w 1 ) Q ( w 1 ) , 4 Λ ν A ( w 1 ) F o d d ( w 1 ) , 2 Λ ν Q ( w 1 ) F e v e n ( w 1 ) , 2 Λ ν Ψ A w 1 , 3 Λ 4 | 5 I | ν Ψ A w 1 , 3 Λ 4 | 5 I | ν Ψ Q w 1 , 7 Λ 3 | 25 I | ν Ψ Q w 1 , 7 Λ 3 | 25 I |
for all w 1 W 1 and all Λ > 0 . □
Corollary 3.13. 
Suppose that a function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 and all Λ > 0 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 and a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
μ F ( w 1 ) A ( w 1 ) Q ( w 1 ) , 4 Λ μ 2 δ , | 3 | + 7 | 8 | Λ μ 2 δ | w 1 | φ , Λ 1 4 | 5 5 φ | + 7 9 | 25 5 φ | , φ 1 , 2 , μ 2 δ ψ = 1 3 | w ψ | φ   ψ , 3 4 ψ = 1 3 | 5 5 φ   ψ | + 7 3 ψ = 1 3 | 25 5 φ   ψ | , φ 1 , φ 2 , φ 3 1 , 2 , μ 2 δ | w 1 | 3 φ , Λ 3 4 | 5 5 3 φ | + 7 3 | 25 5 3 φ | , 3 φ 1 , 2 , μ 4 δ | w ψ | ψ = 1 3 φ   ψ , 2 Λ 3 4 | 5 5 ψ = 1 3 φ   ψ | + 7 3 | 25 5 ψ = 1 3 φ   ψ | ψ = 1 3 φ   ψ 1 , 2 , μ 4 δ | w 1 | 3 φ , Λ 3 4 | 5 5 3 φ | + 7 3 | 25 5 3 φ | 3 φ 1 , 2 , ν F ( w 1 ) A ( w 1 ) Q ( w 1 ) , 4 Λ ν 2 δ , | 3 | + 7 | 8 | Λ ν 2 δ | w 1 | φ , Λ 1 4 | 5 5 φ | + 7 9 | 25 5 φ | , φ 1 , 2 , ν 2 δ ψ = 1 3 | w ψ | φ   ψ , 3 4 ψ = 1 3 | 5 5 φ   ψ | + 7 3 ψ = 1 3 | 25 5 φ   ψ | , φ 1 , φ 2 , φ 3 1 , 2 , ν 2 δ | w 1 | 3 φ , Λ 3 4 | 5 5 3 φ | + 7 3 | 25 5 3 φ | , 3 φ 1 , 2 , ν 4 δ | w ψ | ψ = 1 3 φ   ψ , 2 Λ 3 4 | 5 5 ψ = 1 3 φ   ψ | + 7 3 | 25 5 ψ = 1 3 φ   ψ | ψ = 1 3 φ   ψ 1 , 2 , ν 4 δ | w 1 | 3 φ , Λ 3 4 | 5 5 3 φ | + 7 3 | 25 5 3 φ | 3 φ 1 , 2 ,
for all w 1 W 1 .

3.5. Oddness of F : Additive Case Stability Results : Fixed Method

Theorem 3.14. 
Suppose that an odd function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the condition
lim μ Ψ τ ν w 1 , τ ν w 2 , τ ν w 3 , τ ν Λ = 1 lim ν Ψ τ ν w 1 , τ ν w 2 , τ ν w 3 , τ ν Λ = 0 ; τ ν = 5 ; ν = 0 1 5 ; ν = 1
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 If there exists L = L ( ν ) be a function have the property
μ Ψ A ( w 1 ) , Λ = μ Ψ A w 1 5 , Λ ν Ψ A ( w 1 ) , Λ = ν Ψ A w 1 5 , Λ a n d μ 1 τ ν Ψ A τ ν w 1 , Λ = μ L Ψ A ( w 1 ) , Λ ν 1 τ ν Ψ A τ ν w 1 , Λ = ν L Ψ A ( w 1 ) , Λ ,
for all w 1 W 1 and all Λ > 0 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
μ A ( w 1 ) F ( w 1 ) , Λ μ L 1 ν 1 L Ψ A w 1 , 3 Λ 4 = μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 * μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 ν A ( w 1 ) F ( w 1 ) , Λ ν L 1 ν 1 L Ψ A w 1 , 3 Λ 4 = ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4
and the mapping A ( w 1 ) is obtained by
lim μ 1 τ ν F τ ν w 1 A ( w 1 ) , Λ = 1 lim ν 1 τ ν F τ ν w 1 A ( w 1 ) , Λ = 0
for all w 1 W 1 and all Λ > 0 .
Proof. 
Assume a set G as in Theorem 2.7 of (48) and introduce the generalized metric on the above set G as
d ( F , F 1 ) = inf K ( 0 , ) : μ F ( w 1 ) F 1 ( w 1 ) , Λ μ K Ψ ( w 1 , w 1 , w 1 ) , Λ ν F ( w 1 ) F 1 ( w 1 ) , Λ ν K Ψ ( w 1 , w 1 , w 1 ) , Λ .
for all w 1 W 1 and all Λ > 0 . It is easy to see that ( G , d ) is complete. Define a function H : G G as by Theorem 2.7 of (50) and for F , F 1 G and w 1 W 1 and all Λ > 0 , we see
d ( F , F 1 ) K μ F ( w 1 ) F 1 ( w 1 ) , Λ μ K Ψ ( w 1 , w 1 , w 1 ) , Λ ν F ( w 1 ) F 1 ( w 1 ) , Λ ν K Ψ ( w 1 , w 1 , w 1 ) , Λ μ 1 τ ν F ( τ ν w 1 ) 1 τ ν F 1 ( τ ν w 1 ) , Λ μ τ ν K Ψ ( 1 τ ν w 1 , τ ν w 1 , τ ν w 1 ) , Λ ν 1 τ ν F ( τ ν w 1 ) 1 τ ν F 1 ( τ ν w 1 ) , Λ ν τ ν K Ψ ( 1 τ ν w 1 , τ ν w 1 , τ ν w 1 ) , Λ μ H F ( w 1 ) H F 1 ( w 1 ) , Λ μ L K Ψ ( w 1 , w 1 , w 1 ) , Λ ν H F ( w 1 ) H F 1 ( w 1 ) , Λ ν L K Ψ ( w 1 , w 1 , w 1 ) , Λ d ( H F , H F 1 ) L K ,
i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]).
For the case ν = 0 , it follows from (11) and with the help of (44), (50), (47), we get
μ 1 5 F ( 5 w 1 ) F ( w 1 ) , 4 3 Λ μ 1 5 Ψ A w 1 , Λ ν 1 5 F ( 5 w 1 ) F ( w 1 ) , 4 3 Λ ν 1 5 Ψ A w 1 , Λ d ( H F , F ) L = L 1 ν ,
for all w 1 W 1 and all Λ > 0 .
For the case ν = 1 , it follows from (17) and with the help of (44), (50), (47), we obtain
μ F ( w 1 ) 5 F w 1 5 , 4 3 · I Λ μ Ψ A w 1 5 , Λ ν F ( w 1 ) 5 F w 1 5 , 4 3 · I Λ ν Ψ A w 1 5 , Λ d ( F , H F ) 1 = L 1 ν ,
for all w 1 W 1 and all Λ > 0 . Combining (48) and (49), we have
d ( F , H F ) 1 = L 1 ν .
Therefore ( F P C 1 ) of Theorem 1.3 holds. The rest of the proof follows by Theorem 1.3. Hence the proof is complete. □
Corollary 3.15. 
Suppose that an odd function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a a unique additive mapping A ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality (20) for all w 1 W 1 .

3.6. Evenness of F : Quadratic Case Stability Results : Fixed Method

Theorem 3.16. 
Suppose that an even function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the condition
lim μ Ψ τ ν w 1 , τ ν w 2 , τ ν w 3 , τ ν 2 Λ = 1 lim ν Ψ τ ν w 1 , τ ν w 2 , τ ν w 3 , τ ν 2 Λ = 0 ; τ ν = 5 ; ν = 0 1 5 ; ν = 1
for all w 1 , w 2 , w 3 W 1 and all Λ > 0 . If there exists L = L ( ν ) be function have the property
μ Ψ Q ( w 1 ) , Λ = μ Ψ Q w 1 5 , Λ ν Ψ Q ( w 1 ) , Λ = ν Ψ Q w 1 5 , Λ a n d μ 1 τ ν 2 Ψ Q τ ν w 1 , Λ = μ L Ψ Q ( w 1 ) , Λ ν 1 τ ν 2 Ψ Q τ ν w 1 , Λ = ν L Ψ Q ( w 1 ) , Λ ,
for all w 1 W 1 and all Λ > 0 . Then there exists a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
μ Q ( w 1 ) F ( w 1 ) , Λ μ L 1 ν 1 L Ψ Q w 1 , 7 Λ 3 = μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 * μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 ν Q ( w 1 ) F ( w 1 ) , Λ ν L 1 ν 1 L Ψ Q w 1 , 7 Λ 3 = ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3
and the mapping Q ( w 1 ) is obtained by
lim μ 1 τ ν 2 F τ ν w 1 Q ( w 1 ) , Λ = 1 lim ν 1 τ ν 2 F τ ν w 1 Q ( w 1 ) , Λ = 0
for all w 1 W 1 and all Λ > 0 .
Proof. 
Define a function H : G G as by Theorem 2.9 of (62) and for F , F 1 G and w 1 W 1 and all Λ > 0 , we see
d ( F , F 1 ) K μ F ( w 1 ) F 1 ( w 1 ) , Λ μ K Ψ ( w 1 , w 1 , w 1 ) , Λ ν F ( w 1 ) F 1 ( w 1 ) , Λ ν K Ψ ( w 1 , w 1 , w 1 ) , Λ μ 1 τ ν 2 F ( τ ν w 1 ) 1 τ ν 2 F 1 ( τ ν w 1 ) , Λ μ τ ν K Ψ ( τ ν w 1 , τ ν w 1 , τ ν w 1 ) , Λ ν 1 τ ν 2 F ( τ ν w 1 ) 1 τ ν 2 F 1 ( τ ν w 1 ) , Λ ν τ ν 2 K Ψ ( τ ν w 1 , τ ν w 1 , τ ν w 1 ) , Λ μ H F ( w 1 ) H F 1 ( w 1 ) , Λ μ L K Ψ ( w 1 , w 1 , w 1 ) , Λ ν H F ( w 1 ) H F 1 ( w 1 ) , Λ ν L K Ψ ( w 1 , w 1 , w 1 ) , Λ d ( H F , H F 1 ) L K ,
i.e., H is a strictly contractive mapping on G with Lipschitz constant L (see [24]). The rest of the proof is similar to that of Theorem 3.14. Hence the proof is complete. □
Corollary 3.17. 
Suppose that an even function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality (37) for all w 1 W 1 .

3.7. Oddness and Evenness of F : Additive Quadratic Case Stability Results : Fixed Method

Theorem 3.18. 
Suppose that a function F : W 1 W 2 satisfying the functional inequality (1) where Ψ : W 1 3 [ 0 , ) with the conditions (43) and (51) for all w 1 , w 2 , w 3 W 1 and all Λ > 0 . If there exists L = L ( ν ) be function have the properties (44) and (52) for all w 1 W 1 and all Λ > 0 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 and a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality
μ F ( w 1 ) A ( w 1 ) Q ( w 1 ) , 4 Λ μ L 1 ν 1 L Ψ A w 1 , 3 Λ 4 * μ L 1 ν 1 L Ψ A w 1 , 3 Λ 4 * μ L 1 ν 1 L Ψ Q w 1 , 7 Λ 3 * μ L 1 ν 1 L Ψ Q w 1 , 7 Λ 3 = μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 * μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 * μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 * μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 * μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 * μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 * μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 * μ L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 ν F ( w 1 ) A ( w 1 ) Q ( w 1 ) , 4 Λ ν L 1 ν 1 L Ψ A w 1 , 3 Λ 4 ν L 1 ν 1 L Ψ A w 1 , 3 Λ 4 ν L 1 ν 1 L Ψ Q w 1 , 7 Λ 3 ν L 1 ν 1 L Ψ Q w 1 , 7 Λ 3 = ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 3 Λ 4 ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3 ν L 1 ν 1 L Ψ w 1 , w 1 , w 1 , 7 Λ 3
and the mapping A ( w 1 ) and Q ( w 1 ) are given in (45) and (54) for all w 1 W 1 and all Λ > 0 .
Proof. 
The proof is similar ideas to that of Theorem 3.12. □
Corollary 3.19. 
Suppose that a function F : W 1 W 2 satisfying the functional inequality (2) for all w 1 , w 2 , w 3 W 1 . Then there exists a unique additive mapping A ( w 1 ) : W 1 W 2 and a unique quadratic mapping Q ( w 1 ) : W 1 W 2 which satisfying (3) and the functional inequality (42) for all w 1 W 1 .

Acknowledgment

Supported by The Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), references UIDB/04106/2020 and UIDP/04106/2020. https://doi.org/10.54499/UIDB/04106/2020 and https://doi.org/10.54499/UIDP/04106/2020. References

References

  1. J. Aczel Lectures on Functional Equations and Their Applications, Academic Press, New York (1966). MR:348020 (1967).
  2. J. Aczel, J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
  3. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. [CrossRef]
  4. M. Arunkumar, C. Devi Shyamala Mary, G. Shobana, Simple AQ And Simple CQ Functional Equations, Journal Of Concrete And Applicable Mathematics (JCAAM), 13, Issue 1/2 , Jan - Apr 2015, 120 - 151.
  5. M.Arunkumar, E.Sathya, C. Devi Shyamala Mary, S. Hema Latha, AQ and CQ Functional Equations, Malaya Journal of Matematik, 6, Issue 1, 2018, 182-205. [CrossRef]
  6. M. Arunkumar, E.Sathya, C.Pooja, Single Variable Generalized Additive - Quadratic And Generalized Cubic- Quartic Functional Equations In Various Banach Spaces, International Journal of Mathematics And its Applications, 8 (3) (2020), 1-42.
  7. M. Arunkumar, John M. Rassias, On the generalized Ulam-Hyers stability of an AQ-mixed type functional equation with counter examples, Far East Journal of Applied Mathematics, 71, No. 2, (2012), 279-305.
  8. M. Arunkumar, G. Ganapathy, S. Murthy, S. Karthikeyan, Stability of the generalized Arun-additive functional equation in Instutionistic fuzzy normed spaces, International Journal Mathematical Sciences and Engineering Applications,4, No. V, December 2010, 135-146.
  9. M. Arunkumar, P. Agilan, Additive functional equation and inequality are Stable in Banach space and its applications, Malaya Journal of Matematik (MJM), 1, Issue 1, (2013), 10-17.
  10. M. Arunkumar, E.Sathya, S. Ramamoorthi, General Solution And Generalized Ulam ?Hyers Stability Of A Additive Functional Equation Originating From N Observations Of An Arithmetic Mean In Banach Spaces Using Various Substitutions In Two Different Approaches, Malaya Journal of Matematik, 5 (1) (2017), 4-18.
  11. M. Arunkumar, E.Sathya, S. Ramamoorthi, P.Agilan, Ulam - Hyers Stability of Euler - Lagrange Additive Functional Equation in Intuitionistic Fuzzy Banach Spaces: Direct and Fixed Point Methods, Malaya Journal of Matematik, 6, Issue 1, 2018, 276-285.
  12. M.Arunkumar, E. Sathya, T. Namachivayam, Ulam - Hyers Stability of Euler - Lagrange Quadratic Functional Equation in Intuitionistic Fuzzy Banach Spaces: Direct and Fixed Point Methods, International Journal of Current Advance Research, 7, Issue 1 (2018), 99- 108.
  13. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
  14. A. Bodaghi, M. Arunkumar, E.Sathya, T. Namachivayam, A new type of the additive functional equations on Intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc.,32 (2017), No. 4, pp. 915 - 932.
  15. L. Cadariu, L. Gavruta, P. Gavruta, On the stability of an affine functional equation, J. Nonlinear Sci. Appl., 6 (2013), 60-67.
  16. E. Castillo, A. Iglesias and R. Ruiz-coho, Functional Equations in Applied Sciences, Elsevier, B.V.Amslerdam, 2005.
  17. I.S. Chang, and H.M. Kim, On the Hyers-Ulam stability of quadratic functional equations, Journal of Inequalities in Pure and Applied Mathematics, Volume 3, Issue 3, Article 33, 2002.
  18. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
  19. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), no. 3, 431–436. [CrossRef]
  20. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., U. S. A. 27 (1941), 222–224. [CrossRef]
  21. S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
  22. Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
  23. L. Lucht, C. Methfessel, Recurrent Sequences and Affine Functional Equations, Journal of Number Theory 57, (1996), 105-113., Autumn 2008 3, No. 08, 36-47. [CrossRef]
  24. B. Margolis, J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc.126, no.74 (1968), 305-309.
  25. M. Mursaleen and KJ. Ansari, The stability of a generalized Affine functional equation In fuzzy normed spaces, Publications De L’institut Mathématique, Nouvelle série, Tome, 100 (114) (2016), 163-181. DOI: 10.2298/PIM1614163M.
  26. Md. Nasiruzzaman, On the Fuzzy Stability of an Affine Functional Equation, http://arxiv.org/abs/1506.02488v1. [math.CA] 24 May 2015.
  27. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4, no. 1, pp. 91-96, 2003.
  28. J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), no. 1, 126–130. [CrossRef]
  29. John M. Rassias, M.Arunkumar, E. Sathya, Two Types of Generalized Ulam - Hyers Stability of a Additive Functional Equation Originating From N Observations of an Arithmetic Mean in Intuitionistic Fuzzy Banach Spaces, International Journal of Current Advance Research.,7, Issue 1 (2018), 1 - 9.
  30. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), no. 2, 297–300.
  31. Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
  32. K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 3, No. 08, 36-47.
  33. R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals.27 (2006), 331–344. [CrossRef]
  34. R. Saadati, J. H. Park, Intuitionstic fuzzy Euclidean normed spaces, Commun. Math. Anal.,1 (2006), 85–90.
  35. R. Saadati, S. Sedghi and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos, Solitons and Fractals,38 (2008), 36–47. [CrossRef]
  36. P. K. Sahoo, Pl. Kannappan, Introduction to Functional Equations, Chapman and Hall/CRC Taylor and Francis Group, 2011.
  37. S. M. Ulam, Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated